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Abstract

We study a model of managerial incentive problems where a manager chooses the �rst two

moments of his �rm�s pro�t distribution - mean and volatility - along an e¢ cient frontier. As-

suming that managers di¤er with respect to their marginal cost of e¤ort and their risk aversion

we explore our model�s comparative statics predictions in full detail. If managers�preference

parameters are commonly known and associated, then a positive correlation between expected

returns, volatility of pro�ts, and incentives is the natural outcome. Allowing in addition for

adverse selection with respect to the managers� preference parameters does not change the

predicted correlation if the variation in observed contracts is not too large. Moreover, ob-

served incentive schemes re�ect exclusion of some manager types. Neglecting the endogeneity

of risk in empirical studies biases estimates towards zero.
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1 Introduction

The separation of ownership and control (Berle and Means (1932)) makes it vital to understand

the optimal design of incentive schemes for managers. The theoretical literature on the subject is

vast, leaving no hope to do justice to all contributions. A cornerstone of incentive theory is the

Holmström and Milgrom (1987) continuous time model, where a manager�s compensation takes

the form of a linear compensation scheme; a �xed part plus a variable part that depends linearly on

some accounting measure; Hellwig and Schmidt (2002) have provided discrete time approximations

for this model. Applied work on contract theory usually starts from a static reduced form version

of these models, assuming that a manager receives a compensation package that is linear in pro�ts,

and studies how the components of the manager�s pay change with the underlying problem. One

comparative statics prediction that is shared by the majority of these models is that the sensitivity

of the manager�s pay to the �rm�s pro�ts should be the lower the more risky the �rm�s pro�ts

are. E¢ cient risk sharing between well diversi�ed shareholders and the �rm�s managers would

allocate all the risk to the shareholders, but such an arrangement would give the manager too little

incentives to work. Hence, moral hazard induces an ine¢ ciency that is the more costly the larger

the underlying risk and so the optimal sensitivity of the manager�s performance pay is reduced

when the �rm�s pro�ts become more volatile.

The empirical evidence as to whether the data support this comparative statics prediction is

mixed. In the context of executive pay, Core and Guay (1999) and Oyer and Schaefer (2004) �nd

a positive and signi�cant relation between measures of business risk and performance sensitivity of

pay; Aggarwal and Samwick (2002) and Lambert and Larcker (1987) �nd a negative and signi�cant

relation between risk and incentives. Quite some studies �nd results that are statistically not

signi�cant: Bushmann et al. (1996) and Ittner et al. (1997) study whether �rms are more or

less inclined to use individual performance evaluation rather than compensation based on �nancial

performance measures when risk is higher and �nd a positive result when they take variance in stock

returns as the measure of risk; they �nd a negative result when they take variance in accounting

returns as their measure of risk; Ittner et al. (1997) �nd positive results for various measures of

risk (volatility of accounting returns, stock returns and net earnings); Yermack (1994) �nds that

�rms provide more incentives from stock options when accounting earnings contain larger amounts

of noise.

We propose a new way to look at this evidence. We develop a theoretical model of performance

pay where the manager is given incentives to be diligent in two respects. Firstly, the manager
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exerts e¤ort which, all else equal, makes higher pro�ts more likely. Secondly, the manager can

also choose the �rm�s strategy, that is, he can select the riskiness of the �rm�s pro�ts along an

e¢ cient frontier. We stick �rmly to the applied perspective and assume that the manager faces

a compensation package that is linear in pro�ts1 . The performance sensitivity of the manager�s

pay determines both his optimal e¤ort choice and the optimal volatility of the �rm�s pro�ts. The

optimal contract is in�uenced by the manager�s underlying characteristics. When these character-

istics vary, the observed contract choices vary too and furthermore induce variation in the observed

�rm characteristics. Hence, our model makes predictions as to the covariation between observed

contract choices and �rm characteristics, that is, mean and variance of pro�ts. Since we do not

in general know whether the characteristics are known to the principals who design the contracts

(in practice), we extend our results to allow for adverse selection with respect to the manager�s

characteristics on top of moral hazard with respect to the choices made by the manager. Under

fairly general conditions, we obtain a (pairwise) positive covariance of performance-sensitivity of

pay and mean returns and volatility of pro�ts.

If there is a grain of truth to our story, then our model sheds new light on the existing evidence.

The hypothesis that risk and incentives should be inversely related is based on a model where risk

is exogenous. In contrast, when risk is endogenous through choices made by the managers, then

our theoretical model predicts a positive relation. Moreover, in empirical studies endogeneity

would not only a¤ect the sign but also the magnitude of the estimated relations, at least when

the endogeneity is not entirely accounted for: the resulting correlations between risk as a regressor

and the error terms biases the estimates towards zero, explaining why it is di¢ cult to reject the

hypothesis that there is no relation between risk and incentives at all.

Our story is closely related to Holmström and Milgrom (1994) and Demski and Dye (1999).

Holmström and Milgrom (1994) develop a theory of the joint determination of various elements

of contracts. While their theory explains the covariation of choices made by the principal, we

wish to explain how choices made by principals (that is, contracts) covary with choices made by

the managers (that is, expected level and riskiness of pro�ts). A key element in our theory is

an e¢ cient frontier, which introduces a relation between equilibrium expected return and risk.

