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Abstract

We use an experiment to explore how subjects learn to play against
computers which are programmed to follow one of a number of standard
learning algorithms. The learning theories are (unbeknown to sub-
jects) a best response process, fictitious play, imitation, reinforcement
learning, and a trial & error process. We test whether subjects try to
influence those algorithms to their advantage in a forward-looking way
(strategic teaching). We find that strategic teaching occurs frequently
and that all learning algorithms are subject to exploitation with the
notable exception of imitation. The experiment was conducted, both,
on the internet and in the usual laboratory setting. We find some
systematic differences, which however can be traced to the different
incentives structures rather than the experimental environment.
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1 Introduction

In recent years, theories of learning in games have been extensively studied

in experiments. The focus of those experiments was mainly on which learn-

ing theory describes the average behavior of subjects best. It turned out

that some very simply adaptive procedures like reinforcement learning, best

response dynamics, or imitation were fairly successful in describing average

learning behavior of subjects.

The focus of the current experiment is different. First, we are interested

in the strategic aspect of learning in games. Given my opponent plays

according to a some learning theory, how should I respond? In the spirit of

Nash equilibrium, one can ask whether a learning theory is a best response

to itself. Otherwise, it will probably not be sustainable. A second closely

related aspect is the evolutionary perspective. Given a population in which

everyone uses a given learning theory, could a player endowed with some

other learning theory enter the population and be successful?

These two aspects of learning in games have received some attention in

the theoretical literature. While Matros (2004) and Schipper (2004) address

the evolutionary selection of learning theories, Ellison (1997) and Fudenberg

and Levine (1998) deal with the strategic aspect of learning. For example

Fudenberg and Levine (1998, p. 261) write “A player may attempt to ma-

nipulate his opponent’s learning process and try to “teach” him how to play

the game. This issue has been studied extensively in models of “reputation

effects,” which typically assume Nash equilibrium but not in the context of

learning theory.” Following Camerer and Ho (2001) and Camerer, Ho, and

Chong (2002) we shall call this aspect of learning “strategic teaching”. We

believe that this hitherto largely neglected aspect of learning is of immense

importance and deserves further study. As we shall see in this experiment,

theories just based on adaptive processes will not do justice to the behavior

of subjects.

To address those questions in an experiment, it would be desirable to

identify subjects who consistently play according to some learning theory

and check how other players react to this. Prior experiments (see e.g. Huck,
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Normann, and Oechssler, 1999) suggest, however, that few subject follow

a given learning theory with high consistency. Therefore, we decided to

let subjects play against computers programmed with particular learning

theories. Subjects know that they play against computers.

We consider five learning theories in a Cournot duopoly: best-response

(br), fictitious play (fic), imitate-the-best (imi), reinforcement learning (re),

and trial & error (t&r). Some noise is added in order to make the task

less than obvious. Noise is also a requirement for some of the theoretical

predictions to work as it prevents a learning process from getting stuck at

states which are not stochastically stable.1 A Cournot duopoly is chosen

because of its familiarity in theory and experiments. The selection of learn-

ing theories is based on three criteria: (1) prominence in the literature, (2)

convenient applicability to the Cournot duopoly, and (3) sufficient variety

of theoretical predictions.

The experiment was conducted on the internet as well as in a traditional

laboratory environment. Internet experiments are still relatively novel (see

e.g. Drehmann, Oechssler, and Roider, 2005, for first experiences). Ar-

guably, the setting (working at home or in the office at your own PC) is

more representative of real world decisions than in the usual laboratory ex-

periments. On the other hand, experimenters lose control to some extent,

and many methodological questions are still unsettled. That is why we also

run a control experiment in the usual lab setting.

Our design allows us to address questions such as: How well do subjects

do against computers programmed to various learning theories? Do subjects

try to strategically teach computers, and if so how? Can the same learning

theories, which were used to program the computers, also describe the sub-

jects’ behavior? We find that strategic teaching occurs frequently and that

all learning algorithms are subject to exploitation with the notable excep-

tion of imitation. This primarily shows up in the fact that human subjects

achieve substantially higher profits than those learning algorithms. As ex-

pected from the theoretical analysis (see e.g. Schipper, 2004), the exception

1See e.g. Vega-Redondo (1997) for imitate-the-best and Huck, Normann, and Oechsler
(2004a) for trial & error.
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is the imitation algorithm, which cannot be beaten by more than a small

margin and which performs on average better than its human opponents.

On the other hand, our subjects learned quickly how to exploit the comput-

ers programmed to best response and fictitious play, usually by behaving as

Stackelberg leader, although some subjects managed to find more innovative

and even more profitable ways. The computer opponent that allowed the

highest profits for its human counterparts was the reinforcement learning

computer. However, due to stochastic nature of reinforcement learning, a

lot of luck was needed and variances were high.

We also compare our data to a similar experiment in which, as usual, hu-

man subjects played against human subjects. This comparison yields some

interesting differences. Human subjects are much less aggressive against

other human subjects than against computer opponents. When computers

are more accommodating (i.e. when they are programmed to follow best re-

sponse or fictitious play) this increase in aggressiveness yields higher profits.

The opposite happens, when the computer is programmed to play imitation.

In that case both competitors have very low profits or even suffer losses.2

There is already a small literature on experiments where subjects play

against computers. Most of this literature is concerned either with mixed-

strategy equilibrium in zero-sum games or with controlling for social pref-

erences or fairness considerations. Lieberman (1961), Messick (1967), and

Fox (1972) found that subjects are not very good in playing their minimax

strategy against a computer opponent which plays its minimax strategy in

zero-sum games. Shachat and Swarthout (2002) let subjects play against

both, human subjects and computers, which are programmed to follow rein-

forcement learning or experienced weighted attraction in repeated 2x2 games

with a unique Nash equilibrium in mixed strategies. They found that hu-

man play does not significantly vary depending on whether the opponent

is a human or a programmed learning algorithm. In contrast, the learning

algorithms respond systematically to non-Nash behavior of human subjects.

