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Abstract. We study a tractable two-dimensional model of price discrimina-
tion. Consumers combine a rigid with a more �exible choice, such as choosing
the location of a house and its quality or size. We show that the optimal pric-
ing scheme involves no bundling if consumer types are a�liated. Conversely, if
consumer types are negatively a�liated over some portion of types then some
bundling occurs.
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1. Introduction

Many important decisions in our lives involve choices among bundles and trade-
o�s between several taste dimensions. Constructing a house is presumably one of
the most important such instances. First and foremost, the location of the house
has to be chosen. Several choices ranging from the number of �oors, the number
of rooms on each �oor, construction materials, and on to the very last details of
the interior decor follow the �rst decision. Some of these choices are extremely
�exible and so involve marginal adjustments. Other choices are arguably more
rigid; typically, only a very limited number of alternative locations are available at
any given time. We are interested in the design of pricing schemes in such situations
featuring a combination of �exible and rigid choices. Moreover, as in our leading
example, the rigid choice has important consequences both in terms of utility and
in terms of costs.

We thank the seminar audience at the SFB-TR15 conference 2014 (Mannheim) for comments,
in particular David Martimort. This paper is a spin-o� of an earlier working paper by Szalay
(Szalay (2013)) that has bene�tted from the comments of Johannes Hörner, Marco Ottaviani,
Yossi Spiegel, and seminar audiences at HEC Lausanne, LBS, LSE, University of Bonn, University
of Frankfurt, Northwestern University, PSE, ESEM Gothenburg, and ESSET Gerzensee. The
authors acknowledge �nancial support through DFG grant SFB-TR15. Send communications to
felixketelaar@gmail.com or to szalay@uni-bonn.de or by ordinary mail to Dezs® Szalay, Institute
for Microeconomics, University of Bonn, Adenauerallee 24-42, 53113 Bonn, Germany.
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A natural concern one may have when making such important choices is �not to
give away too much�. Will a real estate developer adjust the price for constructing
our house condition on whether the house is located in a posh or a middle class
area? Intuition - at least ours - suggests that this would make a lot of sense.

We study this question in a stylized model involving choices along two margins
only: the location and the quality (or equivalently, the size) of a house. The answer
contradicts our naïve intuition. In the very case where consumers with a taste for
living in the posh area are likely to be ones who appreciate higher quality houses
more in the sense of a�liated taste parameters, the real estate developer does not
�exploit� consumers in the posh area at the optimum. The optimal marginal price
for increases in the quality of the house is exactly the same, whether the house is
located in the posh or the middle class area. In the terminology of the literature,
there is no bundling.

The intuition is as follows. The seller wishes to extract informational rents from
the consumer. The consumer has two pieces of information, his marginal valuation
for moving to a posh area and his marginal valuation for a slightly nicer house.
Unfortunately, from the seller's perspective, extracting rents from poshness tastes
comes at the cost of extracting rents from quality tastes. Clearly, if the consumer
could be forced to choose the location of his house based on his tastes for poshness
only, then the seller would de�nitely adjust the marginal prices for constructing the
house upwards in the posh area. Given consumers in the posh area are more likely
to have higher valuations for nicer houses, the usual trade-o� between extracting
rents from quality tastes versus e�ciency of the quality allocation is resolved more in
favour of rent extraction and hence marginal prices for quality are higher. However,
when the tastes for the area are unobservable, consumers with a taste for poshness
facing the above marginal prices for quality would have a strict incentive to live
in the middle class area. To make moving into the posh area more attractive, the
seller has to lower the marginal prices for increases in the quality of houses. The
surprising element is that the optimal selling procedure involves no �exibility at all
to condition marginal prices on location choice.

To understand the complete absence of �exilibity, consider any type who is just
indi�erent between living in the posh and the middle class area. A�liation implies
that in an optimal pricing scheme, all consumers with higher tastes for quality
must also be indi�erent between living in either area. This indi�erence condition
directly forces the quality choices of these consumers to be equal and hence requires
that they face the same marginal prices. Thus, facing a�liated types, the seller's
�exibility to condition marginal prices for quality on the tastes for poshness is
con�ned to consumers with low tastes for quality if at all. To gain any �exibility
even with that portion of consumers, the seller must leave rents to consumers buying
the lowest quality house in the posh area, which implies an increase in rents to all
consumers locating in the posh area. The gain from the adjustment of marginal
prices for qualities simply does not outweigh this cost. In short, our result can
be understood as a characterization of the set of consumers who are indi�erent
between entering the market and staying out: all consumers with the lowest taste
for quality, both among those with and without a taste for poshness, are indi�erent
with respect to participating. Given this indi�erence at the optimum, any attempt
to bundle that is desirable from the seller's point of view would violate incentive
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compatibility with respect to the location choice, i.e. give consumers with a taste
for poshness a strict incentive to live in the middle class area.

We also establish a converse to our no-bundling result. If consumers' tastes are
locally negatively a�liated - that is, tastes for living in the middle class area and for
nicer houses are a�liated - then the optimum will necessarily display some bundling,
at least for a strictly positive mass of consumers. Indeed, the seller now would
ideally want to (locally) decrease marginal prices for higher qualities for consumers
in the posh area relative to the middle class area, a change that consumers with a
taste for poshness would welcome. On the other hand, consumers who don't value
living in a posh area have a strict incentive to buy a house in the middle-class area
when marginal prices for nicer houses are the same in both areas. Hence, there is
now some �exibility to adjust marginal prices suitably.

This is a paper on a model of multi-dimensional screening. The seminal refer-
ences are Armstrong (1996) and Rochet and Choné (1998). Armstrong (1996) solves
the multiproduct monopoly problem and shows that at the optimum typically some
types are excluded if the type space is convex. Our problem involves convex types
for the size of houses but large taste di�erences with respect to poshness of the area.
As a result, we do not get exclusion. Rochet and Choné (1998) solve a very general
problem and establish robust features of solutions; in particular, they con�rm that
optimal allocations generally feature exclusion of some types and show on top that
optimal allocations also involve bunching over portions of types. Our problem is
much simpler than these problems. The reason is that the second best optimal
allocation of consumers to areas is immediate in our problem and so the name of
the game is simply to choose optimal marginal prices for quality conditional on
location choices. The optimum involves both bunching and separation: the alloca-
tion of consumers to areas separates consumers based on their tastes for poshness
but is independent of their tastes for quality; the allocation of quality separates
consumers with respect to their tastes for quality but is independent of their tastes
for poshness.

Bundling was �rst analyzed by Adams and Yellen (1976), who showed by example
that bundling can be pro�table if tastes are negatively correlated. McAfee et al.
(1989) establish su�cient conditions for bundling to increase pro�ts in the Adams
and Yellen (1976) model. Their conditions are consistent with weakly negative
correlation, but they emphasize that the correlation of types is not the appropriate
measure. In these approaches, the set of availabe mechanisms is restricted to prices
of bundles, an approach that is extended by Manelli and Vincent (2007). Manelli
and Vincent (2006) study more generally revenue maximizing mechanisms for a �rm
selling N objects. As in Thanassoulis (2004), the optimal mechanism may involve
randomization. More recently, Hart and Reny (2014) show that revenue optimal
pricing schemes may have surprising features; in particular, the seller's revenue can
decrease if the buyer's multidimensional valuation increases - something that cannot
happen in dimension one; moreover, they provide new examples where stochastic
mechanisms are optimal. Armstrong and Rochet (1999) characterize the optimal
mechanism in a model with two goods and two taste parameters on binary supports.
They show that no bundling occurs for the case of strong positive correlation. We
obtain no bundling even for slightly positive correlations - when types are a�liated.
The reason lies precisely in the structure of our optimal location allocation, which
is di�erent from the one in Armstrong and Rochet (1999).
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Our problem di�ers from the approaches taken in Manelli and Vincent (2006,
2007), Thanassoulis (2004), and Hart and Reny (2014) in two ways. First, these
papers study revenue maximization whereas in our model there are substantial
costs of production. In the presence of such costs - which seems reasonable in our
introductory example - pro�t maximization and revenue maximization are di�erent
objectives. Though seemingly innocuous, this property allows us to reduce the
dimensionality of our two-dimensional problem right away to one dimension. As a
result, our optimum does not involve any randomization, which is not trivial to rule
out in higher dimensional problems. The second di�erence is that we combine one
in�exible choice (an either-or-choice) with a more �exible one. The in�exible choice
is the same as the choices studied in the work by Manelli and Vincent (2006,2007)
and, more recently, by Armstrong (2013).1 We combine this choice of the seller
with a more �exible one - any non-negative size of a house - as in the approaches
of Armstrong (1996) and Rochet and Choné (1998).

Our model is so stylized that our problem becomes amenable to essentially uni-
dimensional methods. In particular, our design problem boils down to choosing a
pair of uni-dimensional schedules, where the consumer's choice of where to locate
can be treated as a type dependent outside option. Type dependent outside options
are studied in Jullien (2000). However, the di�erence to Jullien (2000) is that the
outside option is endogenous, resulting from the optimal design of the scheme for
consumers locating in the middle-class area. Similar techniques are also used in
the countervailing incentives context by Maggi and Rodriguez-Clare (1995). Our
approach is related to Kleven et al. (2009), who study the design of tax schemes for
couples and singles and give conditions for bundling in the tax context: di�erent
marginal taxes at the same income level for couples and for singles. The institutional
details as well as our approach and assumptions are quite di�erent. 2 However, the
common element is a combination of a discrete with a �exible choice. This gives
rise to a design problem that remains nicely tractable despite its multidimensional
nature.