Demski and Dye (1999) also build on the idea that a manager can make mean-variance trade-o¤s;

1This is a standard perspective taken in a sizeable branch of the literature. While restricting contracts to a

particular functional form is clearly a restriction, doing so allows us to closely compare our results to those found

in the applied literature that works from this hypothesis, which is precisely the aim of the present paper. Thus, the

restriction to linear contracts is imposed deliberately, not just for analytical convenience.
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however, they address quite di¤erent questions with their model.

Thus, the key idea is to allow for more margins of decision making that a¤ect the contracting

environment. This idea is also present in Hellwig (2009), Sung (2005), Araujo et al. (2007) and

Garcia (2013). All these papers allow for endogenous risk choices, even though the precise trade-

o¤s and who controls the choice of risk di¤ers across the approaches. Hellwig (2009) points out

that all moments, mean and risk, are jointly determined as solutions of one incentive problem and

thus challenges the way we think of debt contracts as a solution to one incentive problem and

equity contracts as a solution to another one. Sung (2005) studies a continuous time principal

agent problem with moral hazard and adverse selection which allows for an endogenous choice of

volatility by the principal. We use a static model but allow for various sources of heterogeneity

among agent types, have all choices except for contracts made by the agent, and explore the

comparative statics properties based on the association of random variables as Holmström and

Milgrom (1994) do2 . Araujo et al. (2007) analyze a problem where the manager�s e¤ort choice

raises means and reduces variance at the same time. In Garcia (2013), risk can again be seen as

an additional contracting tool that the principal uses alongside with linear contracts to control the

agent�s e¤ort choice.

Overall, we believe it is very natural to assume that all the moments of the return distribution

are endogenous and �nd it reassuring that di¤erent variations on the same theme share similar

results.3 Many variations and their predictions for empirical work remain unexplored to date.4

Part of the empirical contracting literature discusses endogeneity of risk explicitly; see, e.g.

Garen (1994) and, in the context of franchising, Lafontaine (1992) and Lafontaine and Slade (2007,

1998). One way to deal with the issue is to �nd measures of risk that are likely to be exogenous to

the �rm�s choices. Garen (1994) follows this approach and uses R&D intensity as a proxy for the

riskiness of a �rm�s industry. Using that proxy he �nds a negative but statistically not signi�cant

relation between the pay-performance sensitivity and this proxy. Based on our theory, we propose

2Combining Sung�s (2005) continuous time with our multidimensional approach is - as we believe - an interesting

avenue for future research.
3 It should also be stressed that incentive problems in practice may depend on the context, ranging from excessive

risk taking to excessive conservatism. This paper does not address excessive risk taking by managers, and is therefore

clearly not the adequate framework to think about contracts for bank managers, where excessive risk taking is the

main concern. For a further discussion, see the �nal section.
4 In a recent paper, Weinschenk (2014) studies a model with endogenous project choice to challenge the Marshal-

lian hypothesis that higher incentives lead to higher expected pro�ts - a feature that our model has. He shows that

this need not be the case in his model.
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an empirical approach that attacks this issue more directly, that is to regress all the choices made

by the manager and the �rm�s owners on the characteristics of the underlying problem. This would

allow to estimate the endogenous relation between risk and incentives.

While we are not aware of any study in the context of executive pay that addresses this is-

sue, Ackerberg and Botticini (2002) make a closely related point in the context of sharecropping,

pointing out that some characteristics of their underlying contracting problem may be endogenous

through tenant/landowner matching. In their context, the landowner decides on what crop to

grow; if crops di¤er in their riskiness, then tenants who di¤er in their risk aversion feel attracted

to di¤erent landowners. Similar to their work, we stress that endogeneity is an important issue.

However, since the details of optimal choices in a contracting relationship are di¤erent from the

details in the matching process, our way to address the endogeneity is quite di¤erent.

A number of theories can rationalize a positive relation between risk and incentives. The main

value added to our exercise is not so much to provide yet another one explaining the same thing

but much more to paint a rich picture of the comparative statics predictions of a contracting

model allowing for many margins along which managers make choices and for many dimensions

of heterogeneity among managers that may or may not be private information within a uni�ed

framework. We are not aware of a similar attempt in the literature.

Prendergast (2002) was �rst to take up the mismatch between theory and empirical work. He

argues that the standard theory neglects an endogenous delegation decision. Suppose there are two

essential inputs in production, e¤ort and information that is used to make decisions, and suppose

that agents have better information than principals. The value of this improved information is

the larger the more uncertain the environment. Consequently, the larger is business risk, the more

likely are principals to delegate decision making to the agent. But to ensure that the agent acts in

the principal�s interest, the principal makes the agent�s pay depend on his performance. Hence, the

agent�s pay is the more dependent on performance the higher is risk. Thus, essentially Prendergast

argues that the existing theories and their empirical tests su¤er from an omitted variable bias.

Raith (2003) argues that empirical tests of the principal agent model fail to distinguish vari-

ability in pro�ts and measurement error in contracting. If this distinction is made, then a positive

correlation of performance pay and business risk can be rationalized. In particular, he studies a

model of oligopolistic competition, where a manager�s role is to reduce his �rm�s costs of produc-

tion. As in the traditional model, the dependence of the manager�s pay on realized cost reductions

is the smaller the larger is the measurement error for these same cost reductions. On the other
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hand, uncertainty about rivals�costs makes �rms�pro�ts stochastic. Although the power of man-

agers�performance pay and the variability of �rms�pro�ts are not causally linked to each other, a

change in a third factor, e.g. the degree of competition, increases both pro�t risk and the power of

managers�incentive schemes. Thus, the agents�pay is more performance dependent when business

risk is greater, but there is no causal link between the two e¤ects.