2This is further evidence that imitation yields very competitive outcomes. See Vega—
Redondo (1997) for the theoretical argument and Huck, Normann, and Oechssler (1999)
and Offerman, Potters, and Sonnemans (2002) for experimental evidence.
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Nevertheless, these adjustments are too small to result in significant payoff

gains. Coricelli (2001), on the other hand, found that human subjects do

manage to exploit computer opponents that play a biased version of fictitious

play in repeated 2x2 zero-sum games.

Walker, Smith, and Cox (1987) used computerized Nash equilibrium

bidders in first price sealed bid actions. They found no significant difference

in subjects’ bidding whether they play against computers or human subjects

(subjects knew when they were playing against computers). In contrast,

Fehr and Tyran (2001) found a difference in subjects’ behavior in a money

illusion experiment depending on whether subjects played against computers

or against real subjects.3

Roth and Schoumaker (1983) used computer opponents to control for

expectations of subjects in bargaining games. Kirchkamp and Nagel (2005)

used computer players to plant a “cooperative seed” in a local interaction

model where subjects play a prisoner’s dilemma.

McCabe et al. (2001) showed using brain imagining techniques that

the prefrontal cortex is relatively more active when subjects play against

humans than against programmed computers in a trust game. This was

less pronounced for subjects that choose mostly non-cooperatively. It is

speculated that the prefrontal cortex is connected to trading off immedi-

ate gratification and mutual gains. Finally, Houser and Kurzban (2002)

used programmed computers to control for social motives in a public goods

experiment.

The remainder of the paper is organized as follows. Section 2 describes

the Cournot game that is the basis for all treatments. In Section 3 we

introduce the computer types and the associated learning theories. The

experimental design is explained in Section 4, followed by the results in

Section 5. Subsection 5.6 discusses the differences between the internet

and the laboratory setting. Section 6 concludes. The instructions for the

experiment and screenshots are shown in the Appendix.

3However, Fehr and Tyran told their subjects which rule the computer used. Thus, in
contrast to the treatment with real subjects, there was no strategic uncertainty.
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2 The Cournot game

We consider a standard symmetric Cournot duopoly with linear inverse de-

mand function max{109 − Q, 0} and constant marginal cost of 1. Each

player’s quantity qi, i = 1, 2 is an element of the discrete set of actions

{0, 1, ..., 109, 110}. Player i’s profit function is given by

π(qi, q−i) := (max{109− qi − q−i, 0}− 1) qi. (1)

Given this payoff function it is straightforward to compute the Nash equi-

librium and several other prominent outcomes like the symmetric competi-

tive outcome, the symmetric collusive outcome, the Stackelberg leader and

follower outcomes, and the monopoly solution. See Table 1 for the corre-

sponding output and profit values.

Table 1: Prominent outcomes
qi q−i πi π−i

Cournot Nash equilibrium 36 36 1296 1296
symmetric competitive outcome 54 54 0 0
symmetric collusive outcome 27 27 1458 1458
Stackelberg leader outcome 54 27 1458 729
Stackelberg follower outcome 27 54 729 1458
monopoly solution 54 0 2916 0

Subjects play the Cournot duopoly repeatedly for 40 rounds. Thus, we

index the quantity qti by the period t = 1, ..., 40.

3 Computer types

Computers were programmed to play according to one of the following de-

cision rules: Best-response (br), fictitious play (fic), imitate the best (imi),

reinforcement learning (re) or trial & error (t&r). All decision rules except

5



reinforcement learning are deterministic, which would make it too easy for

subjects to guess the algorithm (as we experienced in a pilot study to this

project). Therefore, we introduced some amount of noise for the determinis-

tic processes (see below for details). The action space for all computer types

was {0, 1, ..., 109}.
All computer types require an exogenously set choice for the first round

as they can only condition on past behavior of subjects. To be able to test

whether starting values matter, we chose different starting values. However,

to have enough comparable data, we restricted the starting values to 35, 40,

and 45. Starting quantities were switched automatically every 50 subjects

in order to collect approximately the same number of observations for each

starting quantity but subjects were unaware of this rule.

3.1 Best-response (br)

Cournot (1838) himself suggested a myopic adjustment process based on the

individual best-response

qti = argmaxqi
π(qi, q

t−1
−i ) = max

(
108− qt−1−i

2
, 0

)
, (2)

for t = 2, .... Note that there is a unique best response for each opponent’s

quantity choice. Moreover, the parameters are such that if both players use

the best-response process, the process converges to the Nash equilibrium in

a finite number of steps (see e.g. Monderer and Shapley, 1996). This holds

for both, the simultaneous version of the process (when both players adjust

simultaneously) and the sequential version (when only on of the players

adjusts quantities every period).

This deterministic process is supplemented by noise in the following way.

If the best response process yields some quantity qti , the computer actually

plays a quantity chosen from a Normal distribution with mean qti and stan-

dard deviation 2, rounded to the next integer in {0, 1, ..., 109}.4
4Due to a programming error in the rounding procedure, the noise was actually slightly

biased downwards (by 0.5), which makes the computer player slightly less aggressive. This
does not have any lasting effects for computer types br and fic but has an effect on imi.
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This implementation of noise is also used for computer types fictitious

play and imitation.

