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Abstract

Using a model of dynamic price competition, this paper provides an explanation from the

supply side for the well-established observation that retail prices adjust faster when input costs

rise than when they fall. The opportunity of profitable storing for the next period induces

competitive firms to immediately increase their prices in anticipation of higher future input

costs. This relaxes competition and firms earn positive profits. Conversely, when input costs

are expected to decline, firms adjust their prices only after a cost reduction materializes, and

the firms’ incentives for price undercutting lead to the standard Bertrand outcome.
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1 Introduction

A common observation in several markets is that retail prices react asymmetrically over time in

response to changes in the input prices. In particular, if the input price tends to increase, the price

for the final commodity reacts immediately. However, if the input price falls, the adjustment of

the retail price is slower. A well-known example that corroborates this observation is the gasoline

market.1

The economic literature provides systematic empirical support for the phenomenon of asym-

metric price adjustments, which is also known as rockets and feathers (e.g., Asplund et al. 2000;

Bacon 1991; Blair and Rezek 2008; Borenstein et al. 1997; Chen et al. 2008; Deltas 2008; Green

et al. 2010; Hannan and Berger 1991; Peltzman 2000; Valadkhani 2013; Verlinda 2008). Peltzman

(2000, p. 466) emphasizes that “output prices tend to respond faster to input increases than to

decreases. This tendency is found in more than two of every three markets examined.”

Asymmetric price adjustments have been repeatedly associated with the collusive behavior of

firms. For instance, gasoline markets can be inclined to collusion since outputs and prices are easily

observable by everyone. However, as Peltzman (2000) points out, the pattern of rockets and feathers

is equally likely to be found in concentrated and atomistic markets. Recently, a relevant strand of

literature has focused on the idea that consumers are imperfectly informed about market prices and

a fraction of them face positive search costs. Prices respond asymmetrically since consumers cannot

observe current production costs and their demand is sensitive to previous cost realizations.2

In this paper we attempt to shed new light on asymmetric price adjustments in a standard com-

petitive environment where firms provide a homogeneous good and compete in prices, abstracting

from market imperfections such as collusion and limited information. The traditional economic

theory suggests that firms earn zero profits and prices react symmetrically to cost shocks. Focusing

on the supply side, we show that the nature of this result changes drastically if the opportunity of

profitable storing is allowed.

A motivating example for our setting is the well-known shock that affected the US gasoline

market in 2005 due to the hurricanes Katrina and Rita. According to the detailed investigation

by the Federal Trade Commission (FTC), gas stations were selling gasoline in their tanks at sig-

nificantly higher prices than actual costs and some of them earned substantial profits. The FTC

found no evidence of collusion and concluded that the conduct of firms in response to the supply

shocks caused by the hurricanes was consistent with competition (see FTC 2006).

We develop a two-period model where two firms sell a homogeneous good and engage in repeated

Bertrand-Edgeworth competition by simultaneously setting prices and then ordering the desired

quantities from their provider. A shock occurs in the economy, which makes the first period input

(wholesale) costs diverge from the second period costs. In each period a firm can order a quantity

up to a level that enables it to cover the whole market. Even though the possibility of price

undercutting could drive prices to marginal costs, we find as a unique prediction of the game that

1Other examples can be found in the coffee, corn and banking industries.
2We refer to section 2 for a review of the relevant literature.
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a storage capacity leads to a prompt increase in prices above marginal costs when firms anticipate

that the future input costs will be higher than the current costs. This is the case when storing

for the next period is profitable, namely, when the discount factor is relatively high. The unique

equilibrium price reflects the next period marginal cost, weighted by the discount factor.

The rationale behind this result is that profitable storing induces a firm to fill its depository,

irrespective of what the rival does. A firm that prices at the discounted future input cost is indiffer-

ent between selling today or tomorrow and can store the purchased quantity if the rival undercuts

its price and serves the market today. When input costs are expected to increase tomorrow, despite

the scope for price undercutting the firms can coordinate on higher current prices than marginal

costs. As a result, competition is relaxed and firms make positive profits.

It is worth emphasizing that a firm’s commitment to increase its price in anticipation of higher

input costs is credible as long as storing is profitable. When future discounting is relatively low and

storing is unprofitable, the firms’ incentives for price undercutting drive the price to the current

marginal cost and the standard Bertrand outcome is restored. Consequently, prices adjust only

after an increase in the input costs materializes, and the firms make zero profits.

In the same vein, when a shock is expected to decrease the input costs, storing for the next

period is unprofitable and it does not serve as a commitment device. A price higher than marginal

costs would drive a firm out of the market, while a price below marginal costs would entail losses.

The firms are trapped in the Bertrand paradox and adjust their prices only after a cost change

materializes, which yields zero profits. The opportunity of profitable storing implies that the

immediate price adjustment to an input cost shock is more pronounced when the shock is positive

than when it is negative. Hence, our results provide theoretical support for the phenomenon of

rockets and feathers.

The driving force of our results persists in different alternative scenarios. For instance, in the

baseline model we assume that the input supply is perfectly elastic and the firms cannot affect

the input costs. However, in practice, input costs may also depend on the firms’ demand. In a

setting where input costs partially change already in the first period since the firms’ higher than

usual demand can only be covered at the new input cost, we find that our qualitative results

remain unaffected. Storing drives asymmetric pricing even under alternative market structures,

such as monopoly or Cournot competition.3 Therefore, our results provide new insights into the

phenomenon of asymmetric pricing which lend themselves to a validation from the empirical or

experimental literature.

2 Related literature

The phenomenon of asymmetric price adjustments has been explored in the economic literature

which provides alternative explanations. Using panel data on US sales volume and prices of gasoline,

Borestein and Shepard (1996) find evidence that the gasoline market is characterized by asymmetric

3We refer to section 7 for a discussion on the robustness of our results.
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price patterns and the firms’ behavior is consistent with tacit collusion. A more recent strand of

literature focuses on competitive environments, where consumers cannot perfectly observe market

prices and search is costly. The main contributions differ in the driving force of asymmetric price

adjustments and in the empirical predictions. Tappata (2009) considers a non-sequential search

model with symmetric learning, while Yang and Ye (2008) provide an explanation for asymmetric

pricing based on asymmetric learning by consumers. Arguing that previous work is not able to

capture the specific patterns of price adjustments and of consumer search observed in retail gasoline

markets, Lewis (2011) develops a search model which assumes that consumers’ price expectations

are based on prices observed during previous purchases. Cabral and Fishman (2012) investigate

asymmetric price adjustments in a model where agents are inattentive to new information most

of the time and only update their information at pre-specified intervals. As discussed in the in-

troduction, our paper attempts to provide novel insights into the well-established phenomenon of

asymmetric pricing, focusing on the supply side in a standard model that abstracts from market

imperfections, such as collusion or limited information, and from behavioral aspects regarding the

consumers.

Our analysis is also related to the literature on the role of inventories in the decisions of a firm.

Particular attention has been devoted to the importance of inventory adjustments as a means to

smooth the effects of shocks over time (e.g., Amihud and Mendelson 1983; Borenstein and Shepard

2002; Reagan 1982; Reagan and Weitzman 1982). In this paper, we emphasize the role of inventories

as a driver of the asymmetric price response to input cost shocks.

The rest of the paper is organized as follows. Section 3 describes the retail gasoline market

in the US, whose main features are in line with our setting. Section 4 sets out the formal model.

Section 5 derives the main results. Section 6 extends our model. Section 7 discusses the robustness

of our results. Section 8 concludes. All formal proofs are relegated to the Appendix.