More recently, Inderst and Müller (2010) point to the role of incentive pay-schemes when it

comes to inducing exit by bad managers. Comparing severance pay with on the job payment

schemes, they �nd that severance pay makes shirking too attractive for managers; on the other

hand, risky pay-for-performance is only attractive to manager who think they are more likely to

generate high returns. Moreover, performance pay may be steeper if the underlying �rm risk is

higher.5

As stressed before, the main point of this paper is not so much that the relation between risk

and incentives is positive but that it is endogenous and shaped by many factors that may or may

not be observed when contracts are written. We develop a framework which allows us to illustrate

the implications of this insight for empirical work.

The remainder of this article is structured as follows. In section two, we lay out the model and

explain the principal�s problem including its solution in the �rst-best situation in section three.

In section four, we study the contracting problem with known characteristics, in section �ve we

extend these results to the case of adverse selection with respect to the manager�s characteristics.

In section six, we remind the reader of the attenuation problem in empirical studies that arises

from endogeneity of regressors, in our case risk. Section seven concludes. All proofs are gathered

in the appendix.

2 The Model

An owner of a �rm hires a manager to produce output. Henceforth, we call the owner the principal

(she) and the manager the agent (he). The distribution of pro�ts, �; depends on the agent�s

management style, that is two choices the agent makes. In particular, the agent chooses the mean

� and the variance �2 of a Gaussian pro�t distribution, so ~� � N
�
�; �2

�
: The agent�s choices

are constrained by an e¢ cient frontier � = � (e; �) ; where e is the agent�s e¤ort: The e¢ cient

5A positive relation between risk and incentives can be rationalized in a number of other ways, e.g., through

endogenous matching between principals and agents (Serfes (2005) and Wright (2004)) or by combining limited

liability with risk aversion on the part of the agent (Budde and Kräkel (2011).
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frontier describes the maximum expected return the agent can reach for any given variance and

e¤ort choice. For a given e¤ort, higher expected returns can only be reached at the cost of higher

variance. By increasing his e¤ort, the agent can expand the set of feasible pro�t distributions;

the e¢ cient frontier is increasing in e for any given volatility �: We assume that � (e; �) is jointly

concave in e and �: Finally, there is an upper bound on the volatility, �: Figure 1 depicts the

e¢ cient frontier.6

Figure 1: The e¢ cient frontier

E¤ort is costly to the agent. The cost of e¤ort is c�e; where c is a positive parameter7 . Contracts

can only be written on pro�ts; the agent�s choices themselves - neither e¤ort nor volatility - are not

observable to the principal by the time payments are made. Moreover, the principal is restricted

to use linear contracts. So, the principal�s wealth is equal to WP = ��+(1� �)� and the agent�s

wealth is equal to WA = � + ��; where � is a base salary and � the agent�s share of pro�ts.

The principal is risk neutral while the agent is risk averse. His utility function displays constant

absolute risk aversion. More precisely, we have

UA (WA; e) = � exp (�a (WA � ce)) ;

where a is the coe¢ cient of absolute risk aversion. As is well known, the agent�s expected utility

can be expressed as E [UA (WA; e)] = UA (wA � ce) where

wA � � + �� (e; �)� a
�2

2
�2 (1)

6For most of the paper, � can be taken as 1. Since the principal is risk neutral, we need a �nite � to make the

�rst-best allocation well de�ned.
7Making costs linear in e¤ort is a normalization that is without loss of generality.
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is the agent�s certainty equivalent level of wealth. Clearly, for any given e¤ort choice, the agent

will always choose a point on the e¢ cient frontier, so � = � (e; �) : The principal�s expected utility

is equal to his expected wealth, so

E [WP ] = �� + (1� �)� (e; �) :

The agent�s outside option gives rise to a certainty equivalent level of wealth of !: The agent knows

his marginal cost of e¤ort and his coe¢ cient of risk aversion. These parameters are distributed

with full support on the product set T � [a; a] � [c; c] where a > a > 0 and c > c > 0: We let

t � (a; c) denote a type and let k (t) and K (t) denote the joint density and cdf of t; respectively.

Apart from the e¢ cient frontier - our key new element - these assumptions are standard in the

literature (see, e.g. Holmström and Milgrom (1994)). We explore two variations of our model; in

the �rst version, the agent�s type is commonly known so that the only contractual friction is moral

hazard arising from the unobservability of the agent�s choices; in the second version, the principal

only knows the distribution of the agent�s type (and this is common knowledge), so there is adverse

selection on top of moral hazard.

3 The Principal�s Problem

We state the principal�s problem for the most general case, where the agent has private information

about his level of risk aversion and cost of e¤ort. The case of symmetric information is then a

special case of the general formulation.