3.2 Fictitious play (fic)

A second decision rule that is studied extensively in the literature is ficti-

tious play (see Brown, 1951, Robinson, 1951, and Fudenberg and Levine,

1998, chapter 2). A player who uses fictitious play chooses in each round

a myopic best response against the historical frequency of his opponent’s

actions (amended by an initial weight for each action). If we let those initial

weight be the same for each action and each player, w0i (q−i) = w0, we ob-

tain the following recursive formulation for the weight player i attaches to

his opponent’s action q−i, where 1 is added each time the opponent chooses
q−i.

wt
i(q−i) = wt−1

i (q−i) +
½
1 if qt−1−i = q−i
0 if qt−1−i 6= q−i

for t = 2, .... Player i assigns probability

pti(q−i) =
wt
i(q−i)P

q0−i
wt
i(q

0
−i)

to player −i using q−i in period t. Consequently, player i chooses a quantity
that maximizes his expected payoff given the probability assessment over

the opponent’s quantities, i.e.,

qti ∈ argmaxqi

X
q−i

pti(q−i)π(qi, q−i). (3)

We simulated the fictitious play processes against itself and some other

decision rules for many different initial weighty w0 and ended up choos-

ing w0 = 1/25. Except for much smaller or much larger initial weights,

results of the simulations did not change much. Very high initial weights

lead to rather slow adaptation whereas very small ones resulted in erratic

movements. Since our Cournot duopoly is a potential game, fictitious play

must converge to the unique Cournot Nash equilibrium (see Monderer and

Shapley, 1996).
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3.3 Imitate the best (imi)

Imitation has received much attention recently in both theory and exper-

iments (see e.g. Vega-Redondo, 1997, Apesteguia et al. 2004, Schipper,

2004). The rule “imitate the best” simply requires to choose the best action

that was observed in the previous period. If player i follows this decision

rule in t = 2, ..., he chooses

qti =

½
qt−1i if π(qt−1i , qt−1−i ) ≥ π(qt−1−i , q

t−1
i )

qt−1−i otherwise.
(4)

Vega-Redondo (1997) shows for symmetric Cournot oligopoly that if

players follow this decision rule up to a small amount of noise, then the

long run distribution over quantities assigns probability 1 to the compet-

itive outcome. The reason is that if a player deviates to the competitive

outcome, then he may reduce his profits but reduces the profits of the other

player even more. Consequently he will get imitated in subsequent periods.

Schipper (2004) shows that if there are both imitators and best-response

players in the game, then any state where imitators are weakly better off

than best-response players and where best-response players play a best-

response is absorbing. Moreover, if mistakes are added, then in the long run

imitators are strictly better off than best-response players. The intuition is

that if imitators play a sufficiently large quantity, best-responders become

Stackelberg followers. Moreover, imitators do not change because they are

better off than best-responders.

Alos-Ferrer (2004) shows that if imitators take a finite number past pe-

riods into account when deciding on this period’s quantity, then the support

of the long run distribution contains all symmetric combinations of quan-

tities between the Cournot Nash equilibrium and the competitive outcome.

The intuition is that imitators increasing their relative payoffmay remember

that they had a higher payoff with a different quantity several periods ago.

Consequently they will return improving their absolute profits even though

they reduce their relative profits.

8



3.4 Reinforcement learning (re)

Ideas of reinforcement learning have been explored for many years in psy-

chology (e.g. Thorndike, 1898). Roth and Erev (1995) introduced a version

of it to games based on the law of effect, i.e., choices with good outcomes

in the past are likely to be repeated in the future, and the power law of

practice, i.e., the impact of outcomes decreases over time.

In the standard model of Roth and Erev (1995), an action is chosen with

probability that is proportional to the propensity for this action. Propen-

sities, in turn, are simply the accumulated payoffs from taking this action

earlier in the process.

In games with a large action space such as a Cournot duopoly, it seems

unreasonable to reinforce only that single action that was chosen in a given

round. Rather, actions in the neighborhood should also be reinforced al-

though to a lesser extent depending on their distance to the original choice.

We follow the standard model of reinforcement learning by Roth and Erev

(1995) but complement it with updating of neighborhoods a là Sarin and

Vahid (2004).

The player starts with an initial propensity for each quantity, w0i (q) for

all q ∈ A and i = 1, 2. Let qt−1 be the quantity chosen in period t − 1,
t = 2, .... Then propensities are updated by

wt
i(q) = wt−1

i (q) + β(q, qt−1)πi(qt−1, ·),

where β is the linear Bartlett function

β(q, qt−1) := max
½
0,
6− |q − qt−1|

6

¾
.

That is, all actions within 5 grid points of the chosen action are also rein-

forced.

The probability of playing quantity q in period t is computed by nor-

malizing the propensities

pti(q) =
wt
i(q)P

q0 w
t
i(q

0)
.
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Theoretical results on the convergence properties of reinforcement learn-

ing are scarce.5 Thus most of the analysis is based on simulations. We ran

several simulations of reinforcement learning against itself as well as other

decision rules while varying the initial propensities w0i (q). Results did not

change much when using different initial propensities. We chose w0i (q) = 78,

which minimized the mean squared deviation to the Nash equilibrium. Since

reinforcement learning already is a stochastic process, we did not add addi-

tional noise to the process.

3.5 trial & error (t&e)

Huck, Normann and Oechssler (2004a) introduce a very simple trial & error

learning process. Players begin by adjusting their initial quantity either up-

or downwards with an exogenously fixed step size. If this change increases

profits, the direction is continued. If it does not, the direction of adjustment

is reversed. We chose a step size of 4. Formally, player adjust their quantities

as follows:

qti := max{0,min{qt−1i + 4st−1i , 109}},
for t = 2, ..., where

sti :=

½
sign(qti − qt−1i )× sign(πti − πt−1i ) if (qti − qt−1i )(πti − πt−1i ) 6= 0
+1,−1 each with positive probability otherwise.

On the boundaries of the output grid, we chose a “soft reflecting bound-

ary”. In particular, when a player repeated 109 or 0 twice in subsequent

periods, the next quantity chosen was 109− 4 or 0 + 4, respectively.
Huck, Normann and Oechssler (2004a) show that in Cournot duopoly if

players are allowed to choose the wrong direction with small but positive

probability, then trial & error learning converges in the long run to a set

of outcomes around the collusive outcome. To follow the theoretical set-

ting, the noise for this process was modelled such that the computer chose

5Laslier, Topol and Walliser (2001) show that reinforcement learning converges with
positive probability to any strict pure Nash equilibrium in finite two-player strategic
games. Similar results were obtained by Ianni (2002). However, they do not consider
reinforcement of neighborhoods as in our case.
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the opposite direction from that prescribed by the theory with independent

probability of 0.2 in each round.