2. The Model

A risk-neutral seller (she) wants to sell a package of two goods. The �rst good
is divisible and its quantity (or quality) is labeled x ∈ R≥0. The second good is
indivisible and we write q ∈ [0, 1] for the probability of selling the second good.
The seller faces a risk-neutral buyer (he) whose valuation for the bundle of goods
is given as

V (x, q, θ, η) = θx+ ηq

where θ ∈
[
θ, θ
]
, 0 < θ < θ < ∞ and η ∈

{
η, η
}
, 0 < η < η are preference

parameters that are private knowledge of the buyer. The seller only knows the
distribution F (θ, η) of the buyer's preference parameters. We assume that F has
a continuously di�erentiable probability density function f (θ, η) which is strictly

positive everywhere on
[
θ, θ
]
×
{
η, η
}
. To shorten notation we write β = Pr

(
η = η

)
1Armstrong (2013) studies bundling when there are demand complementarities or substitutabil-

ities and restricts his analysis to deterministic mechanisms. We allow for more �exible allocations
and mechanisms but stick to additively separable valuations.

2The objective in the tax context (redistribution) di�ers from ours (pro�t maximization); while
tax payers can be forced to participate, consumers cannot. Finally, we allow for statistical depen-
dence among types and characterize direct mechanisms (also allowing for stochastic mechanisms).
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and 1 − β = Pr (η = η). Moreover, the buyer has an outside option of buying
nothing which earns him a utility of zero.

For given values x ≥ 0 and q ∈ [0, 1] the seller faces (expected) production costs

C (x, q) = C (x) + c · q
where C (x) denotes the costs for producing quantity x of good one and c > 0
denotes the constant marginal cost of producing the second good. We assume that
C (x) is increasing, twice continuously di�erentiable and strictly convex in x with
C (0) = 0, limx↘0

∂C
∂x (x) = 0 and limx↗∞ ∂C

∂x (x) = +∞. Production costs are
known to the seller.

The seller aims to maximize his expected surplus from selling a bundle (or, more
generally, a lottery over bundles) to the buyer given as

Π = E [p (x, q)− C (x, q)]

where p = p (x, q) denotes the (lottery over) prices for the bundle or the lottery
(x, q).3 Invoking the revelation principle (see e.g. Myerson (1982)) we can think of
the seller's pricing problem as a direct mechanism where the buyer communicates
his type (θ, η) and in return is o�ered a lottery over allocations (x (θ, η) , q (θ, η))
together with a lottery over prices p (θ, η), subject to incentive compatibility and
participation constraints.

A buyer (θ, η) who reports type
(
θ̂, η̂
)
receives an expected utility of

U
(
θ̂, θ, η̂, η

)
= θx

(
θ̂, η̂
)

+ ηq
(
θ̂, η̂
)
− p

(
θ̂, η̂
)
.

If reports coincide with true types we write u (θ, η) = U (θ, θ, η, η). Moreover, we
write u (θ), u (θ), x (θ), x (θ) for u

(
θ, η
)
, u (θ, η), x

(
θ, η
)
, x (θ, η) respectively and

u = u (θ), u = u (θ).
Writing

Π (θ, η) = p (θ, η)− C (x (θ, η) , q (θ, η))

for her expected pro�t from type (θ, η), the seller seeks to maximize

Π = Eθ,ηΠ (θ, η)

subject to incentive compatibility and participation4

u (θ, η) ≥ U
(
θ̂, θ, η̂, η

)
∀θ, θ̂ ∈

[
θ, θ
]
, η, η̂ ∈

{
η, η
}
,(1)

u (θ, η) ≥ 0 ∀θ ∈
[
θ, θ
]
, η ∈

{
η, η
}
.(2)

3. Analysis

To solve our problem, we proceed as follows. We begin with a discussion of
the �rst-best and establish a connection between the �rst-best and the second-
best that simpli�es our problem dramatically. We then characterize implementable
allocations and reformulate our problem in a more tractable way.

3Slightly abusing notation, we do not distinguish here notationswise between deterministic
variables x ≥ 0 and p ≥ 0 and lotteries over these variables. As we shall prove in Lemma 1, only
deterministic allocations will be relevant for our analysis.

4The seller may want to exclude certain types from participation. However, exclusion in the
sense of buyers who prefer the outside option is outcome equivalent to o�ering the zero trade
(x = 0, q = 0, p = 0) to these buyers and hence included in the optimization problem.
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3.1. First-best E�ciency and the Optimal q-Allocation. When the buyer's
preference parameters (θ, η) are common knowledge, the seller can perfectly dis-
criminate between customers and would extract the full surplus by setting prices
equal to

p (θ, η) = θx (θ, η) + ηq (θ, η)

where x (θ, η) and q (θ, η) are chosen e�ciently, i.e.

Cx (x (θ, η))− θ = 0

and

q (θ, η) =

{
0 η < c

1 η ≥ c.

In particular, x (θ, η) = x (θ) is independent of η and q (θ, η) = q (η) is independent
of θ.

In this paper we are interested in the case where production costs play a sub-
stantial role. We therefore assume that the e�cient allocation involves allocating
product q to the high preference type only and impose for the remainder of the
paper

Assumption 1.

η < c < η.

The following lemma shows that with relevant production costs in the above
sense the optimal mechanism is deterministic. Moreover, the e�cient q-allocation
determined by Assumption 3 will also be implemented in the optimal mechanism
for the constrained problem with asymmetric information.

Lemma 1. Under Assumption 1, the optimal mechanism is deterministic in x and
q and separates η-types in q e�ciently, that is q (θ, η) = 1, q

(
θ, η
)

= 0 for all

θ ∈
[
θ, θ
]
.

First best e�ciency of the allocation in q translates into second best optimality
for the following two reasons. Clearly, e�ciency is desirable for the seller as it
maximizes her pro�ts for any given surplus of a buyer. At the same time the
buyer's incentive constraints under the e�cient allocation are as relaxed as they
can possibly be. Indeed, the excess surplus of a buyer of type η mimicking type η
compared to a buyer who truly is of type η is minimized, being equal to 0, while the
excess loss of a buyer of type η mimicking type η compared to a buyer who truly
is of type η is maximized, being equal to η − η. Clearly, the resulting allocation
is deterministic in q. Since consumer valuations are linear in x and the seller has
convex costs, the mechanism is deterministic in x by a standard result (cf. e.g.
Fudenberg and Tirole (1991)).

Lemma 1 shows that with relevant production costs all potential distortions will
occur in the x-dimension only. This �nding has two important consequences. First,
it makes the problem su�ciently tractable to derive explicit solutions, contrasting
many other multidimensional setups. Secondly, it allows us to directly relate and
compare all e�ects that arise from the presence of a second dimension to the well-
known solution of the standard one-dimensional problem.
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3.2. Implementable Allocations. In this section we bring the incentive con-
straints (1) into a more tractable form to solve the seller's problem. The key tool
is the following lemma which allows us to split the two-dimensional incentive com-
patibility constraints into two one-dimensional constraints.

Lemma 2. For any mechanism featuring q (θ, η) = 1, q
(
θ, η
)

= 0 for all θ ∈
[
θ, θ
]
,

thus in particular for the optimal mechanism in our maximization problem, the
incentive constraint

u (θ, η) ≥ U
(
θ̂, θ, η̂, η

)
∀θ, θ̂ ∈

[
θ, θ
]
, η, η̂ ∈

{
η, η
}

is equivalent to the pair of one-dimensional incentive constraints

u (θ, η) ≥ U
(
θ̂, θ, η, η

)
∀θ, θ̂ ∈

[
θ, θ
]
, η ∈

{
η, η
}
,(3)

u (θ, η) ≥ U (θ, θ, η̂, η) ∀θ ∈
[
θ, θ
]
, η, η̂ ∈

{
η, η
}
.(4)

The main insight behind Lemma 2 is that the buyer's incentive how to report
his preference parameter θ does not depend on his preference parameter η. To see

this, compare a buyer of type (θ, η) who considers reporting
(
θ̂, η̂
)
with a buyer

of type (θ, η̂) who considers the same report. The di�erence in utilities between

type (θ, η) and type (θ, η̂) when reporting
(
θ̂, η̂
)
is given as q

(
θ̂, η̂
)

(η − η̂). But

this term does not depend on θ̂ as q
(
θ̂, η̂
)

= q (η̂). In particular, it takes the same

value if θ̂ = θ, so it is non-positive by constraint (4). As a consequence, since type

(θ, η̂) does not have an incentive to misreport as
(
θ̂, η̂
)
by (3), neither does type

(θ, η).
The optimal quality allocation characterized in Lemma 1 has the properties

named in Lemma 2. We can therefore replace the general incentive compatibility
constraint (1) in our maximization problem by the two one-dimensional constraints
(3), (4). The following Lemma characterizes the implications of these two con-
straints for our maximization problem.

Lemma 3. The incentive constraint (3) is satis�ed if and only if

u (θ, η) = u (θ, η) +

ˆ θ

θ

x (y, η) dy(5)

and x (θ, η) is non-increasing in θ for all η ∈
{
η, η
}
. The incentive constraint (4)

is satis�ed if and only if

q
(
θ, η
) (
η − η

)
≤ u (θ)− u (θ) ≤ q (θ, η)

(
η − η

)
for any θ ∈

[
θ, θ
]
.