Invoking the Revelation Principle, an optimal contract can be found restricting attention to

a direct revelation game, where the agent is asked to announce his preference parameters t̂; and

is given incentives to announce his type truthfully. For any given announced type, t̂ 2 T; a

contract speci�es the quadruple
�
�
�
t̂
�
; �
�
t̂
�
; e
�
t̂
�
; �
�
t̂
�	
: Our problem is a combined problem

of moral hazard and adverse selection. However, once the agent has announced a type, �
�
t̂
�
and

�
�
t̂
�
are given from his perspective. So, we can use (1) to compute the optimal choices of e¤ort

and standard deviation (from his perspective); let e (�; t) and � (�; t) denote these choices. Since

� (e; �) is jointly concave in its arguments, incentive compatible choices are completely described

by the pair of �rst-order conditions

�
�
t̂
�
�e
�
e
�
�
�
t̂
�
; t
�
; �
�
�
�
t̂
�
; t
��
= c (2)
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and either

�
�
�
�
t̂
�
; t
�
� � and ��

�
e
�
�
�
t̂
�
; t
�
; �
�
�
�
t̂
�
; t
��
� a�

�
t̂
�
�
�
�
�
t̂
�
; t
�
= 0; (3)

or

�
�
�
�
t̂
�
; t
�
= � and ��

�
e
�
�
�
t̂
�
; t
�
; �
�
�
�
t̂
�
; t
��
� a�

�
t̂
�
�
�
�
�
t̂
�
; t
�
� 0: (4)

Given strict concavity of the function � (�; �) in its arguments, this system of equations has a unique

solution. Taking these choices into account, the principal�s problem is reduced to a problem of

pure adverse selection. The principal�s problem is to

max
�(�);�(�);~T(!)

Z
~T(!)

(�� (t) + (1� � (t))� (e (� (t) ; t) ; � (� (t) ; t))) k (t) dt (5)

s:t:

wA (� (t) ; � (t) ; e (� (t) ; t) ; � (� (t) ; t))� ce (� (t) ; t) (6)

� wA
�
�
�
t̂
�
; �
�
t̂
�
; e
�
�
�
t̂
�
; t
�
; �
�
�
�
t̂
�
; t
��
� ce

�
�
�
t̂
�
; t
�
for all t; t̂ 2 ~T (!)

wA (� (t) ; � (t) ; e (� (t) ; t) ; � (� (t) ; t))� ce (� (t) ; t) � ! for all t 2 ~T (!) (7)

max
t̂2~T(!)

wA
�
�
�
t̂
�
; �
�
t̂
�
; e
�
�
�
t̂
�
; t
�
; �
�
�
�
t̂
�
; t
��
� ce

�
�
�
t̂
�
; t
�
� ! for all t 2 T n ~T (!) (8)

In this problem, constraint (6) is the incentive constraint that guarantees truthtelling. (7) ensures

that agents with characteristics t 2 ~T (!) are willing to participate, (8) ensures that agents with

other characteristics do not participate; the principal chooses the set ~T (!) ; i.e., whom to attract

and whom to exclude. Note again that the moral hazard part of our problem has been subsumed

into the hidden information part of the problem by requiring that e (� (t) ; t) and � (� (t) ; t) satisfy

the conditions (2) and either (3) or (4) :8 Thus, the problem of pure moral hazard corresponds to

the problem above when we drop constraint (6) : Moreover, in this case, the problem can always

be solved pointwise for each t:

The choice of the set ~T (!) is only interesting in case the characteristics are privately known

to the agent; this is due to the absence of wealth e¤ects in the principal�s and the agent�s utility

function. For this reason we study the problem with known characteristics under conditions that

ensure that full participation is optimal; formally, we set ! = 0 for the �rst part of the analysis in

section 4, which ensures that ~T (!) = T: In contrast, the optimal allocation in the case of privately

known characteristics, analyzed in section 5, features exclusion of a portion of types - who are

8With a slight abuse of notation, e (t) = e (� (t) ; t) and � (t) = � (� (t) ; t) correspond to the �recommended�

choices introduced in the de�nition of contracts above.
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particularly risk averse and have very high costs of e¤ort - with strictly positive measure whenever

! > 0:

Before we dive into the analysis of the incentive problems, we shall brie�y discuss the case

where the principal can observe the agent�s type and his choices. If the principal is perfectly

informed about the agent�s preferences and choices, then there is no need to use the share � to

control incentives. Hence, � is set so as to induce an optimal allocation of risk between agent and

principal, so �� (t) = 0 for all t: Since the principal is indi¤erent towards risk, and the e¢ cient

frontier is increasing in �; he will prefer for any given e¤ort the maximum volatility, so �� (t) = �

for all t: Finally, the optimal level of e¤ort satis�es the �rst-order condition �e (e (�
� (t) ; t) ; �) = c:

Notice that both �� and �� are independent of the agent�s preference parameters. The optimal

level of the mean is decreasing in c; as e¤ort is decreasing in c under complete information.

4 The Problem of Pure Moral Hazard

Even though we can characterize the solution to our model - in the case of commonly known

characteristics - for general functions � (e; �) ; clear-cut comparative statics predictions require

quite a lot more structure. Thus, to make progress we assume from now on that

� (e; �) = e���: (9)

It is easy to verify that the agent�s problem of choosing e and � for given contract is jointly concave

in the choice variables if 0 � �; � � 1 and �+ �
2 � 1;

9 so we impose these restrictions to make the

agent�s problem well behaved. As we discuss shortly, to make the principal�s problem well behaved

(that is concave in �), we assume on top of this that � � :5 and � � 2�:

To solve our problem in the most reader friendly way, we proceed as follows. We demonstrate

the important features of the solution for interior volatility choices in the main text. We provide

the details of the solution in the appendix along side with a discussion for which parameter values

the solution is indeed interior.