4 Experimental design

More than 600 subjects participated in our experiment. The bulk of the

experiment was conducted as an internet experiment (setting net). Addi-

tionally there was a control experiment conducted as a regular laboratory

experiment with the usual monetary incentives (setting lab). In net, subjects

played on the internet, in a location of their own choice (home, office etc.),

and at their own pace. Recruitment was done by email, newsgroups (like

sci.econ, sci.math, sci.psych etc.), and a University of Bonn student maga-

zine. Each recruitment announcement contained a different hyperlink such

that we were able to differentiate between subject pools depending on where

they were recruited. Each subject chose her/his nickname. On the internet,

incentives were provided exclusively by publicly displaying a highscore after

the experiment (like in computer games).

In setting net, subjects could repeat the experiment as often as they

desired, either immediately or at some later time. Subjects were encouraged

to repeat under the same user name as before.6

In setting lab, subjects played in the Bonn Laboratory for Experimental

Economics. Subjects were required to repeat the experiment once with the

same computer type as opponent, i.e., they played two times 40 rounds as

outlined above. Since there were fewer observations in the lab, we used only

a starting value of 40 for the computer types. Incentives were provided by

paying subjects immediately at the end of the experiment the sum of profits

over all rounds according to an exchange rate of 9000 Points to 1 Euro. On

average, subjects earned 10.17 Euros for about half an hour in the lab. The

instructions for both settings were the same up to the incentive structure

(highscore in net, cash payment in lab).

6The incentives for doing so were the highscore and the possibility to pick the same
computer opponent as before (subjects logging in under a different name were allocated
to a randomly chosen computer). The latter possibility was only revealed once subjects
logged in under the same name.
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The sequence of events was as follows. After logging in (after entering the

lab, respectively), subjects were randomly matched to a computer type. The

computer type was displayed to subjects via a label (Greek letters) though

subjects were not told how computer types were associated with labels. In

the instructions (see Appendix A) subjects were told the following: “The

other firm is always played by a computer program. The computer uses

a fixed algorithm to calculate its output which may depend on a number

of things but it cannot observe your output from the current round before

making its decision.”

A page with instructions was displayed to subjects. At any time during

the experiment, subjects were able read the instructions and an example

for calculating profits by opening a separate window on their computer.

After reading the instructions, subjects could input their quantity for the

first round. The computer displayed a new window with the results for the

current round including the number of the round, the subject’s quantity, the

subject’s profit, the computer’s quantity as well as the computer’s profit (see

Appendix B for screenshots). A subject had to acknowledge this information

before moving on to the following round. Upon acknowledgment, a new page

appeared with an input field for the new quantity. This page also showed a

table with the history of previous round(s)’s quantities and profits for both

players.

After round 40, subjects were asked to fill in a brief questionnaire (see

Appendix) with information on gender, occupation, country of origin, for-

mal training in game theory or economic theory, previous participation in

online experiments, and the free format question “Please explain in a few

words how you made your decisions”. It was possible to skip this ques-

tionnaire. The highscore was displayed on the following page. This table

contained a ranking among all previous subjects, separately for subjects who

were matched against the same computer type and for all subjects. It also

contained the computer’s highscore.

In both the net and the lab setting, subjects were able to see the entire

history from the previous rounds. In an additional internet setting called

“no history” (noh) we restricted this information to that from the previous
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period. This should be informative as some learning theories condition only

on the previous round whereas others use the entire history. Table 2 provides

a summary of the three experimental settings. Given the three settings and

the five learning theories (and neglecting the 3 different starting quantities

for the computer), we have 15 treatments.

Table 2: Summary of experimental settings

setting recruitment repetition incentives history
computer’s

initial quantity
net newsgroups possible highscore full 35, 40, 45
lab laboratory twice profit full 40
noh newsgroups possible highscore previous round 35, 40, 45

The experiments were conducted in November 2003 in the Bonn Lab-

oratory of Experimental Economics and from December 2003 until March

2004 on the internet. Table 3 lists the number of first time players and the

number of repeaters for each setting. Recall that subjects in the internet

setting were allowed to repeat as often as they liked.7

Table 3: Number of subjects
first—timer repeater

net 550 500
noh 81 30
lab 50 50
total 681 580

The technical implementation of the experiment was based on the follow-

ing criteria: (1) easy access, (2) minimal technical requirements, (3) high

system stability, and (4) high system security. In order to participate in

our experiment, a standard web browser and a low-speed internet connec-

tion were sufficient. That is, no plug-ins like Flash or ActiveX Object or

technologies such as cookies or JavaScript were required. We did not want

to exclude (and implicitly select) subjects by technical means. To separate

among different subject pools, we used different virtual directories. Each

7The record was a subject who played 31 times.
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subject pool (e.g. different newsgroups) was informed of a different link,

and subjects were unaware of other links.

Our servers were based on Windows Server 2003. We used IIS 6.0 with

ASP-technology as the web-based solution as well as Microsoft SQL 2000

SP3 as database. This technology allows for easy back-up, remote-access,

failure diagnostics, and a standardized SQL-to-SPSS interface.

5 Results

To give a first impression of the data, we present in Table 4 mean quantities

of subjects and computers, respectively, averaged over all rounds and sub-

jects. The first thing to notice is that subjects on average have much higher

quantities than computers (47.95 vs. 34.39). This holds for all treatments

except for the imitation treatments. Recall that the Cournot—Nash quantity

is 36 (see Table 1). Thus, subjects chose on average quantities that exceed

by far the Cournot quantity and in some cases come close to the Stackelberg

leader output of 54.