Lemma 3 is a standard result. For the reader's convenience, we give a full proof
in the appendix. Note that Lemma 3 allows us to write prices as

p (θ, η) = θx (θ, η) + ηq (θ, η)− u (θ, η)

= θx (θ, η) + ηq (θ, η)− u (θ, η)−
ˆ θ

θ

x (y, η) dy

and thus to eliminate them from the optimization problem. Moreover, as an im-
mediate consequence of Lemma 3 and non-negativity of x ∈ R≥0, all participation
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constraints u (θ, η) ≥ 0, (θ, η) ∈
[
θ, θ
]
×
{
η, η
}
, are implied by u = u

(
θ, η
)
≥ 0 and

incentive compatibility.

3.3. The Pricing Problem. The results derived in the previous section enable us
to state the seller's problem in a tractable way. We write

B (x, q, θ, η) = θx+ ηq − C (x)− cq − x · 1− F (θ|η)

f (θ|η)

for the seller's virtual surplus conditional on η and

ρ (θ, u, u) = u (θ)− u (θ) = u− u+

ˆ θ

θ

[x (y)− x (y)] dy

for the excess rent of a type (θ, η) over a type
(
θ, η
)
. Substituting transfers, applying

integration by parts and invoking Lemmas 1-3, the seller's optimization problem
reads

max
x(·),x(·),u,u

Π (x, x, u, u)

= β

ˆ θ

θ

B
(
x (θ) , 0, θ, η

)
f
(
θ|η
)
dθ − βu(6)

+ (1− β)

ˆ θ

θ

B (x (θ) , 1, θ, η) f (θ|η) dθ − (1− β)u

subject to

u ≥ 0(7)

ρ (θ, u, u) ≥ 0 ∀θ ∈
[
θ, θ
]

(8)

ρ (θ, u, u) ≤ η − η ∀θ ∈
[
θ, θ
]

(9)

x (θ) , x (θ) non-decreasing in θ(10)

x (θ) , x (θ) ≥ 0 ∀θ ∈
[
θ, θ
]
.(11)

We refer to this problem as Problem P. An immediate observation is that setting
u = 0 is optimal, avoiding any lump-sum rents for the low valuation types in the
η-dimension. Indeed, at θ constraint (8) implies u ≥ u, so a positive u implies a
positive u. Since both constraints (8) and (9) only depend on u − u and both, u
and u, are costly for the seller, choosing u as small as possible is optimal. Thus, to
simplify notation, we write ρ (θ, u, u) = ρ (θ, u) henceforth.

In what follows we will approach the above optimization problem with control-
theoretic methods. As we demonstrate in the next section, under the additional
assumption of a�liated preference types this approach allows us to reduce the
problem to a simple one-dimensional optimization task, maximizing the objective
Π (u) as a function of the lump-sum rents u for high η-types only. The reader who,
when reading �rst, is mainly interested in the rents-vs-bundling trade-o� involved
in this maximization may skip through the following discussion and jump directly
to Section 6.

4. Solution: a Control-Theoretic Characterization

To make Problem P more tractable, we �rst show that the optimal x-schedules
are reasonably regular.
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Lemma 4. The schedules (x∗ (θ) , x∗ (θ)) that solve Problem P are continuous.

The main intuition for Lemma 4 is ubiquitous in economics: B (x, q, θ, η) is
strictly concave in x and concavity favors smoothing. A formal proof which ensures
that smoothing near a putative discontinuity is compatible with constraints (8) and
(9) is provided in the appendix.

To solve optimization problems like Problem P, it is a standard approach to con-
sider a reduced problem with less constraints �rst and then impose (distributional)
assumptions that guarantee the remaining constraints to be satis�ed. Problem
P without the monotonicity and non-negativity constraints (10) and (11) can be
regarded as a control problem with state variables u (θ), u (θ), control variables
x (θ) = u̇ (θ), x (θ) = u̇ (θ) and two inequality constraints that involve the state
variables u (θ), u (θ) only. Call this reduced problem P'.

Problem P' is still relatively complex, yet solution techniques are available, e.g.
from Seierstad and Sydsaeter (1987). Fixing some value u for the moment, Problem
P' gives rise to a Hamiltonian

H = H (u (θ) , u (θ) , x (θ) , x (θ) , κ (θ) , κ (θ) , θ)

= βB
(
x (θ) , 0, θ, η

)
f
(
θ|η
)

+ (1− β)B (x (θ) , 1, θ, η) f (θ|η)

+κ (θ) · x (θ) + κ (θ) · x (θ) .

with two costate variables κ (θ), κ (θ) as well as an associated Lagrangian

L = H + µ1 (θ) · (u (θ)− u (θ)) + µ2 (θ) ·
((
η − η

)
− (u (θ)− u (θ))

)
where µ1 (θ) and µ2 (θ) denote the multipliers associated to constraints (8) and (9).

A frequent issue in control-theoretic problems with constraints on the state vari-
ables lies in the fact that often neither costate variables nor control variables need
to satisfy standard regularity conditions. However, since we know that the control
schedules must be continuous to solve Problem P, we may restrict attention to con-
tinuous control schedules (which immediately implies continuous costate schedules)
for Problem P' as well.

To proceed towards a solution of the control problem, it is helpful to make
ourselves aware of some special features of constraints (8) and (9) as well as the
Hamiltonian H. Indeed, note that H does not depend on u (θ) and u (θ) at all while
(8) and (9) only depend on u (θ)−u (θ) rather than each state variable individually.
As a consequence, the Lagrange equations

∂κ (θ)

∂θ
= −∂L

∂u
,

∂κ (θ)

∂θ
= −∂L

∂u
rewrite as

κ̇ (θ) = µ1 (θ)− µ2 (θ) = −κ̇ (θ) .

In the appendix we show that µ1 (θ) and µ2 (θ) are su�ciently regular to apply the

fundamental theorem of calculus, so together with transversality κ
(
θ
)

= 0 = κ
(
θ
)

the above equations imply κ (θ) = −κ (θ).5

The reduction from two costate variables to one is at the core of the following
proposition which is based on a result in Seierstad and Sydsaeter (1987).

5See the proof of Proposition 1 in the appendix for the technical details.
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Proposition 1. An optimal continuous allocation for the reduced problem P' is
characterized by the following pair of equations(

−Cx (x∗ (θ)) + θ −
1− F

(
θ|η
)

f
(
θ|η
) )

· βf
(
θ|η
)

+ κ∗ (θ) = 0(12) (
−Cx (x∗ (θ)) + θ − 1− F (θ|η)

f (θ|η)

)
· (1− β) f (θ|η)− κ∗ (θ) = 0(13)

where κ∗ (θ) denotes the optimal costate variable. The optimal costate variable has
the following properties:

a) κ∗ (θ) is continuous.
b) κ∗ (θ) is locally constant around all θ ∈

[
θ, θ
]
at which neither (8) nor (9)

binds.
c) At any θ ∈

(
θ, θ
)
where (8) or (9) binds,

(14) κ∗ (θ) = κb (θ) ≡ (1− β) f (θ|η) ·
(

1− F (θ)

f (θ)
− 1− F (θ|η)

f (θ|η)

)
so that x∗ (θ) = x∗ (θ).

d) κ∗ (θ) is weakly increasing whenever (8) binds and weakly decreasing whenever
(9) binds.

e) κ∗
(
θ
)

= 0.

Most of the properties of the optimal costate variable κ (θ) in Proposition 1 are
either standard in control theory or easy to see.6 Part a) is a direct consequence
of Lemma 4. Part b) is the usual type of result in a control-theoretic problem: the
costate variable is the dynamic �integrated� equivalent to a Lagrange multiplier in
a static optimization problem. Part c) follows directly from Lemma 3: marginal
utilities must be equal for both η-types whenever (8) or (9) bind at an interior point
as otherwise the constraints would be violated �slightly to the left� or �slightly to
the right�. Part e) is the standard transversality condition for control problems
with free endpoints, implying the classical �no-distortion-at-the-top�.

Part d), �nally, constitutes a powerful tool to determine the areas of binding
constraints.7 Indeed, whenever (8) or (9) bind at an interior value θ we must
have x∗ (θ) = x∗ (θ) according to Part c). The corresponding κ (θ)-schedule easily
computes from equations (12) and (13) as κb (θ) where the subscript �b� stands
for �bunching� of x in η. For any interval where κb (θ) is monotonic, Part d)
of Proposition 1 leaves only one of the two constraints (8) and (9) as potentially
binding. Moreover, neither of the two constraints can bind around a local extremum
of κb (θ). Note that κb

(
θ
)

= 0, so κb (θ) is compatible with transversality.

We �nd the following heuristic argument useful to understand the result. From
the seller's point of view, the costate variable κ (θ) (or, more precisely, its absolute
value) measures the additional distortion of the optimal x-allocation compared to
the one-dimensional case with known η-types. This distortion is caused by the
buyer's option to misreport his η-type, captured by constraints (8) and (9). The

6We omit stars for κ- and x-schedules as well as values of u whenever we discuss potential
candidates for the optimal mechanism. The relation between κ- and x-schedules is nonetheless
assumed to be de�ned through equations (12) and (13).