It is useful to ease notation de�ning some statistics of the model parameters. The details are

not interesting in any way but are provided for completeness in De�nition 1 in the appendix.

Let � � � (�; �) ; � � �(�; �) ; and � � � (�; �) denote functions of the parameters only, and

9The factor :5 stems from the fact that the cost of risk bearing is quadratic in �: Switching variables from

standard deviation to variance in (9) gives rise to the standard restriction that the sum of exponents be smaller

than unity.
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let � (t) � a
��

2(1��)�� � c
�2�

2(1��)�� . Building on this notation, we can write the mean of the return

distribution induced by an agent with characteristics t as

� (e (�; t) ; � (�; t)) = �� (t)���1; (10)

the agent�s cost of risk bearing and e¤ort as

a
�2

2
� (�; t)

2
+ ce (�; t) = �� (t)��;

and the agent�s indirect certainty equivalent level of wealth as

wA (�; �; e (�; t) ; � (�; t) ; a)� ce (�; t) = � + ��� (t)���1 � �� (t)��: (11)

4.1 Optimal Contracts

It is now straightforward to solve the principal�s problem. Clearly, when the agent�s characteristics

are known, the participation constraint has to be binding for each t: Notice, that the indirect

certainty equivalent level of wealth - when the agent chooses e¤ort and volatility optimally from

his perspective - depends only on � = � (t) ; a unidimensional statistic of t: This simpli�es the

model dramatically. Imposing (7) for each � and substituting into the principal�s objective, we

obtain the following unconstrained problem

max
�
� (t)

�
����1 � ���

�
: (12)

It is easy to verify that problem (12) is increasing in � for � = 0 and concave in � for � 2 (1; 2) ;

or equivalently for � � :5 and � � 2�; which is precisely the reason we impose this restriction. In

this case, we can characterize the solution by the pointwise �rst-order conditions

�� = � � � � 1
�

�

�
: (13)

The optimal share �� is independent of the agent�s preference parameters as long as the implied

volatility choice is interior. This is due to the Cobb-Douglas technology. Since the agent�s volatility

choice is the higher the less risk averse the agent is and the smaller his marginal cost of e¤ort is, the

volatility choice is indeed interior for relatively high values of the agent�s preference parameters.

Let TI denote the (closed) set of parameters giving rise to an interior solution. Depending on

the support of the agent�s preference parameters, there is necessarily a set of types for which the

upper bound on volatility is a binding constraint. Let TC = T nTI denote this (open) set. TC is

nonempty if some agents are close to risk neutral and/or have very low cost of e¤ort. To capture
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Figure 2: Interior versus corner solutions.

this case, we assume that the lower bounds a and c are su¢ ciently low. In this case, there exists

a strictly decreasing function � (a) that separates the sets TC and TI ; depicted in �gure 2 below.

We can now characterize the overall solution to the contracting problem.

Proposition 1 i) There exists a strictly decreasing function � (a) ; such that TC � ft :c < � (a)g :

For a and c su¢ ciently small, TC is nonempty.

ii) For relatively risk averse agents with a relatively high cost of e¤ort (formally, for t 2 TI), the

optimal share �� (t) is independent of t and given by (13) : The optimal choice of volatility and the

expected level of pro�ts are both decreasing in t:

iii) For relatively risk tolerant agents with a relatively low cost of e¤ort (formally, for t 2 TC),

the optimal share �� (t) is decreasing in t: The optimal choice of volatility is �� (t) = �: The

expectation of pro�ts is decreasing in t.

iv) For any t; t0 such t 2 TC and t0 2 TI ; we have �� (t) > �� (t0) :

The economics is straightforward. An e¢ cient allocation of risks would require that � be set

equal to zero for all t: While a riskless contract would induce the agent to choose the optimal

volatility from the principal�s perspective, that is � = �; it would not give the agent any incentive

to exert e¤ort. Hence, � is set too high relative to the �rst-best. As a result, there is a strictly

positive cost of risk bearing which is increasing in a: Since the agent�s participation constraint

always holds as an equality, it is the principal who bears the cost of this ine¢ ciency. The higher

is a; the more costly it becomes to convince the agent to participate for a given share of pro�ts

�: Hence, the principal weakly reduces � as a is increased. The agent, on the other hand, can

12



reduce the cost of risk bearing by changing the volatility of the project. Hence, the agent (weakly)

reduces the volatility of the project as he becomes more risk averse.

Similarly, when c increases, any given level of e¤ort becomes more costly to implement. Hence,

the principal �nds it optimal to reduce incentives for e¤ort when c increases, so � is reduced. Since

volatility and e¤ort are complements along the e¢ cient frontier, the agent has less of an incentive

to engage in risk taking. Hence, the optimal volatility is reduced as well.

4.2 Covariance of Contracts and Moments of the Pro�t Distribution

Inspired by Holmström and Milgrom (1994), we build our comparative statics predictions on the

concept of associated random variables. Recall from Esary, Barlow, and Walkup (1967)) that

random variables t are associated if

COV (x (t) ; y (t)) = E [x (t) y (t)]� E [x (t)]E [y (t)] � 0

for all non-decreasing functions x (t) and y (t) (that is, functions that are non-decreasing in each

of the arguments) for which E [x (t) y (t)] ;E [x (t)] ; and E [y (t)] exist.10 Notice that the functions

�� (t) ; �� (t), and �� (t) described in the proposition above are comonotone. Before t is realized,

the values these functions take are random. Let ~��; ~��; and ~�� directly denote these random

variables.