3 The US retail gasoline market

Although we do not aim at explicitly modeling the retail gasoline market, our setting reflects some

relevant features of this market. In the US an estimated 80% of fuel is currently sold by relatively

small retail outlets and their dominance continues to grow. The majority of these firms are single-

store operators – more than 70,000 stores across the country. Half of the retail outlets sell fuel

under the brand of a refining company, but virtually all of them are operated by independent

entrepreneurs. The remaining half sell unbranded fuel, which is purchased on the open market

or via unbranded contracts with a refiner or distributor. A station usually obtains gasoline either

directly at a terminal price known as the ‘rack’ price or through an intermediate supplier called a

‘jobber’, which typically charges a competitive margin over the rack price.4

Retail gasoline prices are publicly observable and in some states (e.g., New Jersey and Wis-

consin) consumer protection laws require that posted gasoline prices remain in effect at least for a

4The interested reader is referred to the NACS Retail Fuels Report of the Association for Convenience and Fuel
Retailing available at www.nacsonline.com/YourBusiness/FuelsReports/Pages/default.aspx.
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given period, generally 24 hours. Since gasoline evaporates rather quickly, carrying large quantities

is suboptimal. Moreover, the size of tanks in gas stations is limited by physical constraints. The

report of the economist Keith Leffler (2007, p. 33), which investigates the factors that influence

regional gas prices throughout the state of Washington, states that “the inventory philosophy of

producers is ‘just in time’ to have adequate supplies to meet expected demand. Only two to five

days of finished product is available to bridge short-term supply interruptions.”

When setting the prices and ordering the quantities from their providers, the retailers generally

face the rack price (plus a competitive distribution margin) as a marginal cost. If unexpected

events occur which affect the import or refining stage (say, a conflict in an oil-producing country

or a hurricane), rack prices may increase immediately and, more relevantly, they are expected to

rise even more in the near future due to possible supply shortages. In particular, as described in

the NACS Retail Fuels Report of the Association for Convenience and Fuel Retailing (2013, p. 63),

“when disruptions occur, retailers [...] are susceptible to changes in product availability and volatile

wholesale prices. Branded fuel retailers may incur price increases and be put on volume allocations.

Meanwhile, unbranded retailers may experience more dramatic wholesale price increases, since they

must compete for limited supply on the spot market, or be denied access to supplies completely.”

4 The model

4.1 Setting

We consider two symmetric firms i = 1, 2 that provide a homogeneous good and engage in repeated

Bertrand-Edgeworth competition by simultaneously deciding on their prices and then on their

output levels, which is known in the literature as production to order (e.g., Chowdhury 2005;

Dixon 1984; Maskin 1986). As discussed in section 7, our qualitative results go through when

prices and quantities are set simultaneously.5 In each period τ = 1, 2, firm i sets a price pτi for the

good and then orders a quantity qτi from its provider. We denote by qmτi the quantity that firm i

places on the market in period τ . Since we aim at analyzing short-term events, we assume that

market demand is inelastic and in each period consumers purchase a quantity d > 0 irrespective

of the price level.6 Following the relevant literature (see Chowdhury 2005 and the references cited

therein), the residual demand for firm i is given by

Rτi(pτi, pτj , q
m
τj) =


d− qmτj if pτi > pτj

max
{
d
2 , d− q

m
τj

}
if pτi = pτj

d if pτi < pτj .

(1)

5We refer to Allen and Hellwig (1986), Dasgupta and Maskin (1986), Dixon (1984) and Maskin (1986) for an
analysis of equilibrium existence in Bertrand-Edgeworth models. More recently, Chowdhury (2009) investigates a
model of Bertrand competition in the presence of non-rigid capacity constraints.

6Inelastic demand seems to be a reasonable assumption in the gasoline retail market, where consumer demand is
largely unresponsive to changes in prices at least in the short run. In section 7 we argue that our qualitative results
go through with more general demand functions.
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The residual demand in (1) is distributed according to the efficient rationing rule. As long as the de-

mand is inelastic, this formulation captures any combined rationing rule, including the proportional

rationing rule (e.g., Tasnádi 1999). The second line of equation (1) identifies the tie-breaking rule

that is used, among others, in Davidson and Deneckere (1986) and Kreps and Scheinkman (1983).

This formulation exhibits the attractive feature that it allows for the spillover of the uncovered

residual demand from one firm to another.7

The quantity qτi that firm i orders in each period cannot exceed d, which represents the firm’s

storage capacity.8 This assumption is reasonable in markets where storing large quantities is un-

feasible. For instance, as argued in section 3, gasoline evaporates quite quickly and the size of

tanks in gas stations is limited by physical constraints. In section 7 we show that our qualitative

results carry over with alternative storage capacities. Notably, a storage capacity equal to d allows

each firm to serve the whole market, and the possibility of price undercutting could drive prices to

marginal costs.

Each period τ firm i may store (a part of) the ordered quantity qτi for the next period. Let qrτi
be the quantity that firm i stores in period τ for the period τ + 1, namely, firm i’s reserves. The

firms incur a constant cost cτ per unit of input (e.g., the rack price for gasoline) in period τ .

Firm i’s profits in period τ are given by

πτi = pτi min
{
qmτi, Rτi(pτi, pτj , q

m
τj)
}
− cτqτi, τ, i = 1, 2,

which represents the difference between total revenues and total costs. Total revenues depend on

the quantity sold on the market. Since we allow for voluntary trading, this quantity is the minimum

between the quantity that the firm puts on the market and the firm’s residual demand in (1).9 The

firm’s total costs depend on the quantity ordered.

Firm i’s aggregate profits can be written as

πi = π1i + δπ2i,

where δ ∈ (0, 1] is the discount factor on the second period.

4.2 Input cost shock

As discussed in the introduction, our purpose is to investigate a situation where a shock occurs

in the input market which makes the current input costs diverge from the future costs. If the

shock is positive, input costs tend to increase, i.e., c2 > c1. This is typically the case after extreme

weather phenomena or the exacerbation of political instability in an oil-producing country, which

can lead to supply disruptions. If the shock is negative, such as the sudden end of a conflict in

an oil-producing country or the announcement of the US Department of Energy that the strategic

7Our results carry over with alternative tie-breaking rules, such as Rτi = d
qmτi

qmτi+q
m
τj

(for qmτi + qmτj = 0, this tie-

breaking rule becomes Rτi = d
2
).

8We assume that storage is costless. Introducing a positive cost of storage does not alter our qualitative results.
9Nothing substantial would change if the firms must fully cover the consumer demand.
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oil inventories have increased, then input costs tend to decrease, i.e., c2 < c1. For the sake of

simplicity, we assume that input costs vary in a deterministic way, but our results carry over even

with cost uncertainty as long as the firms expect that future costs will depart from current costs.

In the baseline model we suppose that the input supply is perfectly elastic in every period.

Since in practice retailers may affect input prices through their demand, in section 6 we consider

a situation where input costs partially change already in the first period since the retailers’ higher

than usual demand can only be satisfied at the new input cost.

4.3 Timing and equilibrium concept

The timing of the model unfolds as follows.

First period

(I) Cost c1 is realized.

(II) The firms simultaneously set their prices.

(III) The firms simultaneously order the quantities that are sold on the market or stored in the

depository for the next period.

Second period

(IV) Cost c2 is realized.

(V) The first period competition stages (II) and (III) are repeated.

The equilibrium concept we adopt is the Subgame Perfect Nash Equilibrium (SPNE).10 Moving

backwards, we first derive the equilibrium prices and quantities in the second period. Afterwards,

we determine the first period outcome of the game and derive the corresponding equilibrium prices

and quantities.

5 Main results

5.1 Second period equilibrium

The following lemma characterizes the equilibrium prices and quantities in the second period.

Lemma 1 A. If
∑2

i=1 q
r
1i ≤ d, the outcome (p∗2i, q

m∗
2i , q

r∗
2i ) constitutes an equilibrium of the second

period continuation game if and only if p∗2i = c2,
∑2

i=1 q
m∗
2i ≤ d and qr∗2i = 0, i = 1, 2.