A further observation is that quantities in the lab seem to be generally

lower than on the net. We will comment on this difference in Section 5.6.

Average quantities for the no history setting (noh) are also somewhat lower

than for net. At a first glance, this is surprising because some learning

theories predict, if anything, the opposite (e.g. imitation with a 1-period

memory yields more competitive outcomes than imitation with longer mem-

ories, see Alos—Ferrer, 2004). However, the data corresponds nicely to our

evidence on strategic teaching (see Section 5.2 below). Strategic teaching

is probably easier to do if one has available a longer track record of the

computer’s quantities. And since strategic teaching, in most cases, leads to

more aggressive play in a Cournot game, this would explain the finding.

5.1 How do subjects do against computers?

In the end, what matters are subjects’ profits. How do they differ with re-

spect to the different computer types? Figure 1 report the range of subjects’

average profits per round and mean profit per round of first time players and

14



Table 4: Mean quantities

treatment
subjects’

mean quantities
computers’

mean quantities
br_net 51.99 (10.80) 27.79 (5.25)
br_lab 48.67 (9.25) 29.34 (4.58)
br_noh 49.18 (12.08) 29.23 (5.80)
t&e_net 48.96 (9.92) 32.05 (6.91)
t&e_lab 38.49 (4.20) 35.02 (3.99)
t&e_noh 45.90 (7.97) 31.67 (5.68)
fic_net 46.11 (10.15) 31.94 (3.53)
fic_lab 41.27 (5.47) 33.82 (2.49)
fic_noh 43.62 (6.94) 32.71 (2.63)
imi_net 46.40 (11.39) 48.38 (6.11)
imi_lab 40.29 (7.22) 45.37 (6.67)
imi_noh 45.92 (7.23) 49.57 (6.58)
re_net 47.45 (11.67) 35.71 (10.08)
re_lab 42.80 (7.50) 37.64 (10.34)
re_noh 45.71 (17.74) 43.55 (15.07)
Total 47.95 (10.96) 34.39 (9.55)

Note: Average quantities over all 40 rounds and all subjects in a given treatment.
The Cournot-Nash equilibrium quantity is 36. Standard deviations in parentheses.

repeaters, respectively. The figures report those measures separately for each

of our treatments, i.e. for each combination of computer type (br, t&e, fic,

imi, and re) and setting (net, lab, noh). The dotted line indicates the profit

per round in the Cournot Nash equilibrium.

First time players who are matched with a computer types br, t&e, or

fic achieve on average slightly less than the Nash equilibrium profit. The

ranges in profits are larger in the internet treatments than in the lab but

roughly comparable across the three computer types. Drastically different,

however, are profits of subjects who were matched against the computer

types imi and re. On average profits against imi were less than half the

profits against the first three computer types. Even the very best subjects

do not reach the Nash equilibrium profit, despite the bias in the noise of

this computer type (see Footnote 4). Profits against computer type re are

also substantially lower than against br, t&e, or fic but they are higher than
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against imi.8 The range of profits is highest against this type of computer.

Some subjects achieve very high profits that exceed the Stackelberg leader

or collusive profit (of 1458).

Average profits of repeaters are generally higher than those of first time

players. The improvements, however, seem to be more pronounced for the

internet treatments where subjects could repeat several times and had the

choice of computer opponent. While subjects improve somewhat against

computer type imi, average payoffs are still by far the lowest of all computer

types. Against br and fic, subjects on average do better than the Nash

equilibrium profit. The very best subjects played against t&e and re on the

net.

It is also quite instructive to consider average profits over time. Figure

2 shows profits (averaged over settings net, lab, noh and all subjects) of

subjects and computers for all 40 periods. Subjects playing against type

br almost immediately gain a substantive edge over the computer and keep

their profits more or less constant somewhere between the Stackelberg leader

profit and the Nash equilibrium profit. The final result against type fic is

similar but convergence is much more gradual. The fictitious play computer

is also the most successful among the computer types as it stabilizes at a

profit of above 1000. The learning curves against types t&e and re look

similar, although against the latter subjects do not even manage to achieve

the Nash equilibrium profit on average.9

A totally different picture yields computer type imi. In contrast to all

others, payoffs against imi decrease over time, both for subjects and for com-

puters. Furthermore, it is the only computer type where subjects’ payoffs

are lower than those of computers. We say more on this below.

If we consider the overall top subjects a slightly different picture emerges

(see Table 5). Among the top 100 subjects there are 52 subjects who played

8For first-time players, profits against re are lower than against br, fic, and t&e accord-
ing to two—sided MWU tests at p < 0.01. For repeaters only the first difference remains
significant at p = 0.02. For both, first-timers and repeaters, profits against re are higher
than against imi at p < 0.001.

9The dip of the computer player in round 2 is due to the high relative weight of the
(uniformly distributed) initial weights in early rounds, while the computer quantity in
round 1 is not chosen by the learning theory, but set to 35, 40 or 45.
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Figure 1: Range of human subjects’ profits (first-timers and repeaters).
The bars denote maximal, minimum, and, mean (the squares) profits for each
treatment. The dashed line shows profit in the static Nash equilibrium. A treatment
is a combination of computer opponent (br, t&e, fic, imi, re) and experimental
setting (net, lab, noh).
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Figure 2: Time series of profits for subjects and computers for different
computer types.
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against a computer of type re, 27 who played against type t&e, and 21

who played against br. The top 10 players were almost exclusively playing

against type re. This confirms the impression obtained from Figure 1. The

highest profits can be achieved against type re but a lot of luck is needed

for this due to the stochastic nature of reinforcement learning.

Table 5: Distribution of top subjects
against computer type... among top 100 among top 10
br 21 −
t&e 27 1
re 52 9

Note: Pooled over all settings net, lab, noh.

5.2 Human tactics

In this section we want to describe human tactics, i.e., strategic teaching

by subjects. We shall do so mainly by way of examples as it is difficult

to reliably classify the behavior of all subjects. Least ambiguous is the

classification of subjects playing against type br. Most of the top players

in this treatment realized that profits are quite high when one stubbornly

plays something close to the Stackelberg leader quantity.