Proposition 2 i) The covariance of ~�� and ~�� is strictly positive.

ii) If t is associated, then the covariance of ~�� and ~�� and the covariance of ~�� and ~�� are

nonnegative.

iii) If either managerial risk aversion or his/her cost of e¤ort can be controlled for, then the

covariance of ~�� and ~�� and the covariance of ~�� and ~�� are both strictly positive:

Part i) follows from the fact that the functions �� (t) and �� (t) are comonotone and moreover

that one function is strictly decreasing exactly in the region where the other is constant. Calculating

the covariance by separating these regions yields the strictly positive result. Part ii) follows directly

from the association property, because �� (t) ; �� (t), and �� (t) are all monotonic in t. Finally, part

iii) follows from the association property, the fact that one random variable is always associated,

and that one can rewrite ~�� and ~�� as increasing functions of ~��.

The predictions of the pure moral hazard model when all moments of the pro�t distribution

are endogenous are remarkably unambiguous: provided that the parameters in the agent�s payo¤
10For the relationship between association and other concepts of dependence, see Esary and Proschan (1972).
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function are positively correlated in the sense of association, the solution to the incentive problem

and the induced moments re�ect this positive correlation. This is in remarkably stark contrast to

the predictions of the exact same model when the variance is taken as exogenous.11 Intuitively,

e¤ort and risk are complements in the agent�s problem, so both choices tend to increase the stronger

are the incentives the agent faces. On the other hand, the principal o¤ers steeper incentives to

agents that are easier to incentivize.

5 The Case of Combined Adverse Selection and Moral Haz-

ard

We now analyze the full problem, where the agent has private information about his preference

parameters. In this case we obtain a rich set of comparative statics predictions also for the case

where the feasibility constraint on the volatility is never binding. For convenience, we focus on

this case.

Building on the analysis of the pure moral hazard case, we know that the agent�s certainty

equivalent level of wealth depends on the underlying parameters only through the statistic �:

Therefore, it is clear that there must necessarily be bunching of types t with the same level of �:

From, (11) the agent�s certainty equivalent level of wealth for any given announced type �̂ is

�
�
�̂
�
+ (�� �) ��

�
�̂
��
:

Note that the cross derivative of this expression with respect to � and � is positive, so the single

crossing condition holds.12 Moreover, the agent�s indirect utility is the higher the higher is �:

A crucial di¤erence between the present problem and the pure moral hazard problem is that the

level of the agent�s outside option matters quite a bit; the solution for the case where the agent�s

outside option, !; satis�es ! > 0 is qualitatively di¤erent from the case where ! = 0; because the

principal �nds it optimal to exclude some types. Since types with higher � derive higher utility

from participating, the principal excludes types with a low level of �:

11The standard trade-o¤ between risk and incentives arises in the parameter set that gives rise to a corner solution,

TC ; when the upper bound on volatility, �; increases.
12See Araujo et al. (2007) for an analysis of the case where the single crossing condition fails to hold. See Biais et

al. (2000) for a multidimensional model allowing for a similar reduction of the dimension of the incentive problem.
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Building on these insights, we can write the principal�s problem formally as follows:

max
�(�);�(�);�m

�Z
�m

n
�� (�) + (1� � (�)) ��� (�)��1

o
dF (�)

s:t

� (�) + (�� �) �� (�)� � �
�
�̂
�
+ (�� �) ��

�
�̂
��

for all �; �̂ � �m

� (�) + (�� �) �� (�)� � ! for all � � �m

max
�̂
�
�
�̂
�
+ (�� �) ��

�
�̂
��
� ! for all � < �m:

where F (�) is the cdf of the distribution of � and �m is the marginal type � that is included; all

types � < �m are excluded.

The �rst step to solve this problem is to bring the incentive and participation constraint into a

more tractable form. We call a pair of schedules implementable if they satisfy these two conditions.

Lemma 1 A pair of schedules � (�) and � (�) is implementable if and only if

� (�) =

�Z
�m

(�� �)� (z)� dz � (�� �) �� (�)� for all � � �m (14)

and � (�) is nondecreasing in �: Exclusion of types � < �m is incentive compatible if � (�) = � (�) =

0 for � < �m:

The proof of the lemma is standard and therefore only sketched in the appendix. Only

monotonic schedules � (�) can satisfy the incentive constraint. As monotonic schedules are dif-

ferentiable almost everywhere, the agent�s indirect utility function is di¤erentiable almost every-

where. By the envelope theorem, the agent�s utility changes with his preference statistic � at rate

(�� �)� (�)� � 0: Imposing the participation constraint for the marginal type �m and integrating

the changes in utility, we get (14) : Finally, one shows that when contracts satisfy monotonicity of

the schedule � (�) and (14) ; then there is no pro�table deviation for the agent. In particular, this

argument implies also that deviations for a type � < �m to any type �̂ � �m would yield a level of

utility that is strictly smaller than what the agent can get elsewhere, !:

Recall that � = � (t) = a
��

2(1��)�� � c
�2�

2(1��)�� is a statistic of the underlying parameters. Since

� (t) is a function of random variables, we need to derive its distribution from the underlying

distributions. The following lemma gathers the important features. For convenience, de�ne r �

a
��

2(1��)�� and s � c
�2�

2(1��)�� ; respectively.
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Lemma 2 The distribution of � is supported on a set
�
�; �
�
; where � � rs and � � rs:Moreover, let

F (�) denote the cdf of � and f (�) denote the pdf. The density satis�es f (�) = 0 and f (�) > 0 for

� > �: Moreover, provided that g (sj r) ; the conditional density of s given r satis�es @
@s (sg (sj r)) �

0; the distribution of � satis�es @
@�

1�F (�)
�f(�) � 0 for � > �:

Note that the density of � goes to zero as � approaches the lower end of the type support.