7Its proof goes back to Neustadt (1976).
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seller clearly prefers κ (θ) to be equal to zero (and u = 0). In this case, both x-
schedules maximize the values of the integrals in (6) pointwise and the schedules
coincide with the solution of the two one-dimensional allocation problems in x
conditional on η = η and η = η, respectively. We therefore refer to this scenario

as the case of (quasi-)observable η. It constitutes an upper bound on what is
potentially achievable for the seller: she fully exploits the information over the θ-
type contained in the η-type at no costs. Yet, the solution for observable η may not
be incentive compatible as the resulting x- and u-schedules may violate constraints
(8) or (9).

At the other extreme, consider the x-schedule that constitutes the solution to
the one-dimensional problem unconditional on η de�ned by

−Cx (x (θ)) + θ − 1− F (θ)

f (θ)
= 0.

Setting x (θ) = x (θ) = x (θ) for all θ ∈
[
θ, θ
]
corresponds to setting κ (θ) = κb (θ)

everywhere. In this scenario, (8) and (9) are automatically satis�ed as the utility of
high and low η-types coincides for all θ and we may certainly set u = 0. However,
this candidate solution comes at a cost: the seller does not exploit the information
about θ that is contained in η at all. It thereby constitutes a lower bound on what
is achievable for the seller.

We illustrate the previous discussion in Figure 1 and Figure 2. Both �gures
show a pair of x-schedules that corresponds to the case of observable η. In Figure
1, the schedules are clearly infeasible for our problem if u = 0. Indeed, on [θ, θ1] the
x-schedule of the low η-type lies above the x-schedule of the high η-type, thereby
violating (8) as

ρ (θ, u = 0) =

ˆ θ

θ

[x (y)− x (y)] dy < 0,

for any θ ∈ (θ, θ1). Hence some distortion through κ (θ) or some positive lump-sum
rent u is necessary. On the other hand, if the roles of both schedules are reversed
as depicted in Figure 2, constraint 8 is clearly satis�ed everywhere as

A =

ˆ θ1

θ

[x (θ)− x (θ)] dθ > 0

and

A =

ˆ θ1

θ

[x (θ)− x (θ)] dθ >

ˆ θ

θ1

[x (θ)− x (θ)] dθ = B.

The allocation corresponding to the observable η-case is hence feasible if and only
if constraint (9) holds everywhere, i.e. if

A = ρ (θ1, u = 0) ≤ η − η.

The level and shape of the optimal x-allocation depends crucially on the joint
distribution of types. In the next section, we impose more structure in that respect.
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x(θ)

θ
θ
′

θθ
0

x(θ)

x(θ)

x(θ)

x(θ)

Figure 1: x-schedules for the observable-η-case are infeasible.

1

x(θ)

θ
θ
′

θθ
0

x(θ)

x(θ)

x(θ)

x(θ)

A

B

Figure 2: x-schedules for the observable-η-case are feasible iff A ≤ η − η.

2
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5. A Characterization for Affiliated Types

In this section we analyze the implications of Proposition 1 for the solution of
Problem P' under the assumption that preference types are a�liated. We fully
characterize the solution up to the choice of u which is studied in Section 6.

We consider continuously di�erentiable densities with full support. Hence a�li-
ation is equivalent to

Assumption 2.

∂

∂θ

[
f (θ|η)

f
(
θ|η
)] > 0 ∀θ ∈

[
θ, θ
]
.

With a�liated types, it is easy to see that the seller cannot implement the
schedules corresponding to observable η characterized by κ (θ) = 0 and u = 0.
A�liation implies the reversed hazard rate order

1− F (θ|η)

f (θ|η)
>

1− F
(
θ|η
)

f
(
θ|η
)

for any θ < θ, cf. Shaked and Shanthikumar (2007). Setting κ (θ) = 0 for all θ then
implies that x (θ) > x (θ) for any θ < θ and hence, together with u = 0, a violation
of the constraint ρ (θ, u) ≥ 0 for any θ > θ. The seller therefore faces a trade-o�.
To relax the constraint ρ (θ, u) ≥ 0 she could either leave higher rents to the high
η-types by increasing u or she could distort the optimal schedules away from the
observable-η-case by choosing κ (θ) di�erent from zero.

A�liation allows us to pin down the optimal bunching region for x in η as a
function of u.

Proposition 2. For given u ∈
[
0, η − η

]
, under a�liation there exists θ

′ ∈
[
θ, θ
]

such that for all θ ≥ θ′ the optimal schedules satisfy x∗ (θ) = x∗ (θ) = x∗ (θ) where
x∗ (θ) is de�ned by

−C1
x (x∗ (θ)) + θ − 1− F (θ)

f (θ)
= 0,(15)

implying

κ∗ (θ) = κb (θ) ∀θ ≥ θ′ .
For all θ < θ

′
the optimal schedules x∗ (θ) and x∗ (θ) are de�ned by(

−C1
x (x∗ (θ)) + θ −

1− F
(
θ|η
)

f
(
θ|η
) )

· βf
(
θ|η
)

+ κ∗ = 0(16) (
−C1

x (x∗ (θ)) + θ − 1− F (θ|η)

f (θ|η)

)
· (1− β) f (θ|η)− κ∗ = 0(17)

for some constant κ∗ = κ∗ (u) such that

u+

ˆ θ
′

θ

[x∗ (θ, κ∗ (u))− x∗ (θ, κ∗ (u))] dθ = 0,(18)

and

κ∗ = κb

(
θ
′)

(19)

by continuity of κ∗ (θ).
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Proposition 2 states that there is a single point θ
′
at which constraint (8) switches

from slack to binding and the x-schedules switch from separation in η to bunching
in η. Heuristically, the argument is very simple. Consider any point θ̃ at which

(8) is binding, implying that x∗
(
θ̃
)

= x∗
(
θ̃
)
at that point. Such a point must

exist, since otherwise the seller could increase pro�ts by reducing u. Then, (8) is

satis�ed slightly to the right of θ̃, say for θ̃ + ε for ε small but positive if and only
if x∗ (θ) ≥ x∗ (θ) for θ = θ̃ + ε. However, this requires that κ∗ (θ) increases at that

point. To see this, suppose κ were constant around θ̃. Then, totally di�erentiating
(16) and (17) with respect to θ reveals that x∗ increases faster in θ than x∗ at

points θ̃ where x∗
(
θ̃
)

= x∗
(
θ̃
)
if and only if types are locally a�liated around θ̃.

We now relate this heuristic argument more formally to our previous analysis.
Taking derivatives of (14) yields

(20) sign
∂κb (θ)

∂θ
= sign

∂

∂θ

[
f (θ|η)

f
(
θ|η
)] ∀θ < θ,

so together with κb
(
θ
)

= 0 this shows that under a�liation κb (θ) is strictly in-
creasing and non-positive everywhere as depicted in Figure 3.

θ
θ
′

θ
′′

θ

κ(θ)

0

κ∗

κb(θ)

κb(θ) = κ∗(θ)

Figure 3: Following the schedule κb (θ) to the right of θ
′
minimizes distortions.

3

Leaving the schedule κb (θ) in favour of a constant κ-schedule at some θ
′′
> θ

′
as

indicated in Figure 3 through the dotted line is clearly suboptimal then. Informally

speaking, it deliberately increases distortions through κ (θ) on the interval
[
θ
′′
, θ
]

relative to following the schedule κb (θ). Formally, this is re�ected in a violation of
the transversality condition κ∗ (θ) = 0 as stated in Proposition 1, Part e). For all
technical details, we refer to the appendix.
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6. A No-Bundling Result

Proposition 2 boils the complex control problem P' down to a one-dimensional
optimization problem in the choice parameter u. Reformulating Proposition 2 in
that spirit, we get

Proposition 2*. Under a�liation, Problem P' is equivalent to the following Prob-
lem P�. Maximize

Π (u) = β

ˆ θ
′
(u)

θ

B
(
x∗ (θ, κ∗ (u)) , 0, θ, η

)
f
(
θ|η
)
dθ

+ (1− β)

ˆ θ
′
(u)

θ

B (x∗ (θ, κ∗ (u)) , 1, θ, η) f (θ|η) dθ

+ β

ˆ θ

θ′ (u)
B
(
x∗ (θ) , 0, θ, η

)
f
(
θ|η
)
dθ(21)

+ (1− β)

ˆ θ

θ′ (u)
B (x∗ (θ) , 1, θ, η) f (θ|η) dθ

− (1− β)u.

subject to
u ∈

[
0, η − η

]
where x∗ (θ) , x∗ (θ) , x∗ (θ) , κ∗ (u) , θ

′
are de�ned by equations (15)-(19).

The trade-o� underlying the optimal choice of u ∈
[
0, η − η

]
is depicted in Figure

4.

x(θ)

θ
θ
′

θθ
0

−u

x∗ (θ, κ∗ (u))

x∗ (θ, κ∗ (u))

x∗(θ)

Figure 4: Raising u pushes θ
′
to the right and enables the seller to separate a

larger portion of types.

4
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Leaving higher rents u to the high η-types comes at a twofold gain. By moving
κ∗ upwards and hence closer towards zero, distortions of the x-schedules relative
to the case of observable η in the separation region are reduced. By moving θ

′

to the right the separation region itself is enlarged. The �rst-order e�ect through

marginally shifting θ
′
, however, is zero by continuity of the optimal schedules at θ

′

together with an envelope argument and hence negligible.
By (18), the increase of κ∗ in u is measured by

dκ∗

du
(u) = − 1´ θ′

θ

[
∂x
∂κ∗ (θ)− ∂x

∂κ∗ (θ)
]
dθ

> 0.(22)

Increasing κ∗ shifts the x-schedules closer towards the case of observable η-types on[
θ, θ

′
]
and reduces the excess rents of high η-types given by

´ θ′
θ

[x∗ (θ)− x∗ (θ)] dθ.