Figure 3(a) shows quantities of the best subject playing against type br

and the corresponding computer quantities. The best subject against br

(ranked overall 57th) chose 55 in all 40 periods.10 The computer quickly

adjusted to a neighborhood of the Stackelberg follower quantity with the

remaining movement due to the noise in the computer’s decision rule.

Another interesting, though less frequent, pattern can be seen in Figure

3(b). The subject chose — with only slight variations — the following cycle

of 4 quantities: 108, 70, 54, 42, 108, 70, ... Stunningly, this cycle produces

an expected profit per round of 1520, which exceeds the Stackelberg leader

profit.11 By flooding the market with a quantity of 108, the subjects made

10 Interestingly, none of our subjects chose the exact Stackelberg leader quantity of 54.
11The only reason the subjects in Figure 3(a) received an even higher payoff was luck
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sure that the computer left the market in the next period. But instead of

going for the monopoly profit, the subject accumulated intermediate profits

over three periods. This, of course, raises the question, what is the optimal

cycle? It turns out, that, in fact, the optimal cycle length is four and, after

rounding to integers, the optimal cycle is 108, 68, 54, 41, which produces an

expected profit of 1522. Thus, our subject was within 2 units of the solution

for this non—trivial optimization problem.12

How did the very best subject play? Like all top players, he played

against computer type re. Figure 4(a) reveals that the subject simply got

lucky.13 It was a first-time player in the no-history setting, i.e., a player

with very little information about the game. The reinforcement algorithms

locked in at very low quantities in the range of 10 and the subject roughly

played a best response to that, which resulted in an average profit of 2117.

Finally, one could ask whether there were any successful attempts at

collusion. Against computer types br, fic, and imi, collusion is theoretically

impossible. Only for t&e there are theoretical results (Huck, Normann, and

Oechssler, 2004a) which indicate that collusion could occur. However, as it

turned out, the only successful example of collusion occurred against type

re (see Figure 4(b)). Here the computer got locked in at about 27 and the

subject consistently played 27. Of course, the subject could have improved

his payoff by deviating to the Stackelberg leader quantity once the computer

was locked in enough.

5.3 Can (myopic) learning theories describe subjects’ behav-
ior?

Are the myopic learning theories useful in describing subjects’ behavior? In

this section we analyze whether the same learning theories that were used to

program the computers can be used to organize the behavior of their human

due to favorable noise of the computer algorithm.
12The subject played three times against br and left two comments. The first was “tried

to trick him”, the second “tricked him”.
13The description of his strategy was “π mal Daumen”, which roughly translates to

“rule of thumb”.
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Figure 3: (a) Quantities of subject ranked number 57 and of the br-computer
opponent (top panel); (b) Quantities of subject ranked number 61 and of
the br-computer opponent (lower panel)
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opponents. We shall do so by calculating for each round (except round 1) the

quantity q∗i , which is predicted by the respective theory (without noise), and
comparing it to the actually chosen quantity in that round, qti .

14 The mean

squared deviation (MSD), (q∗i − qti)
2, is then calculated for each theory by

averaging over all periods t = 2, ..., 40, all subjects, and all treatments. We

also calculate MSDs for the predictions of constant play of the Stackelberg

leader quantity, for constant play of the Cournot Nash equilibrium quantity,

for constant play of the collusive quantity, and for simply repeating the

quantity decision from the previous round (“same”). Finally, as a benchmark

we calculate the MSD that would result from random choice generated by

an i.i.d. uniform distribution on [0,109] (“random”). Figures 5 and 6 show

the resulting average MSD for the settings net and lab separately. Both

figures demonstrate that all predictions perform substantially better than

random choice. Reinforcement has the lowest MSD, followed by trial&error,

same, and imitation. Not surprisingly, collusion is very far off the mark. A

similar picture emerges for both experimental settings except that MSDs in

the lab are generally much lower than in the internet setting. It seems that

subjects in the lab are better described by our theories.

A slightly different ranking of learning theories is obtained when we con-

sider the theory that best describes a subject’s play (measured by minimum

MSD for all decisions of a given subject in periods 2 through 40). Figure

7 lists the number of subjects’ plays that are best described by the various

theories. Here imitation is most frequently the best fitting theory. Overall,

we see that the myopic learning theories do have some descriptive power.

Yet, given the observed tendency of subjects towards strategic teaching, we

should not be surprised that the fit is all but perfect.

5.4 A comparison with human vs. human data

It should be interesting to compare the behavior of our subjects to that of

subjects in a “normal” experiment where subjects play against other humans

subjects instead of computers. For this purpose we look at the duopoly

14 In the case of reinforcement learning we take q∗i to be the expected quantity given the
distribution of propensities.
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Figure 7: Number of plays best described by the various theoretical predic-
tions, all settings
Note: A theory is said to best describe a subject’s play if it minimizes MSD over
periods 2-40 of that play.

treatment of Huck, Normann, and Oechssler (2004b), which has a fairly

similar design as the current experiment.15 A striking difference in results

appears when we compare the average quantities of human subjects. While

in Huck, Normann, and Oechssler (2004b) the average quantity of (human)

subjects is about 9% below the Nash equilibrium quantity, it is more than

33% above the Nash quantity for human subjects in the current experiment

(more than 17% above Nash in lab). That is, when subjects know that their

opponents are also human subjects, they behave slightly collusive. When

they know that they play against computers, they play substantially more

aggressively.