This is a well known property of this sort of problem and the driving force behind the exclusion

result that we establish below, replicating Armstrong�s (1996) observation for multidimensional

screening problems more generally. As we discuss below in greater detail, the extent of exclusion

in this particular contexts is simply a question of the level of the agent�s outside option.

5.1 Optimal Contracts

It proves convenient to solve the principal�s problem in two steps. In the �rst step, we take the

choice of �m as given and solve for optimal contracts for given �m: In the second step, we address

the exclusion problem. Types that are induced to opt out are o¤ered a contract � (�) = � (�) = 0:

Substituting for � (�) from (14) into the principal�s objective function and integrating by parts, we

have

V (�m) = max
�(�)

�Z
�m

n�
��� (�)

��1 � ��� (�)�
�
f (�)� (�� �)� (�)� (1� F (�))

o
d� � ! (1� F (�m))

s:t: � (�) nondecreasing in �:

The single crossing condition ensures that the participation constraint only binds at the low end of

the support, in particular at �m: For a given choice of �m; the principal faces the standard e¢ ciency

versus rent extraction trade-o¤. On the one hand, the principal wishes to raise � for each type so

as to improve upon incentives for e¤ort. On the other hand, the higher is �; the higher are the

rents the principal needs to give up to agents with a relatively high value of �: The optimal schedule

� (�) strikes a balance between these two motives. Under an appropriate regularity condition, the

solution can be found by point-wise maximization under the integral. We state these results in the

following proposition:

Proposition 3 Suppose that, for � > �; 1�F (�)�f(�) is non-increasing in �: Then, the optimal share

schedule for � � �m is given by

� (�) =

��1
� �

�+ (�� �) 1�F (�)�f(�)

:
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The optimal associated schedule � (�) is given by (14) : In the limit as �m ! �; we have lim�m!� � (�m) =

0:

We omit a formal proof; the result follows straightforwardly from pointwise maximization.

Moreover, it is easy to verify that the regularity condition implies that the solution is monotonic

in �; so that we can indeed use pointwise maximization techniques.

The solution has the classical features. There is no distortion due to adverse selection for the

agent with the highest parameter �; that is, �
�
�
�
= ��1

�
�
� ; corresponding exactly to the solution

under pure moral hazard. For all � < �; the share schedule is distorted downwards so as to extract

rents from the agents with high parameters �: There is no rent at the bottom. Moreover, since

the density of types � goes to zero at the low bound of the support, if such agents are o¤ered a

contract, then the shares they are o¤ered become very small and go to zero as �m ! �: The reason

is well understood from Armstrong (1996) and Rochet and Choné (1998). The density measures

the weight given to the (constrained) e¢ ciency motive in the principal�s objective; on the other

hand, 1 � F (�) measures the weight given to the rent-extraction motive. Hence, at the low end

of the support, the rent extraction motive becomes in�nitely more important than the e¢ ciency

motive.

Consider now the optimal choice of types to include or to exclude, respectively. Using the

�rst-order condition for the optimal � (�) ; the derivative of the principal�s payo¤ with respect to

�m is

V 0 (�m) =

�
! � � (�m)

�

�
f (�m) ;

where, with a slight abuse of notation, � (�) is short for the induced mean according to (10) : The

following results are now obvious:

Proposition 4 It is optimal to exclude a set of types with positive measure if and only if ! > 0:

The marginal type ��m is uniquely de�ned by the condition

!� = � (��m) ;

where ��m is the higher the higher is !: Moreover, the higher is !; the higher is the lowest incentive

share that is o¤ered, �� (��m) ; and the higher is E [�� (�)j � � ��m] ; the �average�observed incentive

power of agents that are hired.

Since �� (�) goes to zero as � approaches the low end of the support, the expected pro�t

generated by an agent of given type � goes to zero. Moreover, higher � types generate higher
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expected pro�ts. Consequently, there is a uniquely de�ned marginal type ��m who generates exactly

zero net surplus to the principal. Since only monotonic incentive schemes are incentive compatible,

the positive implications of exclusion are as follows. The larger is the set of excluded agents, that

is the higher is �m; the higher is the minimum level of � that is observed in the cross section;

in particular, the minimum exposure to risk is bounded away from zero so as to exclude some

agents.13

5.2 Covariance of Contracts and Moments

We now turn to the comparative statics properties of the optimal contracting arrangement.