Using the above formula (22) as well as equations (12) and (13), we get

dΠ

du
(u) = −κ∗ (u)− (1− β) ,

hence these conducive e�ects are measured precisely by |κ∗ (u)| = −κ∗ (u). More-
over, we have just argued that

d2Π

du2
(u) = −dκ

∗

du
(u) < 0,

so our problem is concave in u. Therefore, setting u∗ > 0 is optimal if and only if
increasing u away from zero is optimal. However, (14) implies that

−κ∗ (u = 0) = −κb (θ) = (1− β) ·
(

1− f (θ|η)

f (θ)

)
< 1− β.

Therefore the gain from moving the schedules closer to the observable-η-case can
never compensate for the direct loss from leaving higher rents to high η-types
through u measured by the share size 1 − β of high η-types. Hence u∗ = 0 solves
Problem P�.

To ensure that the solution to Problem P' and P� is monotonic and non-negative,
it su�ces to impose standard assumptions on the inverse hazard rate:

Assumption 3. The distribution F = F (θ) features strictly positive virtual val-

uations θ − 1−F (θ)
f(θ) with strictly positive derivative ∂

∂θ

[
θ − 1−F (θ)

f(θ)

]
> 0 for all

θ ∈
[
θ, θ
]
.8

Our main result is now a direct consequence of the previous analysis.

Theorem 1. Under Assumptions 1-3, the optimal mechanism for the seller involves
no lump-sum rents to high η-types, i.e. u∗ = 0. The optimal allocations are given
as

q∗ (θ, η) = q∗ (η) =

{
0 η = η

1 η = η

8For Theorem 1, the slightly weaker condition of a non-negative and non-decreasing virtual
valuation is su�cient. In the next section, however, it will be helpful to impose slightly stricter
conditions as stated in Assumption 3.
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and x∗ (θ, η) = x∗ (θ), where x∗ (θ) solves

−C1
x (x∗ (θ)) + θ − 1− F (θ)

f (θ)
= 0.

Prices are given as

p∗ (θ, η) = θx∗ (θ) + ηq∗ (η)−
ˆ θ

θ

x∗ (y) dy.

Conditioning prices on allocations rather than buyers' types by setting p∗ (x, q) =
p∗ (x (θ) , q (η)), optimal prices split into two additively separable price components

p∗1 (x) + p∗2 (q)

for the two goods. No bundling occurs.

The seller is not willing to leave rents to high η-types in order to buy the ability
to condition x-allocations on η under a�liation. Rather, the optimal mechanism
involves complete bunching of the x-schedules with respect to η. Just as the op-
timal q-allocation only depends on η by Lemma 1, the optimal x-allocation only
depends on θ. The quantity schedule x∗ (θ) has the familiar features. There is no

distortion for buyers with valuation θ, there is a downward distortion for all types
with valuation below θ, and there is no (lump-sum) rent at θ for either η-type. The
schedule coincides with the solution for the one-dimensional problem unconditional
on η.

The reformulation at the end of Theorem 1 is a direct implication of the taxation
principle (see e.g. Rochet (1985)). It allows us to rewrite prices p∗ as conditional
on allocations rather than preference types. Optimal prices are given as the buyer's
valuation for quantity x plus the buyer's valuation for good q minus rents of the
buyer. The rents of the buyer, however, do not depend on his η-type but only on his
θ-type given that the excess rents ρ∗ (θ, u = 0) of high η-types over low η-types are
equal to zero for all θ. Hence, rents of the buyer do not depend on his q-allocation
but only on his x-allocation and

p∗ (x, q = 1)− p∗ (x, q = 0) = η

for any quantity x. Optimal prices can therefore be split into two additively sepa-
rable components

p∗ (x, q) = p∗1 (x) + p∗2 (q)

where p∗1 denotes the price for good one and p∗2 denotes the price for good two, the
latter being equal to zero for q = 0 by normalization and equal to η for q = 1.

7. Beyond Affiliation

The previous two sections have been devoted to the analysis of the optimal
pricing scheme for a�liated preference types, showing that no bundling is optimal.
In this �nal section, we show the converse result: whenever types are not (weakly)
a�liated, there exists an interval of positive mass where in the optimum x-schedules
are separated in η and hence bundling occurs.

Building on our previous analysis we directly state our result.

Theorem 2. Under Assumptions 1 and 3, the solution of Problem P features no
bundling if and only if types are weakly a�liated.
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The �if�-part of Theorem 2 has been covered in the two previous sections, noting
that all proofs go through for weak a�liation as well. Showing the opposite direction
consists of two steps.

First, we argue that the solution of the reduced problem P' features bundling
on an interval of positive mass whenever types are not weakly a�liated. To see
this, note that no bundling implies κ∗ (θ) = κb (θ) for all θ ∈

[
θ, θ
]
as otherwise, by

continuity of κ∗ (θ) and Proposition 1c), there will be an interval of positive length
where x∗ (θ) 6= x∗ (θ). Clearly, in an optimal mechanism (8) must bind for at least

one θ ∈
[
θ, θ
]
as otherwise u > 0 can be reduced without violating any constraints.

However, together with κ∗ (θ) = κb (θ) and x∗ (θ) = x∗ (θ) for all θ ∈
[
θ, θ
]
this

implies that (8) must bind everywhere. But according to Proposition 1, Part d)
this is only possible if κb (θ) is weakly increasing everywhere which cannot be the
case unless types are weakly a�liated due to equation (20).

If the solution of Problem P' is feasible for Problem P, we are done. However,
Assumption 3 in general will not guarantee that the solution schedules of Prob-
lem P' are non-negative and monotonic when κ∗ (θ) 6= κb (θ) on some interval.
So suppose the solution to Problem P' is not feasible for Problem P. Note that
Assumption 3 guarantees the no bundling schedule x∗ (θ) being strictly positive
with strictly positive �rst derivative everywhere. In other words, the no-bundling
schedule x (θ) = x (θ) = x∗ (θ) is bounded away from the boundaries of the convex
set of implementable allocations that are de�ned by monotonicity and feasibility
constraints (11) and (10). This allows us to form a non-trivial convex combination
of the no-bundling schedules x (θ) = x (θ) = x∗ (θ) and the solution to the reduced
Problem P' that is feasible for Problem P and, due to concavity of the objective in
x, strictly improves upon the no-bundling schedules.9

We qualitatively illustrate the reasoning of the previous paragraphs in Figure 5
and Figure 6 for the case of negatively a�liated preference types where

∂

∂θ

[
f (θ|η)

f
(
θ|η
)] < 0 ∀θ ∈

[
θ, θ
]
.

The solution for Problem P' is easy to derive from Proposition 1. Negatively a�li-
ated preference types imply

1− F (θ|η)

f (θ|η)
<

1− F
(
θ|η
)

f
(
θ|η
)

for all θ < θ, so setting κ∗ (θ) = 0 would result in x (θ) ≥ x (θ) for all θ ∈
[
θ, θ
]

with equality only at θ. The relevant constraint hence is given by (9). As a
consequence, the seller clearly has no incentive to leave lump-sum rents to high
η-types; setting u = 0 maximally relaxes (9) and simultaneously maximizes her
pro�ts. The seller hence separates x-schedules in η as long as this is possible without
violating constraint (9) for u = 0, that is, up to some point θ

′
> θ. Correspondingly,

the schedule κb (θ) is positive and decreasing everywhere and the optimal costate
schedule κ∗ (θ) for Problem P' is shaped as in Figure 5, giving rise to schedules
x∗ (θ) and x∗ (θ) such that

ˆ θ
′

θ

[x∗ (θ)− x∗ (θ)] dθ = η − η.

9We refer to the appendix for all technical details.
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This area corresponds to the grey-shaded area in Figure 6. However, the sched-

ules x∗ (θ) and x∗ (θ) on
[
θ, θ

′
]
do not necessarily constitute a feasible solution

for Problem P, even though the bunching schedule x∗ (θ) is positive and increasing
everywhere. Indeed, for su�ciently small θ in Figure 6 the schedule x∗ (θ) is de-
creasing and the schedule x∗ (θ) becomes negative.10 Yet, both these violations of
constraints (10) or (11) can be resolved by forming a convex combination of x∗ (θ)
or x∗ (θ), respectively, and the bunching schedule x∗ (θ) as indicated by the dashed
graphs in Figure 6 which still improves upon the full bunching schedule x∗ (θ).

θ
θ
′

θ

κ(θ)

0

κ∗

κb(θ)

κb(θ) = κ∗(θ)

Figure 5: Optimal costate schedule for Problem P’ if types are anti-affiliated.

510Schedules for x∗ (θ) and x∗ (θ) on
[
θ, θ
′]

are de�ned via (16) and (17). For positive κ∗,

negative values of x∗ (θ) may occur if the optimal x-schedule for known η = η features exclusion

of low θ-types while a (locally) decreasing schedule x∗ (θ) may occur if f (θ|η) is decreasing. Both
phenomena are compatible with negative a�liation and Assumption 3.
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x(θ)

θ

x∗(θ)

ε · x∗(θ) + (1− ε) · x∗(θ)

x∗(θ)

ε · x∗(θ) + (1− ε) · x∗(θ)

x∗(θ)

θ
′

θ

x∗(θ)

Figure 6: Convex combinations of schedules x∗(θ) and x∗(θ) resp. x∗(θ) and
x∗(θ) render the solution feasible, that is non-negative and monotonic.