15The main differences in the design are that Huck, Normann, and Oechssler (2004b)
use a demand function with p = 100−qi− q−i and a finer grid of strategies. Furthermore,
their experiment lasted for only 25 periods. All other design features were essentially the
same.
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As in the previous subsection we can calculate the MSD for how well

the studied learning theories describe humans’ behavior. Figures 8 and 9

show the average MSD for each of the learning theories best response, fic-

titious play, imitation, reinforcement learning, and trial & error, for our

human vs. computer experiment and Huck et al.’s (2004b) human vs. hu-

man experiment, respectively. Note that the levels of the MSD for the two

experiments are not perfectly comparable since the demand functions differ

slightly. Nevertheless, it is striking how much lower the average MSD are

for the human vs. human experiment. In any case, the ranking of the dif-

ferent learning theories in terms of MSD is informative, and this ranking is

almost exactly reversed: those theories that describe the human behavior

best in our experiment, namely best response and fictitious play, turn out

to be those that describe human behavior worst in the context of a human

vs. human situation.

When we look at the average MSD for all 5 learning theories, we see

that descriptive power of those theories becomes better over time. Figures

10 and 11 show the development of average MSD for all theories, separately

for our human vs. computer experiment and Huck et al’s (2004b) human

vs. human experiment. While there is improvement for both experiments,

the improvement in the human vs. human case is much stronger.

What could account for this? Both, best response and fictitious play

work well when describing play near a Cournot equilibrium. Looking at

Table 4, we see that subjects are more likely to play quantities close to the

Cournot equilibrium when playing against other humans, and consequently

are better described by fictitious play and best response. But why does this

not apply when playing against a computer? It seems that strategic teaching

is more pronounced when playing against a computer. Strategic teaching

usually consists of playing higher quantities to induce the computer to react

with lower quantities in future rounds. Since such forward-looking behavior

is not predicted by any of the five (adaptive) learning theories, average MSDs

remain relatively high in the human vs. computer experiment.

Reasons for the subjects to use less strategic teaching against other hu-

mans could include fairness considerations (the Cournot outcome is “fairer”
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Figure 8: Average MSD of different learning theories in human vs. comput-
ers experiment

Figure 9: Average MSD of learning theories in human vs. human experiment
(Data from Huck et al. 2004b)
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Figure 10: Average MSD of all 5 learning theories over time, human vs.
computer experiment

Figure 11: Average MSD of all 5 learning theories over time, human vs.
human experiment
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than the Stackelberg outcome) and the anticipation of negative reciprocal re-

actions. Alternatively, subjects may believe that real subjects are harder to

fool (or more stubborn) than a simple computer program and are therefore

less susceptible to strategic teaching. Of course, there is no good reason for

supposing that computers could not be programmed to mimic “emotional”

reactions of humans like reciprocity, revenge, or, indeed, rage. But probably

our dominant perception of computers is one of rationally acting machines

without emotions.

5.5 Learning theories and economic value

We define the economic value of a given learning theory as the improvement

in a subject’s profit generated by substituting the learning theory’s recom-

mendation for the actual choice of the subject (compare Camerer and Ho,

2001), where the learning theory’s choice is based on the real history of play

up to that round. Note that this is of course a very myopic point of view:

only improvements in payoffs for the current period are counted whereas

possible long—term gains are ignored.

Figure 12 shows the average economic value that the five different learn-

ing theories would have generated for our subjects, separately for the three

experimental settings lab, net, and noh, and the five learning theories. While

the economic value of “imitate the best” is rather low and that of “trial &

error” even negative, there are substantial potential gains from switching to

best response, fictitious play, or reinforcement learning, considering that the

average profit per round was about 1112. Figure 12 shows that the ranking

of the learning theories in terms of economic value are very similar across

experimental settings, but the levels are lower in lab. Just as our subjects

in lab are better described by the learning theories, the additional value of

having those learning theories’ advice is reduced.

As pointed out above, it should not come as a surprise that the economic

values are so high despite the fact that subjects actually achieved much

higher profits than computers. Since economic value does not capture the

long-term effects of a strategy, it does not capture strategic teaching. As we
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Figure 12: Economic value of different learning theories, separately for dif-
ferent experimental settings lab, net, and noh.

saw in Section 5.2, quite a number of our subjects were successfully trying

to exploit the learning theories’ algorithms by deliberately foregoing profits

in the current round to induce the computer opponent to play in a way

that enables the human to gain larger profits in future rounds. Thus, high

economic value may just be a sign that a subject is deliberately deviating

from the myopic optimum to maximize long-term profits.

5.6 Experimenting on the internet - does it make a differ-
ence?

Looking at Table 4 it is apparent that subjects’ average quantities on the net

seem to be substantially higher than in the lab. In fact, when we aggregate

the mean quantities shown in Table 4 over computer types, we get average
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quantities of 48.68 in net and 42.30 in lab. This difference is significant at all

conventional significance levels for t-tests or Mann-Whitney U tests. What

does account for this difference?

If this difference were driven by the different environment (internet ver-

sus laboratory), this would be problematic for the future use of internet

experiments. Note, however, that our net and lab settings differ also by

other aspects, in particular the incentive scheme and possibly the subject

pool. In lab, we paid subjects according to their performance. In net, sub-

jects were solely motivated by their ranking on the highscore table.16 Note

that this difference is not about relative (net) versus absolute (lab) payoff

maximization. A subjects needs to maximize his absolute payoff in order to

achieve a large highscore.

To sort those things out, we have conducted experiments with two addi-

tional settings. The two new settings are designed to bridge the gap between

the lab and net settings. The setting “lab-f” is just like the lab setting ex-

cept that subjects received a fixed payment of 10 Euros as soon as they

entered the lab.17 Setting “lab-np” is like lab except that subjects received

no payment at all. Thus, in both new settings, a good placement on the

highscore table was the only motivation for subjects. The only difference

between lab-np and net was the environment, that is, the laboratory versus

subjects’ homes or offices. To summarize, the new and old settings can be

ordered as follows.

lab
fixed pay→ lab-f

no pay→ lab-np lab vs. home→ net (5)

The experiments for setting lab-f were conducted in October 2004 in the

Bonn Laboratory of Experimental Economics. There were 50 subjects who

each played twice against the same computer type, just like in setting lab.