B. If
∑2

i=1 q
r
1i > d, the outcome (p∗2i, q

m∗
2i , q

r∗
2i ) constitutes an equilibrium of the second period

continuation game if and only if p∗2i ∈
[
p∗
2
, p∗2

]
⊆ [0, c2],

∑2
i=1 q

m∗
2i = d and qr∗2i = max {0, qr∗1i − qm∗2i },

i = 1, 2.

10In line with the main literature we allow for mixed strategies but look for SPNE without mixing on the equilibrium
path.
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Lemma 1A indicates that, if the total amount of reserves from the first period does not exceed

the demand d, the equilibrium price in the second period reflects the current marginal cost c2. This

holds true even though the cost of reserves was incurred in the first period and it is therefore zero

in the second period. A price higher than the marginal cost clearly drives a firm out of the market.

No firm has an incentive to set a price below the marginal cost, since it cannot undercut the rival’s

price and profitably sell more than its reserves. Moreover, since we allow for voluntary trading, in

equilibrium a part of the market may remain uncovered, yet the reserves are fully exhausted.

As Lemma 1B reveals, things are different when the aggregate reserves are greater than the

demand. Since the market cannot absorb all the reserves and their cost was sunk in the first

period, a price war takes place between the firms as they try to sell their reserves. Following

Levitan and Shubik (1972) and Osborne and Pitchik (1986), there exists a (generally unique) mixed

strategy equilibrium where firms randomize in prices within the interval
[
p∗
2
, p∗2

]
⊆ [0, c2]. Any price

above c2 cannot be set with positive probability, since the standard undercutting rationale applies.

Contrary to the case where the total amount of reserves does not exceed the demand, choosing with

probability 1 a price equal to the marginal cost cannot be sustained as an equilibrium, since each

firm has an incentive to undercut the rival and sell off all its reserves. The lower bound of the price

interval crucially depends on the amount of reserves. If either firm does not carry full reserves,

i.e.,
∑2

i=1 q
r
1i ∈ (d, 2d), the minimum price is strictly above zero since (at least) the firm with lower

reserves cannot serve the whole market, which mitigates the incentives to undercut. Only if both

firms carry full reserves, i.e., qr1i = d, i = 1, 2, can each firm undercut the rival and serve the whole

market, which drives the price to zero. The market demand is always satisfied through the reserves.

An implication of Lemma 1, which is useful throughout the rest of the analysis, is that the

second period equilibrium price can never exceed the current input cost c2, irrespective of what

occurred in the first period.

5.2 Benchmark case: No shock

For illustrative purposes we first consider the benchmark case where no shock occurs, i.e., c1 =

c2 ≡ c. This translates into a dynamic version of the one-period game described in Chowdhury

(2005) where we introduce the storing option.

The following remark summarizes the equilibrium of the game in the absence of a shock.

Remark 1 Suppose c1 = c2 ≡ c. Then, the outcome (p∗τi, q
m∗
τi , q

r∗
τi ) constitutes a SPNE if and

only if p∗τi = c and
∑2

i=1 q
m∗
τi ≤ d, τ, i = 1, 2. If δ < 1, then qr∗τi = 0, τ, i = 1, 2. If δ = 1, then∑2

i=1 q
r∗
1i ≤ d and qr∗2i = 0, i = 1, 2.

The opportunity of storing some quantity for the next period does not alter the outcome of the

static game. The firms set a price equal to the marginal cost in each period and earn zero profits.

If δ < 1, storing is clearly profit detrimental, since the marginal cost c is higher than the second

period discounted price (which is bounded above at δc, according to Lemma 1). If δ = 1, storing is

at best not harmful and the firms cannot improve their profits. Therefore, in equilibrium the firms
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are indifferent to storing or not provided that the total amount of reserves does not exceed the

demand. Otherwise, the second period price would fall below c and storing would be detrimental.

5.3 Positive shock

For the sake of convenience, we split our analysis according to the direction of the shock in the

input market. We first investigate the case of a positive shock where input costs tend to increase,

i.e., c2 > c1. Intuitively, a positive shock creates an incentive to purchase at a cost c1 a quantity

that is higher than usual. We know from Lemma 1 that, if the aggregate stored quantity from the

first period does not exceed the demand, the second period price will be equal to the new marginal

cost c2. This gives the firms the opportunity to sell at a positive margin.

The following proposition describes the equilibrium of the game in the presence of a positive

shock.

Proposition 1 Suppose c2 > c1.

A. If δ ≥ c1
c2
, the outcome (p∗τi, q

m∗
τi , q

r∗
τi ) constitutes a SPNE if and only if p∗1i = δp∗2i = δc2,∑2

i=1 q
m∗
τi = d, qr∗1i = d− qm∗1i and qr∗2i = 0, τ, i = 1, 2.

B. If δ < c1
c2
, the outcome (p∗τi, q

m∗
τi , q

r∗
τi ) constitutes a SPNE if and only if p∗τi = cτ ,

∑2
i=1 q

m∗
τi ≤ d

and qr∗τi = 0, τ, i = 1, 2.

Proposition 1A considers the case where the discount factor δ is relatively high so that purchas-

ing one unit of the commodity at c1 in the first period and selling it at c2 in the second period is

profitable. Anticipating higher future input costs, the firms immediately adjust their prices at the

discounted second period input cost δc2. In order to substantiate the intuition behind this result

as provided in the introduction, it is important to realize that for δ ≥ c1
c2

each firm has an incentive

to purchase a quantity d in the first period, which can be partially stored and profitably sold in the

second period. It follows from Lemma 1 that, if the aggregate reserves do not exceed the demand,

a firm that adjusts its price at δc2 is indifferent between serving the market today or tomorrow.

Therefore, it can credibly commit to purchase d even if the rival undercuts its price. In particular,

if the undercutting firm prefers to (partially) serve the market today, the non-deviating firm can

store (a portion of) d and sell it tomorrow at c2. Any deviation above δc2 is unprofitable as long

as the firm conjectures that the rival will cover the whole market.

As described in Remark 1, in the absence of a shock each firm cannot credibly commit not to

be aggressive vis-à-vis the rival, and the standard Bertrand rationale applies. When input costs

are expected to increase tomorrow, profitable storage acts as a commitment device to increase

prices already today, which relaxes competition. The firms can coordinate to increase prices above

marginal costs and earn positive profits. Notably, Proposition 1A shows that the price at the

discounted second period input cost is the unique equilibrium of the game.11 Although the market

can be split between firms in several manners (the symmetric equilibrium qm∗τi = d
2 , τ, i = 1, 2, is

11We refer to the proof of Proposition 1 in the Appendix for technical details.
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only one possibility among others), the market is fully covered in both periods because each firm

orders and sells d.

Since we aim at analyzing short-term events, we expect that the discount factor will be relatively

high and the outcome of Proposition 1A is the most relevant for our purposes. Proposition 1B

describes what happens if the firm’s future discounting is low enough, i.e., δ < c1
c2

. The rationale

for this result is immediate in light of our previous discussion. Since storing is not profitable and

cannot be used as a commitment device to relax competition, the firms are trapped in the Bertrand

paradox and set their prices at the current marginal costs, which yield zero profits.

5.4 Negative shock

We now turn to the case of a negative shock where input costs tend to decrease, i.e., c2 < c1. The

following proposition summarizes the main results.

Proposition 2 Suppose c2 < c1. Then, the outcome (p∗τi, q
m∗
τi , q

r∗
τi ) constitutes a SPNE if and only

if p∗τi = cτ ,
∑2

i=1 q
m∗
τi ≤ d and qr∗τi = 0, τ, i = 1, 2.

Proposition 2 replicates the outcome in Proposition 1B. When a shock is expected to reduce

the input costs, storing is clearly unprofitable and firms cannot coordinate on prices higher than

marginal costs. Moreover, any price below the current costs would entail non-positive profits. As a

consequence, the price in each period reflects the current marginal cost and the standard Bertrand

rationale applies.