6

8. Conclusions

Adams and Yellen (1976) have shown that bundling increases pro�ts if con-
sumers' multidimensional tastes are negatively correlated. We study a related ques-
tion in the context of a richer but still manageable allocation problem. We show
that no bundling occurs if types are a�liated and conversely that some bundling
does occur if they are not.

9. Appendix

Proof of Lemma 1: For any report (θ, η), a feasible stochastic mechanism is char-
acterized by a distribution H (θ, η) (x, q, p) over allocations and transfers such that
expectations EH(θ,η) [·] over x, q, p exist. Clearly, due to quasilinear utilities, seller
and buyer are indi�erent between any lottery over prices and the expected value
of this lottery, so we may assume that prices are deterministic. Start with an arbi-
trary Bayesian incentive compatible mechanism H with deterministic transfers and
change the q-allocation to �rst best, i.e. q (θ, η) = 1, q

(
θ, η
)

= 0, while adjusting
prices such that expected equilibrium pro�ts of the buyer remain constant. For
any θ at which the original mechanism featured q (θ, η) < 1 this increases revenues
from type (θ, η) by (1− q (θ, η)) · [η − c] > 0 while for any θ at which the orig-
inal mechanism featured q

(
θ, η
)
> 0 this increases revenues from type

(
θ, η
)
by
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q
(
θ, η
)
·
[
c− η

]
> 0. We need to show that the new mechanism is still incentive

compatible. In the η-dimension, Bayesian incentive compatibility constraints of the
original mechanism read

uold (θ, η) ≥ Uold
(
θ, θ, η, η

)
= uold

(
θ, η
)

+ q
(
θ, η
)
·
(
η − η

)
uold

(
θ, η
)
≥ Uold

(
θ, θ, η, η

)
= uold (θ, η)− q (θ, η) ·

(
η − η

)
at any θ ∈ Θ. They certainly imply the IC-constraints for the new mechanism
given as

unew (θ, η) ≥ Unew
(
θ, θ, η, η

)
= unew

(
θ, η
)
,

unew
(
θ, η
)
≥ Unew

(
θ, θ, η, η

)
= unew (θ, η)−

(
η − η

)
.

since the RHS is smaller for the new mechanism while the LHS hasn't changed.
Bayesian incentive compatibility then follows from

Unew
(
θ̂, θ, η̂, η

)
= Unew

(
θ̂, θ̂, η̂, η

)
+
(
θ − θ̂

)
· Enew

H(θ̂,η̂) [x]

= Unew
(
θ̂, θ̂, η̂, η

)
+
(
θ − θ̂

)
· Eold

H(θ̂,η̂) [x]

≤ Uold
(
θ̂, θ̂, η̂, η

)
+
(
θ − θ̂

)
· Eold

H(θ̂,η̂) [x]

= Uold
(
θ̂, θ, η̂, η

)
≤ uold (θ, η)

= unew (θ, η) .

Here we use that neither buyer's utilities nor x-allocations were changed (2nd and
6th line), we use incentive compatibility of the original mechanism (5th line) and

we use that Unew
(
θ̂, θ̂, η̂, η

)
≤ Uold

(
θ̂, θ̂, η̂, η

)
as shown above (3rd line).

As a consequence, the optimal mechanism is non-stochastic in q. To show that

the optimal mechanism is non-stochastic in x, note that for any report pro�le
(
θ̂, η̂
)

and type pro�le (θ, η) expected buyers' utilities

U
(
θ̂, θ, η̂, η

)
= θ · EH(θ̂,η̂) [x] + η · EH(θ̂,η̂) [q]− p (θ, η)

only depend on expected values of x (and q). Hence assigning x
(
θ̂, η̂
)

= EH(θ̂,η̂) [x]

with probability 1 does not alter the incentive problem of the buyer but increases

expected equilibrium pro�ts of the �rm from type
(
θ̂, η̂
)
due to Jensen's inequality

by

EH(θ̂,η̂) [C (x)]− C
(
EH(θ̂,η̂) [x]

)
≥ 0.

Proof of Lemma 2: As q (θ, η) = q (η) is independent of θ for any η ∈
{
η, η
}
, the

one-dimensional constraints imply

U
(
θ̂, θ, η̂, η

)
= U

(
θ̂, θ, η̂, η̂

)
+ q

(
θ̂, η̂
)
· (η − η̂)

≤ u (θ, η̂) + q (θ, η̂) · (η − η̂)

= U (θ, θ, η̂, η)

≤ u (θ, η)
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for all θ, θ̂ ∈
[
θ, θ
]
, η, η̂ ∈

{
η, η
}
.

Proof of Lemma 3: Monotonicity of x in θ is necessary as

u (θ, η) ≥ U
(
θ̂, θ, η, η

)
= u

(
θ̂, η
)

+ x
(
θ̂, η
)(

θ − θ̂
)
,

u
(
θ̂, η
)
≥ U

(
θ, θ̂, η, η

)
= u (θ, η)− x (θ, η)

(
θ − θ̂

)
imply [

x
(
θ̂, η
)
− x (θ, η)

]
·
(
θ − θ̂

)
≤ 0.

To show necessity for the �rst part, suppose without loss of generality that θ > θ̂.
Then

x
(
θ̂, η
)
≤
u (θ, η)− u

(
θ̂, η
)

(
θ − θ̂

) ≤ x (θ, η) .

But as x (θ, η) is non-decreasing in θ, it is continuous but for at most countably

many points and at any point of continuity of x (θ, η) in θ taking limits θ̂ → θ yields
uθ (θ, η) = x (θ, η), so integrating over θ yields (5). For su�ciency, note that by the
fact that the allocation is non-negative and monotonic we have

u (θ, η)− U
(
θ̂, θ, η, η

)
= u (θ, η)− u

(
θ̂, η
)
− x

(
θ̂, η
)(

θ − θ̂
)

=

ˆ θ

θ̂

[
x (y, η)− x

(
θ̂, η
)]
dy

≥ 0

for all θ, θ̂ ∈
[
θ, θ
]
. The second part of the Lemma follows from

U
(
θ, θ, η, η

)
= u

(
θ, η
)

+ q
(
θ, η
)
·
(
η − η

)
,

U
(
θ, θ, η, η

)
= u (θ, η)− q (θ, η) ·

(
η − η

)
.

Proof of Lemma 4: Suppose one of the solution schedules is not continuous at some

θ
′ ∈
(
θ, θ
)
. By monotonicity of the optimal schedules, both schedules have left and

right limits at θ
′
so there must be a jump dicontinuity at θ

′
. Write x∗l (θ) for the

left limit points and. x∗r (θ) for the right limit points. First, suppose that x∗ is not
continuous at θ

′
. For any δ > 0 su�ciently small, de�ne

xδ (θ) =


x∗ (θ) θ /∈

[
θ
′ − δ, θ′ + δ

]
c∗ (δ) =

´ θ′+δ
θ
′−δ

x∗(θ)dθ

2δ θ ∈
[
θ
′ − δ, θ′ + δ

] .
Note that

lim
δ→0

c∗ (δ) =

[
x∗l

(
θ
′
)

+ x∗r
(
θ
′
)]

2
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and that xδ (θ) is non-decreasing and non-negative given that x∗ is. By concavity
of B in x, we have

∂

∂δ
|δ=0 [Π (xδ, x

∗, u)−Π (x∗, x∗, u)]

=
∂

∂δ
|δ=0

β ˆ θ′
θ
′−δ

[
B
(
xδ (θ) , 0, θ, η

)
−B

(
x∗ (θ) , 0, θ, η

)]
f
(
θ|η
)
dθ


+
∂

∂δ
|δ=0

β ˆ θ′+δ
θ
′

[
B
(
xδ (θ) , 0, θ, η

)
−B

(
x∗ (θ) , 0, θ, η

)]
f
(
θ|η
)
dθ


= β · f

(
θ
′
|η
)
·

2B


[
x∗l

(
θ
′)

+ x∗r

(
θ
′)]

2
, 0, θ

′
, η

−B (x∗l (θ′) , 0, θ′ , η)−B (x∗r (θ′) , 0, θ′ , η)


> 0.

Hence, for su�ciently small δ, the mechanism (xδ, x
∗) increases the value of the

objective Π which would contradict optimality of (x∗, x∗) if the mechanism (xδ, x
∗)

were to satisfy all constraints. Note that ρ (θ, u) takes the same values for the

original mechanism and for (xδ, x
∗) outside

[
θ
′ − δ, θ′ + δ

]
. Hence it su�ces to

check contraints (8) and (9) on
[
θ
′ − δ, θ′ + δ

]
for the mechanism (xδ, x

∗). If neither

(8) nor (9) binds at θ
′
for the original mechanism, then both constraints will also be

satis�ed for (xδ, x
∗) on

[
θ
′ − δ, θ′ + δ

]
if δ is chosen su�ciently small. Note that,

at any θ,

ρ (θ, u) = u+

ˆ θ

θ

[x (y)− x (y)] dy

is (weakly) larger for the original mechanism than for (xδ, x
∗). Hence constraint

(9) will never be violated by (xδ, x
∗) given that it was satis�ed by (x∗, x∗). So the

only case in which (xδ, x
∗) is not feasible for any δ > 0 is when (8) binds at θ

′
for

the original mechanism.