Subjects for setting lab-np were volunteers who took part in an introduc-

tion for freshmen during which they visited the laboratory. There were 55

16For some subjects getting the top-spot on a highscore table presents substantial incen-
tives. For at least one subject the incentive was so great that he or she invested sufficient
time to hack our system, and tried to manipulate the highscore table.
17 In principle, subjects could have left the lab after receiving the 10 Euros but no one

did.
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volunteers of which 5 played a second time.

Each of the arrows in (5) could account for the difference in quantities

between lab and net. Table 6 shows mean quantities for the different setting

for first-time players and all subjects, separately.

Table 6: Mean quantities

setting
first-timers’

mean quantities
all subjects’

mean quantities
lab 43.14 42.30
lab-f 48.21 47.65
lab-np 48.85 48.52
net 48.69 48.68

Note: Average quantities over all 40 rounds.

Table 6 shows clearly that there is a significant difference (p—values

< 0.001 for t-tests and Mann-Whitney U tests) only for the first of those

arrows, i.e. between lab and lab-f. There are no significant differences at

any conventional level between lab-f, lab-np, and net. We conclude that the

difference between lab and net is primarily driven by the lack of monetary

incentives in net and not by the environment of the decision maker.

6 Conclusion

In this experiment we let subjects play against computers which were pro-

grammed to follow one of a set of popular learning theories. The aim was

to find out whether subjects were able to exploit those learning algorithms.

The bulk of the (boundedly rational) learning theories that have been stud-

ied in the literature (see Fudenberg and Levine, 1998, for a good overview)

are myopic in nature. Probably the most fundamental insight from our ex-

periment is that we need to advance to theories that incorporate at least a

limited amount of foresight. Many of our subjects were quite able to exploit

the simple myopic learning algorithms. Strategic teaching is an important

phenomenon that needs to be accounted for in the future development of

theory. Yet, a word of caution is in order. A comparison with human vs.

human data reveals that myopic learning theories are much better able to
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explain behavior than in our human vs. computer experiment. Why this is

so, remains an interesting question for future work.

Our experiment also provides some methodological lessons with respect

to internet experiments. Although we found significant differences between

our internet and our laboratory setting, we could fully account for those

differences through the different incentive schemes. Internet experiments

are fine, as long as subjects have proper monetary incentives.
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Appendix

A Instructions

A.1 Introduction Page Internet

Welcome to our experiment!

Please take your time to read this short introduction. The experiment lasts for

40 rounds. At the end, there is a high score showing the rankings of all participants.

You represent a firm which produces and sells a certain product. There is one

other firm that produces and sells the same product. You must decide how much

to produce in each round. The capacity of your factory allows you to produce

between 0 and 110 units each round. Production costs are 1 per unit. The price

you obtain for each sold unit may vary between 0 and 109 and is determined as

follows. The higher the combined output of you and the other firm, the lower the

price. To be precise, the price falls by 1 for each additional unit supplied. The

profit you make per unit equals the price minus production cost of 1. Note that

you make a loss if the price is 0. Your profit in a given round equals the profit per

unit times your output, i.e. profit = (price 1) * Your output. Please look for an

example here. At the beginning of each round, all prior decisions and profits are

shown. The other firm is always played by a computer program. The computer

uses a fixed algorithm to calculate its output which may depend on a number of

things but it cannot observe your output from the current round before making its

decision. Your profits from all 40 rounds will be added up to calculate your high

score. There is an overall high score and a separate one for each type of computer.

Please do not use the browser buttons (back, forward) during the game, and do not

click twice on the go button, it may take a short while.

Choose new quantity

Please choose an integer (whole number) between 0 and 110.

A.2 Introduction Page lab

Welcome to our experiment!

Please take your time to read this short introduction. The experiment lasts

for 40 rounds. Money in the experiment is denominated in Taler (T). At the end,
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exchange your earnings into Euro at a rate of 9.000 Taler = 1 Euro. You represent

a firm which produces and sells a certain product. There is one other firm that

produces and sells the same product. You must decide how much to produce in

each round. The capacity of your factory allows you to produce between 0 and 110

units each round. Production cost are 1T per unit. The price you obtain for each

sold unit may vary between 0 T and 109 T and is determined as follows. The higher

the combined output of you and the other firm, the lower the price. To be precise,

the price falls by 1T for each additional unit supplied. The profit you make per unit

equals the price minus production cost of 1T. Note that you make a loss if the price

is 0. Your profit in a given round equals the profit per unit times your output, i.e.

profit = (price 1) * Your output. Please look for an example here. At the beginning

of each round, all prior decisions and profits are shown. The other firm is always

played by a computer program. The computer uses a fixed algorithm to calculate

its output which may depend on a number of things but it cannot observe your

output from the current round before making its decision. Your profits from all 40

rounds will be added up to calculate your total earnings. Please do not use the

browser buttons (back, forward) during the game, and do not click twice on the go

button, it may take a short while.

Choose new quantity

Please choose an integer (whole number) between 0 and 110.

A.3 Example Page

The Formula

The profit in each round is calculated according to the following formula:

Profit = (Price 1) * Your Output

The price, in turn, is calculated as follows.

Price = 109 Combined Output

That is, if either you or the computer raises the output by 1, the price falls

by 1 for both of you. (but note that the price cannot become negative). And the

combined output is simply:

Combined Output = Your Output + Computers Output

Example:
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Lets say your output is 20, and the computers output is 40. Hence, combined

output is 60 and the price would be 49 (= 109 - 60). Your profit would be (49 1)*20

= 960. The computers profit would be (49 - 1)*40 = 1920. Now assume you raise

your output to 30, while the computer stays at 40. The new price would be 39 ( =

109-40-30). Your profit would be (39 - 1)*30 = 1140. The computers profit would

be (39 - 1)*40 = 1520.

To continue, please close this window.

B Screenshots
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