It is worth noting that in our model the role of storing depends on the discount factor but it can

be also viewed as a function of the magnitude of the shock in the input market for a given discount.

An alternative interpretation of our results is that, if the magnitude of the shock is large enough

(i.e., if c2 is sufficiently higher than c1), storing is profitable and the firms adjust their prices to

the cost shock faster than when the shock is relatively small or even negative. The driving force

of our results is the opportunity of profitable storing and, as it emerges from sections 6 and 7, the

model is robust to perturbations of the initial assumptions in different directions, as long as storing

is relevant.

5.5 Empirical implications

We are now in a position to relate our results to the empirical predictions. In order to derive the

price-cost pass-through rates over time, we introduce a pre-shock period, called period 0, where the

input cost is the same as in the first period, i.e., c0 = c1.
12 Moreover, we assume that in period 0

the price reflects the current marginal cost, p0 = c0.
13 Using the results in Propositions 1 and 2,

12The results remain qualitatively unaffected if the input shock also alters the cost already in the first period, i.e.,
c0 6= c1.

13In other terms, before the shock we are in the long-run equilibrium. This is a reasonable assumption when the
future shock is unexpected, so that the firms cannot react in period 0. Any other price-cost relationship in period 0
that differs from marginal cost pricing does not alter our qualitative conclusions.
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pτi

c0 = c1

δc2

1
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2

(a) Positive shock and high discount factor

τ

pτi

c0 = c1

1

c2

2

(b) Negative shock

Figure 1: Price adjustments

the percentage variations in prices following a shock are

β̂+0 =
δc2 − c1
c1

, β̂+1 =
1− δ
δ

, β̂−0 = 0, and β̂−1 =
c1 − c2
c1

, (2)

where β̂+0 and β̂+1 respectively denote the percentage variations in prices between periods 0 and 1

and between periods 1 and 2 due to a positive input shock (for δ ≥ c1
c2

). The interpretation of β̂−0
and β̂−1 follows similarly in case of a negative shock. A comparison between β̂+0 and β̂−0 immediately

reveals that β̂+0 > β̂−0 for δ > c1
c2

, namely, final prices rise faster when input costs increase than

when they fall if storing is profitable. In particular, β̂−0 = 0 indicates an initial price stickiness with

a negative shock. The speed of later adjustment is reversed, namely, β̂+1 <
∣∣∣β̂−1 ∣∣∣. This is in line

with the main empirical literature (e.g., Borestein et al. 1997; Chesnes 2012), which shows that

retail prices initially react faster when the input shock is positive but the opposite occurs when the

total adjustment is near completion.

It is also worth noting from (2) that, unless δ = 1, the price adjustment in case of a positive

shock unravels gradually. In particular, we have β̂+1 > β̂+0 if δ >
(
c1
c2

) 1
2
. Put differently, when the

discount factor is relatively high, the relative increase in prices is more pronounced in the first than

in the second period. This is consistent with the empirical evidence that the price-cost pass-through

declines over time with a positive shock.

Our results are depicted for illustrative purposes in Figure 1, where panel (a) shows the price

adjustment over time in the presence of a positive shock and panel (b) indicates the price adjustment

with a negative shock.

To investigate the empirical implications of our results, it is also helpful to translate them in

terms of empirical models. Our predictions can be estimated via a dynamic model of the following

form

∆pτ =
∑n+

i=0
β+i ∆c+τ+k−i +

∑n−

i=0
β−i ∆c−τ+k−i + ετ . (3)

Equation (3) reflects the idea that the spread in retail prices ∆pτ between periods τ − 1 and τ

depends on positive and negative cost changes ∆c+τ+k−i and ∆c−τ+k−i at possibly different rates β+i
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and β−i , plus an error term ετ .14 The term k ≥ 0 captures the impact of anticipated future cost

changes on the current price change. For k = 0 the econometric model in (3) is fairly standard in the

empirical literature (e.g., Borenstein et al. 1997; Chesnes 2012). Positive values of k indicate that

an anticipated cost change between periods τ+k−1 and τ+k can affect the price change already k

periods earlier. This is a key message of our paper for the empirical studies. The predictions of our

model suggest that in markets with storing opportunities the anticipation of future cost changes is

a relevant driver for asymmetric pricing.

Our aim is to derive the estimated β+i and β−i in (3) that our model generates. The phenomenon

of rockets and feathers occurs if β+i > β−i for at least one lag i. We first consider the case of a

positive shock, c2 > c1, and a relatively high discount factor, δ ≥ c1
c2

. Since in our stylized two-

period model only the costs in the next period can be anticipated, i.e., k = 1, plugging our results

into (3) and neglecting the error term ετ yields after some manipulation

p1 − p0 = δc2 − c1 = β+0 (c2 − c1)

p2 − p1 = c2 − δc2 = β+1 (c2 − c1) .

This implies β+0 = δc2−c1
c2−c1 and β+1 = c2−δc2

c2−c1 . When the shock is negative, we find

p1 − p0 = 0 = β−0 (c2 − c1)

p2 − p1 = c2 − c1 = β−1 (c2 − c1) ,

which yields β−0 = 0 and β−1 = 1. The predictions of our model reveal the existence of asymmetric

pricing. We find for δ > c1
c2

that β+0 > β−0 = 0, namely, the immediate price adjustment is larger

with a positive shock than with a negative shock when storing is profitable, and the negative shock

is associated with a price stickiness. The speed of later adjustment is reversed, β+1 < β−1 . Moreover,

we have
∑n+

i=0 β
+
i =

∑n−

i=0 β
−
i , which is consistent with the empirical evidence that in most markets

the wholesale and retail prices do not tend to diverge over time.

6 Endogenous input cost

The results derived so far are based on the assumption that in each period the input supply is

perfectly elastic. Put differently, each firm could potentially order infinite quantities at the current

input costs. In reality, however, the change in the firms’ demand due to a shock may affect the

input costs. To investigate this case, we now assume that in the first period the (common) provider

can obtain a quantity up to d (which represents the ‘historical’ quantity, i.e., the quantity in the

absence of a shock) at a cost c1, for instance, due to long-term contracts. If the provider wants to

acquire larger quantities to serve the firms’ demand, it must resort to other sources (say, the spot

market) and pay the new input cost c2 on the additional amount already in the first period. The

14Equation (3) may also include an error correction term that accounts for deviations from the long-run equilibrium.
Neglecting this term does not affect our results qualitatively.
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provider’s average cost function exhibits a kink at d, and the price charged by the provider now

depends on the firms’ demand for the input.

An endogenous input cost complicates the analysis, since it creates an interdependence between

the firms’ costs. Nonetheless, as this reflects economic realities to some extent, an investigation of

such a case is warranted in order to check the robustness of the results presented in the previous

section.

In light of this discussion, the average input cost in the first period is given by

c̃1 =
c1 min

{
d,
∑2

i=1 q1i

}
+ c2 max

{
0,
∑2

i=1 q1i − d
}

∑2
i=1 q1i

. (4)

We assume that the provider sets an input price equal to the average cost in (4) plus a fixed

markup (normalized to zero). This input price rule captures in a simple but effective manner the

idea that the firms’ demand affects the input price, abstracting from the mode of competition in

the upstream market. When the firms’ demand does not exceed d, the provider does not need to

purchase any quantity from additional sources and therefore the first period input cost is c1. If,

however, the firms’ demand is higher than d, the provider must acquire any additional quantity

at c2, which increases (decreases) the average cost in (4) if c2 > (<) c1 and affects in the same

direction the input cost incurred by the firms.

6.1 Positive shock

The following proposition considers the case of a positive shock.

Proposition 3 Suppose c2 > c1.