But then we must have x∗l

(
θ
′
)
≤ x∗l

(
θ
′
)
as otherwise, if x∗l

(
θ
′
)
> x∗l

(
θ
′
)
, this

inequality continues to hold on a small interval
[
θ
′ − ε, θ′

]
and hence ρ

(
θ
′ − ε

)
<

ρ
(
θ
′
)

= 0, contradicting incentive compatibility of the mechanism (x∗, x∗). Sim-

ilarly we must have x∗r
(
θ
′
)
≤ x∗r

(
θ
′
)
as otherwise, if x∗r

(
θ
′
)
> x∗r

(
θ
′
)
, this

inequality continues to hold on a small interval
[
θ
′
, θ
′
+ ε
]
and hence ρ

(
θ
′
+ ε
)
<

ρ
(
θ
′
)

= 0, again contradicting incentive compatibility of the mechanism (x∗, x∗).

Thus we have x∗l

(
θ
′
)
≤ x∗l

(
θ
′
)
< x∗r

(
θ
′
)
≤ x∗r

(
θ
′
)
, so x∗ also has a jump

discontinuity at θ
′
.
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Next, suppose that x∗ is not continuous at θ
′
. Just as before, de�ne the following

schedule for δ > 0 su�ciently small:

xδ (θ) =


x∗ (θ) θ /∈

[
θ
′ − δ, θ′ + δ

]
c∗ (δ) =

´ θ′+δ
θ
′−δ

x∗(θ)dθ

2δ θ ∈
[
θ
′ − δ, θ′ + δ

] .
Note that

lim
δ→0

c∗ (δ) =

[
x∗l

(
θ
′
)

+ x∗r
(
θ
′
)]

2

and that xδ (θ) is non-decreasing and non-negative given that x∗ is. By concavity
of B in x, we have

∂

∂δ
|δ=0 [Π (x∗, xδ, u)−Π (x∗, x∗, u)]

=
∂

∂δ
|δ=0

(1− β)

ˆ θ′
θ
′−δ

[B (xδ (θ) , 1, θ, η)−B (x∗ (θ) , 1, θ, η)] f (θ|η) dθ


+
∂

∂δ
|δ=0

(1− β)

ˆ θ′+δ
θ
′

[B (xδ (θ) , 1, θ, η)−B (x∗ (θ) , 1, θ, η)] f (θ|η) dθ


= (1− β) · f

(
θ
′
|η
)
·

2B


[
x∗l

(
θ
′)

+ x∗r

(
θ
′)]

2
, 1, θ

′
, η

−B (x∗l (θ′) , 1, θ′ , η)−B (x∗r (θ′) , 1, θ′ , η)


> 0.

So again, for su�ciently small δ, the new mechanism (x∗, xδ) increases the value of
the objective Π compared to the original mechanism. As before, ρ (θ, u) takes the

same values for the original mechanism and for (x∗, xδ) outside
[
θ
′ − δ, θ′ + δ

]
, so it

su�ces to check contraints (8 and (9) on
[
θ
′ − δ, θ′ + δ

]
for the mechanism (x∗, xδ).

If neither (8) nor (9) binds at θ
′
for the original mechanism, then both constraints

will also be satis�ed for (xδ, x
∗) on

[
θ
′ − δ, θ′ + δ

]
if δ is chosen su�ciently small.

At any θ,

ρ (θ, u) = u+

ˆ θ

θ

[x (y)− x (y)] dy

is (weakly) smaller for the original mechanism than for (x∗, xδ). Hence constraint
(8) will never be violated by (x∗, xδ) given that it was not violated by (x∗, x∗). So
the only case in which (x∗, xδ) is not feasible for any δ > 0 is when (9) binds at

θ
′
for the original mechanism. In that case, however, we must now have x∗l

(
θ
′
)
≤

x∗l

(
θ
′
)
< x∗r

(
θ
′
)
≤ x∗r

(
θ
′
)
, so x∗ also has a jump discontinuity at θ

′
.

Together, both cases yield a contradiction and hence prove the result on
(
θ, θ
)
.

Either schedule x∗ is continuous or, at any point where x∗ is not continuous, both
schedules are discontinuous and constraint (9) binds. At the same time, either
x∗ is continuous or, at any point where x∗is not continuous, both schedules are
discontinuous and constraint (8) binds. As (8) and (9) cannot both bind at a given

θ
′
, the only possibility is that both schedules x∗, x∗ are continuous.
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Finally, consider the the boundaries θ and θ. By monotonicity, we have

x∗ (θ) ≤ x∗r (θ)

x∗
(
θ
)
≥ x∗l

(
θ
)

x∗ (θ) ≤ x∗r (θ)

x∗
(
θ
)
≥ x∗l

(
θ
)

so x∗r (θ) , x∗l
(
θ
)
, x∗r (θ), x∗l

(
θ
)
exist. Setting

x∗ (θ) = x∗r (θ)

x∗
(
θ
)

= x∗l
(
θ
)

x∗ (θ) = x∗r (θ)

x∗
(
θ
)

= x∗l
(
θ
)

neither changes Π or ρ nor violates monotonicity, and it guarantees continuity of
(x∗, x∗) at the boundaries.

Proof of Proposition 1: We invoke Seierstad and Sydsaeter (1987), Ch. 5, Thm.
2, p. 332 f.11 For the optimal solution schedules (x∗ (θ) , x∗ (θ)) and �xed values
u = u (θ) = 0, u = u (θ) this theorem yields the existence of costate variables

(κ (θ) , κ (θ)) with κ
(
θ
)

= κ
(
θ
)

= 0 such that (x∗ (θ) , x∗ (θ)) maximizes

H (u∗ (θ) , u∗ (θ) , x (θ) , x (θ) , κ (θ) , κ (θ) , θ) = βB
(
x (θ) , 0, θ, η

)
f
(
θ|η
)

+ (1− β)B (x (θ) , 1, θ, η) f (θ|η)(23)

+ κ (θ) · x (θ) + κ (θ) · x (θ) .

In addition, there exist a componentwise non-decreasing function µ (θ) = (µ1 (θ) , µ2 (θ))
with the following properties: µ1 is constant on any interval where ρ (θ, u) > 0 and
µ2 is constant on any interval where

(
η − η

)
− ρ (θ, u) > 0. Moreover,

κ (θ) = (κ (θ) ,κ (θ)) ≡ (κ (θ) , κ (θ)) + µ∗ (θ) ·
(
−1 1
1 −1

)
(24)

is continuous, and at any point where (x∗ (θ) , x∗ (θ)) and µ (θ) are continuous, κ (θ)
is di�erentiable with

∂ (κ (θ) ,κ (θ))

∂θ
= − ∂

∂ (u (θ) , u (θ))[
H

(
u
∗
(θ) , u

∗
(θ) , x

∗
(θ) , x

∗
(θ) , κ (θ) , κ (θ) , θ

)
− µ (θ) ·

(
−1 1
1 −1

)
·
(

x∗ (θ)
x∗ (θ)

)]
= (0, 0) .

Since x∗ (θ) and x∗ (θ) are assumed to be continuous and µ (θ) is non-decreasing
and hence continuous everywhere except for at most countably many points, κ (θ) is
continuous and di�erentiable everywhere except for at most countably many points,
with derivative being equal to 0. But then, by standard calculus (see e.g. Königs-
berger (2004)), κ (θ) is Lipschitz continuous with Lipschitz constant 0 everywhere,

11Note that the roles of x and u are reversed in our paper compared to the notation in Seierstad
and Sydsaeter (1987)
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i.e. κ (θ) = κ is constant everywhere. Hence, evaluating (24) at θ = θ we get

κ
(
θ
)

= −µ1

(
θ
)

+ µ2

(
θ
)
, κ = +µ1

(
θ
)
− µ2

(
θ
)
and hence

κ (θ) = µ1 (θ)− µ1

(
θ
)
− µ2 (θ) + µ2

(
θ
)
,

κ (θ) = −µ1 (θ) + µ1

(
θ
)

+ µ2 (θ)− µ2

(
θ
)

= −κ (θ) .

De�ne κ∗ (θ) = κ (θ) and note the �rst-order conditions of (23) are precisely the
equations charaterizing the optimal schedules. As H is concave in x the �rst-order
conditions are su�cient. Moreover, as the constraints (8), (9) are linear (and hence
quasi-concave) in (u (θ) , u (θ)), the conditions in Seierstad and Sydsaeter (1987),
Ch. 5, Thm. 2, p. 332 f. are su�cient, cf. Seierstad and Sydsaeter (1987), Ch. 5,
Thm. 3, p. 337. The properties of κ∗ (θ) are straightforward:

a) Continuity of κ∗ (θ) follows directly from continuity of (x∗ (θ) , x∗ (θ)).
b) This follows directly from κ∗ (θ) = κ (θ) = µ1 (θ) − µ1

(
θ
)
− µ2 (θ) + µ2

(
θ
)

and the respective properties of µ1 and µ2.
c) Continuity of κ∗ (θ) and(x∗ (θ) , x∗ (θ)) implies that for any θ ∈

(
θ, θ
)
where (8)

or (9) binds it must hold that x∗ (θ) = x∗ (θ) as otherwise the respective constraint
would be violated either at θ + δ or at θ − δ for δ > 0 su�ciently small.

d) This is implied by the monotonicity properties of µ1 and µ2 via κ∗ (θ) =
κ (θ) = µ1 (θ)− µ1

(
θ
)
− µ2 (θ) + µ2

(
θ
)
.

e) This follows from the transversality condition κ
(
θ
)

= 0.

Proof of Proposition 2: Note �rst that from equations (12) and (13) we get

∂x (θ)

∂κ
=

1

βf
(
θ|η
)
· C1

xx (x (θ))
> 0,

∂x (θ)

∂κ
= − 1

(1− β) f (θ|η) · C1
xx (x (θ))

< 0.

In an optimal mechanism, constraint (8) must bind for at least one θ ∈
[
θ, θ
]
.

Otherwise the continuous function ρ∗ (θ, u) attains its minimum ε > 0 at some θ̂
on the compact interval

[
θ, θ
]
and decreasing u by ε does not harm any constraints

and simultaneously increases revenues. So assume ρ∗
(
θ̂, u
)

= 0 for some θ̂ ∈
[
θ, θ
]
.

We want to show that this implies ρ∗
(
θ̂, u∗

)
= 0 for any θ ≥ θ̂. Suppose �rst that

θ̂ = θ. Since κ∗ (θ) is continuous and locally either follows a constant schedule or
κb (θ), and since κb (θ) is increasing, κ∗ (θ) < κb (θ) would imply κ∗ (θ) = κ∗ (θ) <
κb (θ) ≤ κb

(
θ
)

= 0 for all θ ∈
[
θ, θ
]
, contradicting transversality κ∗

(
θ
)

= 0 as
stated in Proposition 1, Part e). On the other hand, κ∗ (θ) > κb (θ) by continuity
of κ∗ (θ) and κb (θ) would imply κ∗ (θ) > κb (θ) on some interval [θ, θ + ε] of positive

length ε > 0, violating (8) at any θ > θ within this interval. Hence for θ̂ = θ we

must have κ∗
(
θ̂
)

= κb

(
θ̂
)
just as for any other θ̂ ∈

[
θ, θ
]
, following Proposition

1, Part c) and e).

As a consequence, note that κ∗ (θ) ≤ κb (θ) for any θ > θ̂ as κb (θ) is increasing
and κ∗ (θ) is continuous and follows either a constant schedule or κb (θ). Sup-

pose κ∗
(
θ̃
)
< κb

(
θ̃
)
for some θ̂ < θ̃ ≤ θ. Then κ∗ (θ) = κ∗

(
θ̃
)
< κb

(
θ̃
)
≤

κb
(
θ
)

= 0 for any θ ≥ θ̃ by continuity of κ∗ (θ) and Proposition 1, Part b)+c),
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contradicting κ∗
(
θ
)

= 0 as required by Proposition 1, Part e). De�ning θ
′

=

inf
{
θ ∈

[
θ, θ
]

: ρ∗ (θ, u∗) = 0
}
completes the proof.

Proof of Theorem 1: By Proposition 2 we have

u =

ˆ θ
′

θ

[x∗ (y)− x∗ (y)] dy

which, as x∗
(
θ
′
)

= x∗
(
θ
′
)

= x∗
(
θ
′
)
, implies

dκ∗

du
(u) = − 1´ θ′

θ

[
∂x∗
∂κ∗ (y)− ∂x∗

∂κ∗ (y)
]
dy

> 0.

Using this as well as equations (12) and (13) we get

dΠ

du
(u)

=

ˆ θ
′

θ

[
βf
(
θ|η
)
· ∂B
∂x

(
x∗ (θ) , 0, θ, η

)
· ∂x

∗

∂κ∗
(θ) · dκ

∗

du
(u)

]
dθ

+

ˆ θ
′

θ

[
(1− β) f (θ|η) · ∂B

∂x
(x∗ (θ) , 1, θ, η) · ∂x

∗

∂κ∗
(θ) · dκ

∗

du
(u)

]
dθ − (1− β)

=
κ∗ (u) ·

´ θ′
θ

∂x∗

∂κ∗ (θ) dθ
´ θ′
θ

[
∂x∗
∂κ∗ (y)− ∂x∗

∂κ∗ (y)
]
dy
−

κ∗ (u) ·
´ θ′
θ

∂x∗

∂κ∗ (θ) dθ
´ θ′
θ

[
∂x∗
∂κ∗ (y)− ∂x∗

∂κ∗ (y)
]
dy
− (1− β)

= −κ∗ (u)− (1− β) ,

implying u∗ = 0 as demonstrated in the main text. The theorem then immedi-
ately follows from Proposition 2. The reformulation in terms of prices conditional
on quantities rather than preference types is a direct implication of the taxation
principle as explained in the main text.

Proof of Theorem 2: As demonstrated in the main text, the solution schedules
(x∗ (θ) , x∗ (θ) , u∗) for Problem P' deviate from the full bunching schedule (x∗ (θ) , x∗ (θ) , u = 0)
on an interval of positive mass. We are left to formally show that, under Assumption
3, there exists a convex combination

(xλ (θ) , xλ (θ) , uλ) = λ · (x∗ (θ) , x∗ (θ) , u∗) + (1− λ) · (x∗ (θ) , x∗ (θ) , 0)

with λ > 0 such that the schedules (xλ (θ) , xλ (θ) , uλ) satisfy constraints (8)-(11)
and that

Π (xλ (θ) , xλ (θ) , πλ) > Π (x∗ (θ) , x∗ (θ) , 0) .

As constraints (8) and (9) are linear in (x, x, u) and, by construction, satis�ed
by (x∗ (θ) , x∗ (θ) , u∗) and (x∗ (θ) , x∗ (θ) , u = 0), they are also satis�ed by any con-
vex combination of the two. Moreover, as (x∗ (θ) , x∗ (θ)) and (x∗ (θ) , x∗ (θ)) are

continuous and hence bounded on
[
θ, θ
]
and x∗ (θ) ≥ x∗ (θ) > 0 for all θ ∈

[
θ, θ
]

by Assumption 3, (xλ (θ) , xλ (θ)) are positive for su�ciently small values λ > 0 as
well and hence satisfy (11).

Concerning (10), note that the optimal costate variable κ∗ (θ) that corresponds
to (x∗ (θ) , x∗ (θ) , u∗) is bounded. Indeed, since κ∗ (θ) is continuous on

[
θ, θ
]
with

κ∗
(
θ
)

= κb
(
θ
)

= 0 and is either locally constant or follows κb (θ), we have κ∗ (θ) ∈
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minθ∈[θ,θ] κb (θ) ,maxθ∈[θ,θ] κb (θ)

]
which is bounded by compactness of

[
θ, θ
]
and

continuity of κb (θ). Moreover, on any interval
[
θ
′
, θ
′′
]
⊂
[
θ, θ
]
, the costate variable

κ∗ (θ) is constant or lies within
[
minθ∈[θ′ ,θ′′ ] κb (θ) ,maxθ∈[θ′ ,θ′′ ] κb (θ)

]
. Hence, for

any θ ∈
[
θ, θ
]
the set of subdi�erentials ∂κ∗ (θ) is bounded by

[
min

{
0, ∂κb(θ)∂θ

}
,max

{
0, ∂κb(θ)∂θ

}]
and therefore the subdi�erentials of (x∗ (θ) , x∗ (θ)) given as

∂x∗ (θ) =
1

Cxx (x∗ (θ))
·

 ∂

∂θ

[
θ −

1− F
(
θ|η
)

f
(
θ|η
) ]

+
κ∗ (θ) · ∂f(θ|η)∂θ − f

(
θ|η
)
· ∂κ∗ (θ)

βf
(
θ|η
)2

 ,

∂x∗ (θ) =
1

Cxx (x∗ (θ))
·
(
∂

∂θ

[
θ − 1− F (θ|η)

f (θ|η)

]
− κ∗ (θ) · ∂f(θ|η)∂θ − f (θ|η) · ∂κ∗ (θ)

(1− β) f (θ|η)
2

)
are bounded as well. Since

∂x∗ (θ)

∂θ
=

1

Cxx (x∗ (θ))
·
(
∂

∂θ

[
θ −

1− F
(
θ|η
)

f
(
θ|η
) ])

is continuous on
[
θ, θ
]
and strictly positive by Assumption 3, it is bounded away

from zero by compactness of
[
θ, θ
]
. Hence, again, for su�ciently small λ > 0 we

have

∂xλ (θ) ⊂ R+,

∂xλ (θ) ⊂ R+,

showing (10).
Finally, from (6) and concavity of B in x together with

Π (x∗ (θ) , x∗ (θ) , u∗) > Π (x∗ (θ) , x∗ (θ) , u = 0)

we get

Π (xλ (θ) , xλ (θ) , uλ) = Π (λ · (x∗ (θ) , x∗ (θ) , u∗) + (1− λ) · (x∗ (θ) , x∗ (θ) , 0))

> λΠ (x∗ (θ) , x∗ (θ) , u∗) + (1− λ) Π (x∗ (θ) , x∗ (θ) , 0)

> λΠ (x∗ (θ) , x∗ (θ) , 0) + (1− λ) Π (x∗ (θ) , x∗ (θ) , 0)

= Π (x∗ (θ) , x∗ (θ) , 0)

which proves the theorem.
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