A. If δ ≥ 1
4

(
3 + c1

c2

)
, the outcome (p∗τi, q

m∗
τi , q

r∗
τi ) constitutes a SPNE if and only if p∗1i = δp∗2i =

δc2,
∑2

i=1 q
m∗
τi = d, qr∗1i = d− qm∗1i and qr∗2i = 0, τ, i = 1, 2.

B. If c1
c2
≤ δ < 1

4

(
3 + c1

c2

)
, no equilibrium exists.

C. If δ < c1
c2
, the outcome (p∗τi, q

m∗
τi , q

r∗
τi ) constitutes a SPNE if and only if p∗τi = cτ ,

∑2
i=1 q

m∗
τi ≤ d

and qr∗τi = 0, τ, i = 1, 2.

Proposition 3A indicates that, if the discount factor is sufficiently high, i.e., δ ≥ 1
4

(
3 + c1

c2

)
,

the equilibrium price in the first period equals the discounted second period marginal cost δc2 and

reaches c2 in the second period, which ensures that each firm is indifferent to selling across the two

periods. The critical value of the discount factor, 1
4

(
3 + c1

c2

)
, corresponds to the threshold above

which each firm orders d in the first period and the demand is fully covered in each period. The

intuition for this result falls across the same lines as in Proposition 1A. It is worth mentioning that

the critical threshold of the discount factor is higher than in the baseline model, i.e., 1
4

(
3 + c1

c2

)
>

c1
c2

. The idea is that now storing increases the firms’ unit costs already in the first period, which

strengthens the condition under which each firm finds it optimal to order d in the first period.

Another dimension introduced by an endogenous input cost is the indeterminacy for an in-

termediate range of values for the discount factor, i.e., c1
c2
≤ δ < 1

4

(
3 + c1

c2

)
. As Proposition 3B
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reveals, in this case no equilibrium exists (in pure or in mixed strategies). To fix ideas, consider

the equilibrium prices described in Proposition 3A. At these prices, since for intermediate values

of the discount factor storing is still profitable but to a lower extent than in the previous case, the

quantity equilibrium involves orders lower than d in the first period. Following a price increase of

the rival, the non-deviating firm still does not want to order d and serve the whole market. This

implies that a firm can (infinitely) raise its price in the first period and serve the uncovered part of

the market. This conclusion differs from the result in the baseline model, where each firm has an

incentive to order d in the first period for δ ≥ c1
c2

irrespective of what the rival does, which prevents

any profitable deviation. The reason is that storing now increases the firms’ unit costs already in

the first period, which makes storing less attractive.

Following a loose dynamic argument, as long as the first period prices are higher than δc2, each

firm has an incentive to undercut the rival’s price in order to sell in the first period. Moreover, any

price below δc2 cannot be supported as an equilibrium, since the non-deviating firm would prefer to

sell in the next period while the rival could increase the price and sell profitably in the first period.

Hence, for c1
c2
≤ δ < 1

4

(
3 + c1

c2

)
, there is no equilibrium in the price setting game and therefore no

SPNE exists.15

Proposition 3C predicts that, if the discount factor is low enough, i.e., δ < c1
c2

, storing is

unprofitable and no firm has an incentive to order any quantity for the next period irrespective of

what the rival does, since this would result in a net loss. Therefore, prices adjust to the current

input costs as in Proposition 1B and the standard Bertrand argument applies in each period of the

game.

6.2 Negative shock

The following proposition describes what happens in the case of a negative shock.

Proposition 4 Suppose c2 < c1. Then, the outcome (p∗τi, q
m∗
τi , q

r∗
τi ) constitutes a SPNE if and only

if p∗τi = cτ ,
∑2

i=1 q
m∗
τi ≤ d and qr∗τi = 0, τ, i = 1, 2.

Proposition 4 replicates the outcome of Proposition 2. As in the baseline model, storing is

unprofitable since the first period cost c̃1 is higher than the second period cost c2. However,

deriving the equilibrium is now more demanding as c̃1 might be lower than c1 in equilibrium. This

would be the case if the aggregate orders in the first period are higher than d. Things become

more complicated since it is not straightforward to see whether price undercutting below c1 in the

15The indeterminacy arises in our model mainly because of the inelastic demand. This problem can be removed if a
chock price is introduced above which the demand is zero or alternatively if we allow for a negatively sloped demand
function (which is not considered here for the sake of tractability). Following Dixon (1984) and Maskin (1986), in
either case a mixed strategy equilibrium exists. Interestingly, the equilibrium involves a set of prices higher than δc2
in the first period. No firm has an incentive to set a price lower than δc2 since it could sell in the second period and
obtain the same profits. However, it follows from the previous discussion that a firm recognizes that it can increase
the price in the first period because the rival’s inability to commit to order d implies that a part of the market will
remain uncovered. This yields an upper bound of the price range at the monopoly price on the residual demand.
Therefore, the price response to the input cost shock can be even more severe than with higher future discounting.
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first period is profitable or not. Indeed, it turns out to be unprofitable since the non-deviating firm

does not order any positive quantity (which cannot be sold in the first period) and therefore the

undercutting firm does not benefit from a reduction in the input costs. In equilibrium, the price is

equal to c1 in the first period and to c2 in the second period. Since we allow for voluntary trading,

a part of the demand may remain uncovered.

Notably, we can exclude the existence of other equilibria. In particular, prices above c1 in the

first period cannot be supported as an equilibrium because of the usual Bertrand argument. Any

equilibrium cannot sustain prices below c1 since a firm has an incentive to deviate upward in the

first period and set a price above c1. An interesting feature of the quantity setting game following

this deviation is that it does not exhibit any equilibrium in pure strategies. The firm with the

price below c1 strictly prefers to order either zero or d to any other strategy. However, this firm

cannot order zero with probability 1 in equilibrium, since the rival would purchase d, which induces

the firm to deviate by ordering a positive quantity as the input cost c̃1 declines. Moreover, the

firm cannot order d with probability 1 in equilibrium, otherwise the rival would purchase zero and

the associated cost c̃1 = c1 would entail losses. The quantity setting game resembles a game of

matching pennies, and it turns out that the firm with the price above c1 sells some quantity at a

positive margin while the firm with the price below c1 mixes between ordering zero and d so that

it earns zero (expected) profits and the market is fully covered.

7 Robustness

7.1 Mode of competition

In our model the firms set prices and then decide on quantities, which is known in the literature

as production to order. The case in which prices and quantities are determined simultaneously

also deserves some attention. The main technical problem identified in a simple static framework

by Chowdhury (2005) is the nonexistence of pure strategy equilibria. Under some mild conditions

(such as a finite price at which profits are maximized), Allen and Hellwig (1986) and Dasgupta and

Maskin (1986) establish the general existence of an equilibrium in mixed strategies. Since in our

framework the strategic role of profitable storage does not crucially depend on the observability of

the rivals’ prices, we expect that our results will carry over in this scenario, although the derivation

of equilibria would be more cumbersome. The case of a negative shock does not add any element of

interest to the analysis, since storing is unprofitable and the equilibrium of the static game persists.

It is also worth exploring whether the strategic role of storing as an explanation for asymmetric

pricing emerges even in a monopolistic setting or under alternative competitive structures such as

Cournot competition. Indeed, we can show that storing affects the pricing strategy of a monopolist

in several possible manners. Similar results hold when firms compete in Cournot fashion.16 To

make the problem interesting, consider a standard downward sloping demand function. When

the shock is negative, storing is unprofitable and the monopoly price equalizes current marginal

16All our claims can be proved formally. Computations are available upon request.
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revenues and the current (constant) marginal costs in each period. When the shock is positive and

storing is profitable, δ ≥ c1
c2

, the monopolist’s pricing strategy depends on the size of the storage

capacity. If the capacity is so large that the firm can cover the demand in two periods, the price

in the first period still equalizes current marginal revenues and current marginal costs, while the

price in the second period equalizes the discounted marginal revenues and the first period marginal

costs. This implies that in the first period the price adjustment follows the same pattern as with

a negative shock, but the second period price adjustment is smaller. When the storage capacity is

tight, the monopolist faces a trade-off between selling the quantity in the first period or storing it

for the second period. In this case the firm prefers to increase the price in the first period in order

to reduce its current sales and store more output for the next period. Specifically, if the size of the

storage capacity is very small (below a certain threshold level), the monopolist will also produce (or

purchase from its distributor) in the second period and the level of prices in the two periods cannot

be unambiguously ranked. Interestingly, the price may even decrease in the second period despite

the increase in the input costs. If the capacity is relatively less stringent (above the threshold

level), the monopolist will only produce (or purchase from its distributor) in the first period and

it will prefer to sell more in the first period than in the second period (due to the discount factor).

In line with the empirical evidence, the price adjustment in the first period turns out to be more

pronounced than with a negative shock, while the opposite occurs in the second period.

7.2 Storage capacity

Throughout the analysis we assume that a firm’s storage capacity is exogenous and equal to the

market demand in each period. As argued in section 3, a capacity level equal to the demand in

each period is a reasonable assumption, since each firm is able to undercut the rival and serve the

whole market. Less interesting is the case in which the capacity is below d. In such a scenario,

each firm is a monopolist on the residual demand, which creates the incentive to raise prices above

marginal costs even in the absence of a shock. Following Levitan and Shubik (1972) and Osborne

and Pitchik (1986), it can be shown that there exist mixed strategy equilibria involving prices

above marginal costs. A positive shock that entails higher future costs still creates opportunities

for profitable storing and, in line with our results, prices will increase. In such a case, however, the

analysis would be less transparent.

If the firm’s capacity is larger than d, the analysis becomes more cumbersome. In a two-period

game, the firms may not be able to sell their initial orders. Our conclusions remain valid but the

incentive to immediately increase prices with a positive shock is mitigated. Notably, an increase in

the number of periods fully restores our results.

Related to this discussion is the question of the robustness of our results to an increase in the

number of periods. If the game is long enough so that firms are able to sell all quantities at a

certain future point in time, no price war occurs between firms to empty their depositories and

the price randomization in Lemma 1B no longer emerges. In this case, if a positive shock occurs

the price adjustment takes place gradually, provided that the discounted profits are equal across
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periods.

7.3 Input costs

In our setting input costs move in a deterministic way. As argued in section 4.2, nothing would

change substantially if we assume that costs follow a stochastic process, provided that future costs

are expected to depart from the current ones. One may wonder why in our model no trader can

exploit arbitrage opportunities arising from expected cost increases in the future. For instance,

in the gasoline market intermediaries could store some quantities and increase the current prices

charged to retailers. Notably, even in this case the mechanism described in our analysis goes

through but it applies to a different level of the supply chain.

7.4 Demand function

Consumer demand is supposed to be fully inelastic. This assumption is made for the sake of

tractability and turns out to be innocuous for our purposes. It can certainly be the case that the

demand function is not perfectly rigid but is negatively sloped. This makes upward price deviations

less attractive since the demand is reduced, while downward deviations become more appealing.

With a negatively sloped demand function d (.), we have d (c1) > d (δc2) for δ > c1
c2

. If the storage

capacity of each retailer is d (c1), it follows that when both firms purchase d (c1) in the first period

in order to sell it profitably in the two periods some quantity will remain unsold. Clearly, this

cannot be an equilibrium and the firms will have an incentive to undercut below δc2. It is well

known in the literature that in this setting a mixed strategy equilibrium exists. The incentive to

increase prices immediately with a positive shock should persist, even though it is softer.

8 Concluding remarks

In this paper we provide a theoretical explanation for the well-established phenomenon of asym-

metric price adjustments to input cost shocks. Using a model of dynamic price competition, we

show that the presence of profitable storing allows competitive firms to credibly commit to imme-

diately increase their prices above current marginal costs when they anticipate higher input costs.

As a result, competition is mitigated and firms earn positive profits. If input costs are expected to

decline, the price adjustment is slower and prices reflect current marginal costs, which entails zero

profits. Our study suggests that empirical models should also consider the impact of anticipated

cost changes when estimating price patterns over time. This can be done via an investigation of

the firms’ price decisions before a cost change materializes.

Even though our results are shown in a Bertrand-Edgeworth framework, profitable storing

remains the driving force for asymmetric pricing in alternative standard market structures such as

monopoly or Cournot competition. Our findings apply to the gasoline market as well as to other

important sectors characterized by storage opportunities. For instance, banks that issue deposits

and employ the funds to provide loans generally adjust the amount of liquidity they possess and
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the rates on their loans in response to the announcement of a change in the central bank’s interest

rate.

Our analysis is potentially significant in different aspects. We develop a model that focuses

on the supply side and derives the pattern of asymmetric pricing as a unique prediction of the

game, abstracting from market imperfections such as collusion among firms or limited information

of consumers. Our results recommend an empirical investigation that disentangles the well-known

demand side effects from the supply side effects identified in our analysis.
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Appendix

This Appendix collects the proofs.

Proof of Lemma 1. In the quantity setting game, the analysis proceeds through the following

cases:

(i) p2i = p2j > c2 ⇒ qm2i = d
2 , i = 1, 2.

(ii) p2i = p2j = c2 ⇒
∑2

i=1 q
m
2i ≤ d.

(iii) p2i > p2j > c2 ⇒ qm2i = 0; qm2j = d.

(iv) p2i > p2j = c2 ⇒ qm2i = d− qm2j ; qm2j ∈
[
qr1j , d

]
.

(v) p2i > c2 > p2j ⇒ qm2i = d− qm2j ; qm2j = qr1j .

(vi) p2i = c2 > p2j ⇒ qm2i ∈
[
min

{
qr1i, d− qm2j

}
, d− qm2j

]
; qm2j = qr1j .

(vii) p2i = p2j < c2 ⇒ qm2i = min
{
qr1i,max

{
d
2 , d− q

m
2j

}}
, i = 1, 2.

(viii) p2j < p2i < c2 ⇒ qm2i = min
{
qr1i, d− qm2j

}
; qm2j = qr1j .

A. Suppose
∑2

i=1 q
r
1i ≤ d. The candidate equilibria in the price setting game are (a) p2i = p2j= c2;

(b) p2i = p2j > c2; (c) p2i > p2j ≥ c2; (d) p2i ≥ c2 > p2j ; (e) p2i < c2, i = 1, 2.

We first show that candidate (a) is an equilibrium. It follows from (ii) that the equilibrium

in the quantity setting game is qm2i ∈ [qr1i, d], which yields profits for firm i equal to π2i = c2q
r
1i.
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Given (iv), when qm2j = d we can see that no profitable upward price deviation exists. From (vi) it

follows that there is no incentive to deviate downward either. Therefore, the candidate (a) is an

equilibrium, which implies p∗2i = c2,
∑2

i=1 q
m∗
1i ≤ d and qr∗2i = 0, i = 1, 2.

We now show that the price equilibrium (a) is unique. Candidate (b) is not an equilibrium

since if firm i sets a price p2j − ε > c2, where ε > 0 and infinitely small, it can get higher profits.

17Indeed, there are other equilibria in the quantity setting game when firm i carries less than d
2

from the first period
and firm j carries more than d

2
. In these equilibria, firm i buys some quantity at c2 and serves up to half the market,

while firm j cannot sell all its reserves. However, this cannot support a SPNE in the second period continuation
game, since firm i has an incentive to undercut in order to sell all its reserves.
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Candidate (c) is not an equilibrium since firm j can set p
′
2j ∈ (p2j , p2i) and get higher profits.

Candidate (d) is not an equilibrium since firm j can set a price p
′
2j ∈ (p2j , c2) and gain by selling its

reserves. If it does not have any reserve, firm i can gain by setting a higher price. Candidate (e) is

not an equilibrium since both firms have an incentive to raise their prices. Therefore, the outcome

(p∗2i, q
m∗
2i , q

r∗
2i ) is an equilibrium in the second period continuation game if and only if p∗2i = c2,∑2

i=1 q
m∗
1i ≤ d and qr∗2i = 0, i = 1, 2.

B. Suppose
∑2

i=1 q
r
1i > d. Since the second period is the final period of the game, each firm wants

to exhaust its reserves. In equilibrium the market clears (the two firms in aggregate fully cover the

market) and a firm’s reserve is the residual from the first period that the firm is unable to sell in

the second period, namely,
∑2

i=1 q
m∗
2i = d and qr∗2i = max {0, qr∗1i − qm∗2i }, i = 1, 2. Since the firms

do not order any additional quantities, this game corresponds to a price competition game with

(a)symmetric capacity constraints. We know from Levitan and Shubik (1972) and Osborne and

Pitchik (1986) that there exists an equilibrium (which is generally unique), where firms randomize

in prices within the support
[
p∗
2
, p∗2

]
⊆ [0, c2]. Any price above c2 cannot be chosen with positive

probability, since price undercutting is always profitable. Moreover, choosing with probability 1 a

price equal to c2 cannot be sustained as an equilibrium since each firm has an incentive to undercut

the rival and sell off all its reserves.

Proof of Remark 1. We know from Lemma 1 that p∗2i ≤ c. For δ < 1 no firm has an incentive

to store some quantity for the next period, i.e., qr∗τi = 0, τ, i = 1, 2. Therefore, as in Chowdhury

(2005), we have p∗τi = c and
∑2

i=1 q
m∗
τi ≤ d, τ, i = 1, 2, in equilibrium. For δ = 1, storing is not

harmful if
∑2

i=1 q
r
1i ≤ d. Therefore, any outcome

∑2
i=1 q

r
1i ≤ d such that p∗τi = c and

∑2
i=1 q

m∗
τi ≤ d,

τ, i = 1, 2, can be sustained in equilibrium.

Proof of Proposition 1. A. For δ ≥ c1
c2

each firm finds it profitable to order one unit today at

c1 and sell it tomorrow if the price in the second period is c2. First, we argue that no equilibrium

exists which involves a price c1 < p1i < δc2, i = 1, 2. Assume that there exists an equilibrium in the

quantity setting game which supports these prices as an equilibrium strategy. Such an equilibrium

must imply that each firm will order d in the first period, i.e., q1i = d, i = 1, 2, since for any given

quantity of the rival a firm can sell profitably in either period. Note that the outcome qm1i = 0,

qm2i = d with qm1j = d, qm2j = 0 (and the reverse) cannot be supported as an equilibrium in quantities

for c1 ≤ p1i < δc2, i = 1, 2. The rationale is the following. Suppose that firm j deviates in the first

period and stores a quantity q̃1j > 0 for the next period. It follows from the proof of Lemma 1B that

a (unique) mixed strategy equilibrium in the second period continuation game exists. Firm j can

always choose a sufficiently small quantity q̃1j > 0 such that the lower bound of the price interval

is higher than p1j/δ. This implies that firm j which stores q̃1j for the next period gains from such a

deviation. This result is crucial in order to show that there exists an incentive for upward deviation

in prices in the first period. Let Li ≡ {πi : πi = (p1i − c1) qm1i + (δp2i − c1) qm2i} be the set of firm i’s

profits associated with the candidate c1 ≤ p1i < δc2, i = 1, 2, if an equilibrium in quantities exists.

From the previous discussion and the result in Lemma 1B it follows that sup(Li) < (δc2 − c1) d.

Now, we characterize the equilibrium in the quantity setting game in the first period following a
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deviation such that p
′
1i > δc2 > p1j . Let Si ≡

{
π
′
i : π

′
i =

(
p
′
1i − c1

)
qm
′

1i +
(
δp
′
2i − c1

)
qm
′

2i

}
be the

set of firm i’s profits associated with p
′
1i > δc2 > p1j . Since firm i has a strict preference for selling

today while firm j has a strict preference for selling tomorrow, firm i never wants to engage in a

price war in the second period, which implies that d will be sold in both periods and p
′
2i = c2.

Moreover, following the previous argument, firm j will always prefer to bring a positive quantity

to the second period, which implies that firm i can sell something in the first period. Therefore,

inf(Si) > (δc2 − c1) d > sup(Li). Since an equilibrium in quantities with p
′
1i > δc2 > p1j exists

(e.g., qm1i = d, qm2i = 0 and qm1j = 0, qm2j = d), it follows that firm i has an incentive to deviate and

c1 ≤ p1i < δc2, i = 1, 2, cannot be an equilibrium.

It can immediately be shown that p1i > δc2 > p1j cannot be an equilibrium, since firm j can

always set a price p
′
1j = p1i − ε > δc2, where ε > 0 and infinitely small, and gain. Moreover,

p1i = δc2 > p1j cannot be an equilibrium, either. Firm j does not have any incentive to deviate

only when qm1j = 0 and qm2j = d in equilibrium. However, in this case firm i gets profits (δc2 − c1) d
and we know from the previous discussion that it can set p

′
1i > δc2 > p1j and gain. It is also

straightforward to argue that an equilibrium which involves p1i ≥ δc2, i = 1, 2, where at least one

firm sets p1i > δc2 cannot be sustained as the standard undercutting reasoning applies.

The only price candidate that we have not investigated yet is p1i = δc2, i = 1, 2. Note that,

irrespective of the direction of price deviation by firm i, there exists an equilibrium in the quantity

setting game where qm1i = 0, qm2i = d and qm1j = d, qm2j = 0. In this case, no deviation is profitable.

A similar argument applies for any price deviation by firm j. Then, an outcome is a SPNE if and

only if p∗1i = δp∗2i = δc2,
∑2

i=1 q
m∗
τi = d, qr∗1i = d− qm∗1i and qr∗2i = 0, τ, i = 1, 2.

B. For δ < c1
c2

, storing is never profitable, i.e., qr∗τi = 0, τ, i = 1, 2. Therefore, the standard

Bertrand rationale applies and an outcome is a SPNE if and only if p∗τi = cτ ,
∑2

i=1 q
m∗
τi ≤ d and

qr∗τi = 0, τ, i = 1, 2.

Proof of Proposition 2. Since storing is not profitable, the same argument as in the proof of

Proposition 1B applies.

Proof of Proposition 3. Let δ ≥ c1
c2

. We first derive the equilibrium in the first period quantity

setting game when prices are p1i = δp2i = δc2, i = 1, 2. Note that in equilibrium both firms will

order
∑2

i=1 q1i ≥ d, since the marginal (and average) cost in (4) is c̃1 = c1 for
∑2

i=1 q1i ≤ d. The

quantity ordered by firm i in the first period can be written as q1i = q̃e1i + qe1i, where q̃e1i denotes

the quantity ordered by firm i such that together with the corresponding quantity ordered by firm

j it holds
∑2

i=1 q̃
e
1i = d. For a given q̃e1i, i = 1, 2, firm i chooses qe1i and faces an average cost equal

to c̃1 =
c1d+c2

∑2
i=1 q

e
1i

d+
∑2
i=1 q

e
1i

. Firm i’s maximization problem is

max
qe1i≥0

δc2 (q̃e1i + qe1i)− c̃1 (q̃e1i + qe1i) ,

which yields the following first-order condition for an interior solution

20



δc2

(
d+

∑2
i=1 q

e
1i

)2
− c1d

(
d+ qe1j − q̃e1i

)
− c2

[(∑2
i=1 q

e
1i

)2
+ d

(
2qe1i + qe1j + q̃e1i

)]
(
d+

∑2
i=1 q

e
1i

)2 = 0.

Combining terms implies

qe1i
(
qe1j
)

= −
(
d+ qe1j

)
+

(c2 − c1)
1
2

[
c2d
(
d+ qe1j − q̃e1i

)
(1− δ)

] 1
2

c2 (1− δ)
. (A.1)

Equation (A.1) gives the best response function for firm i. In the same vein, we obtain the best

response function for firm j

qe1j (qe1i) = − (d+ qe1i) +
(c2 − c1)

1
2

[
c2d
(
d+ qe1i − q̃e1j

)
(1− δ)

] 1
2

c2 (1− δ)
. (A.2)

Solving (A.1) and (A.2) simultaneously implies that in the unique symmetric equilibrium the quan-

tity ordered by firm i in the first period is

q∗1i = q̃e∗1i + qe∗1i =
(c2 − c1) d
4c2 (1− δ)

, i = 1, 2. (A.3)

Since
∑2

i=1 q̃
e
1i = d, (A.3) is a solution for firm i’s maximization problem if (c2−c1)d

4c2(1−δ) −
d
2 ≥ 0, which

implies δ ≥ 1
2

(
1 + c1

c2

)
. Firm i’s profits are given by π∗i =

(
δc2 −

c1d+c2
∑2
i=1 q

e∗
1i

d+
∑2
i=1 q

e∗
1i

)
q∗1i = (c2−c1)d

4 > 0.

In the sequel, we split the analysis according the value of the discount factor δ.

A. Assume δ ≥ 1
4

(
3 + c1

c2

)
. For δ = 1

4

(
3 + c1

c2

)
we obtain from (A.3) q∗1i = d, i = 1, 2. Since

∂q∗1i
∂δ > 0, it follows that q∗1i = d, i = 1, 2, still holds for higher values of δ. In words, in the first

period each firm orders its full capacity. Therefore, the analysis of Proposition 1 carries over and

p∗1i = δp∗2i = δc2 are the equilibrium prices.

B. Assume c1
c2
≤ δ < 1

4

(
3 + c1

c2

)
. We first demonstrate that the candidate p1i = δp2i = δc2,

i = 1, 2, cannot be an equilibrium since a firm has an incentive to (infinitely) increase its price in

the first period. Such a deviation would not be profitable if and only if the rival orders and sells

d in the first period. We show that this cannot be an equilibrium in the quantity setting game

(if it exists at all). Note that, since firm i’s (marginal) revenue following the deviation is higher

(or at least not lower), firm i does not want to buy less than in the candidate equilibrium and, in

response, the non-deviating firm j does not want to buy more. For δ ≥ 1
2

(
1 + c1

c2

)
, the equilibrium

in the quantity setting game with p∗1i = δp∗2i = δc2 is still described by (A.3). Therefore, following

an upward price deviation of firm i, the non-deviating firm j will not buy more than (c2−c1)d
4c2(1−δ) < d.

For δ < 1
2

(
1 + c1

c2

)
, the solution in (A.3) is no longer valid. This implies that firm i’s maximization

problem yields qe1i = 0. In words, for prices p1i = δp2i = δc2, i = 1, 2, the firms do not want to

order in aggregate more than d. For our purposes, it is sufficient to show that an equilibrium in
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the quantity setting game with p1i = δp2i = δc2, i = 1, 2, cannot involve q1i = 0 and q1j = d. This

is because, given that firm j buys d in the first period, firm i’s marginal revenue is higher than the

marginal cost at zero, i.e., δc2 ≥ c1, and therefore firm i has an incentive to order some quantity

in the first period (and sell it in either period). This implies that the non-deviating firm j will buy

less than d. As a consequence, for c1
c2
≤ δ < 1

4

(
3 + c1

c2

)
, firm i can set an infinitely high price to

cover the residual demand in the first period and be better off.

As long as the first period prices are higher than δc2, each firm has an incentive to undercut

to sell in the first period. Moreover, any price below δc2 cannot be supported as an equilibrium,

since the non-deviating firm will always prefer to sell at least some positive quantity in the next

period while the rival could increase the price and sell profitably in the first period. Along the

same lines, it can be shown that an asymmetric price configuration (one firm sets the price above

δc2 and the rival below δc2) also cannot be an equilibrium. Hence, for c1
c2
≤ δ < 1

4

(
3 + c1

c2

)
, there

is no equilibrium in the price setting game and no SPNE exists in pure strategies. Since the rigid

demand allows a deviating firm to set an infinite price, no SPNE exists even in mixed strategies.

C. Assume δ < c1
c2

. The proof of Proposition 1B is replicated.

Proof of Proposition 4. First note that qr1i > 0 is never optimal since c̃1 > c2 ≥ p2i (from Lemma

1). It is straightforward to show that any price configuration where p1i > p1j ≥ c1, p1i > c1 > p1j

or p1i = p1j > c1 cannot be sustained as an equilibrium since the standard undercutting rationale

applies.

To proceed, it is useful to determine the outcome in the first period quantity setting game for

some relevant cases:

(i) p1i > p1j = c1 ⇒ qm1i = 0; qm1j = d. Any qm1i > 0 cannot be an equilibrium, since firm j’s best

response would be qm1j = d (which guarantees positive profits since c1 > c̃1), and firm i would make

losses.

(ii) p1i > c1 > p1j ≥ c1+c2
2 . There does not exist any pure strategy Nash equilibrium. The

reason is that there is a critical threshold q̃1i ∈ (0, d] at which πj = (p1j − c̃1) d = 0 and πj > 0 if

and only if q1i > q̃1i. Hence, the best response function of firm j is discontinuous and jumps from

q1j (q1i) = 0 for q1i < q̃1i to q1j (q1i) = d for q1i ≥ q̃1i. For our aims, it is sufficient to show that in

any mixed strategy Nash equilibrium we must have that (a) the (expected) profit of firm i is strictly

positive for p1i > c1, and (b) the (expected) profit of firm j is zero. Afterwards, we demonstrate

that such an equilibrium exists. The result (a) follows since there exists a quantity q1i < q̃1i such

that πi = (p1i − c̃1) q1i > 0 for p1i > c1 ≥ c̃1 and πj = (p1j − c̃1) d < 0. To see the result (b), recall

that any strategy q1j ∈ (0, d) is strictly dominated by the two extreme values 0 and d. The only

strategy profile which is part of a mixed strategy Nash equilibrium is the set {0, d}. Since any pure

strategy which is part of a mixed strategy Nash equilibrium must yield the same (expected) payoff

and q1j = 0 gives zero payoff, then q1j = d must also give zero, which implies that the profit of firm

j is zero. A mixed strategy Nash equilibrium in this subgame prescribes that firm i chooses with

probability 1 the quantity q̃1i and firm j randomizes between zero and d such that its expected

quantity equals d− q̃1i.
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(iii) p1i = c1 > p1j ≥ c1+c2
2 . The equilibrium described in (ii) still holds true, yet in addition

we have an equilibrium in pure strategies where q1i = 0, i = 1, 2.

(iv) p1i < c1 ⇒ qm1i = 0, i = 1, 2. Each firm has a dominant strategy not to serve the market.

Combining (ii) and (iv) it is easy to argue that any c1 > p1i ≥ p1j or p1i = c1 > p1j cannot be

an equilibrium since firm i has an incentive to increase the price above c1 and gain.

It remains to be shown that p1i = c1, i = 1, 2, is chosen in equilibrium. From (iii) it follows

that firm i does not have an incentive to deviate downwards. Similarly, if firm i deviates upwards,

we are in the quantity equilibrium described in (i) so that firm i does not gain from deviation.

Hence, any outcome (p∗τi, q
m∗
τi , q

r∗
τi ), where p∗τi = cτ ,

∑2
i=1 q

m∗
τi ≤ d and qr∗τi = 0, τ, i = 1, 2, sustains

a SPNE.
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