Proposition 5 i) With combined moral hazard and adverse selection, the covariance of ~�� and

~�� is strictly positive whenever �� (�) is increasing in � on a set of positive measure.

ii) The covariance of ~�� and ~�� and of ~�� and ~��; respectively, is in general ambiguous. The

covariance of ~�� and ~�� and of ~�� and ~��; respectively, is strictly positive if t is associated and

the distribution of � satis�es � @
@�

1�F (�)
f(�) � �+2�

2(1��)�� for � � ~�:

Part i) of the proposition is due to the fact that ~�� and ~�� are nondecreasing functions in

�. Given � is unidimensional one can rewrite ~�� as a nondecreasing function of ~��. Since a

scalar random variable is always associated, the result follows directly if the optimal � is strictly

monotonic on a set of positive measure. Part ii) states that, in general, the model loses its predictive

power when it comes to the covariance of ~�� and ~��. However, one can give simple su¢ cient

conditions for a positive correlation between risk and incentives. The one given in the proposition

ensures that the optimal pro�t share �� (�) does not change too fast as � changes, ensuring that the

agent�s optimal choice of � becomes monotonic in the agent�s underlying preference parameters.

Since the de�ning property of associated random variables is precisely that the covariance of any

monotonic functions of these random variables is positive, the conclusion follows immediately.

6 Attenuation

In our model, the moments of the pro�t distribution and the optimal contracts are endogenously

determined as functions of the agent�s preference parameters t = (a; c) ; that is, his degree of

absolute risk aversion, a; and his marginal cost of e¤ort, c. While we do not test our model directly,

13This should not be taken as a justi�cation for high levels of manager compensation. The level is determined to

a large extent by !; which is exogenous in the present model.
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we now discuss how to bring it to the data and the consequences of neglecting the endogeneity of

the variance.

If we are merely interested in contracts and risk, then a reduced form of our model is a system

of equations for � and � (both normalized around their means) of the sort

� = 1a+ 2c+ "1 (15)

and

� = �1a+ �2c+ "2; (16)

where "1 and "2 are independent of each other and in particular independent of a and c:

What if the endogeneity of � is neglected and instead � is treated as a regressor for �? If there

is some �1 such that
�1
1
= �2

2
= �1; then we can �nd another linear relation between � and � of

the form

� = �1� + "3: (17)

However, by implication of (15) and (16) ; "3 is related to "1 and "2 according to

"3 = "2 � �1"1: (18)

Using E ["3] = 0 and conditions (15) and (18) ; we �nd that

Cov (�; "3) = E ["3 (� � E�)] = E [("2 � �1"1) ("1)] = ��1V ar ("1) ;

so that Cov (�; "3) < (>) 0 i¤ �1 > (<) 0: Therefore, speci�cation (17) fails to satisfy the assump-

tions of the linear regression model. As a consequence, the estimated value of �1 is biased towards

zero, an e¤ect that is known as attenuation (see e.g., Greene (1993); neglecting, the endogeneity

of � biases the estimate of �1 towards zero. (The estimate is also inconsistent.)

The e¤ects are slightly di¤erent but not more reassuring if � is treated as a regressor alongside

with controls a and c: Suppose we specify a linear model of the form

� = �1� + �2a+ �3c+ "4 (19)

in a situation where the true model is the system of equations (15) and (16) : In fact, a form like

(19) is obtained if we start from (16) and add �1 times the di¤erence between the left and right

side of (15) : We obtain the following relation

� = �1� + (�1 � �11) a+ (�2 � �22) c+ "2 � �1"1;
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which is indeed of the same form as (19) with "4 = "2 � �1"1. Exactly the same attenuation

problem as above arises if �1 = �11 and �2 = �22: If �1 6= �11 or �2 6= �22; then the direction

of the bias is no longer clear, but the estimate of �1 remains biased.

Summing up, neglecting the endogeneity of risk in simple regressions of contracts on measures

of risk biases the estimates towards zero, irrespective of whether the estimated relation between

the slope of incentive contracts and risk is positive or negative. In more sophisticated regressions

that include risk as a regressor alongside with controls that e¤ectively determine both the left- and

the right-hand side of the regression equation, the direction of the bias is less clear; however, the

estimation clearly remains biased also in these cases.

Whether, risk is exogenous or endogenous clearly depends on the context, so we cannot settle

the question in a theoretical model. However, we simply point out, that attenuation makes it more

likely to reject the hypothesis that incentives (�) depend positively (or negatively) on risk (�).

7 Conclusions

In this paper, we analyze a model of managerial compensation with endogenous risk. Contracts

serve a double purpose as providers of e¤ort incentives and to guide the manager�s project choices

along an e¢ cient frontier. The model o¤ers a rich set of insights that have not been explored in

such detail before. The resulting connection between risk and incentives depends on the underlying

incentive problem. With pure moral hazard, a positive relation arises very naturally under general

assumptions. With combined moral hazard and adverse selection, it is easy to �nd examples where

the correlation between risk and incentives remains positive, but one can also construct cases where

the covariance between risk and incentives is negative. However, we do not so much argue for a

particular sign of this relation. The main point of the exercise is more that risk may be endogenous

and to explore the implications of this variation. Empirically, endogeneity of risk gives rise to an

attenuation problem resulting in estimates that are biased towards zero. We believe this may

explain why a good part of the empirical studies on the subject produce relatively small (often

statistically not signi�cant) relations between risk and incentives. We leave taking our model to

the data directly to future work.

We have analyzed a particular incentive problem in this paper where risk averse agents interact

with risk neutral principals. As a consequence, our model cannot address excessive risk taking

behavior. An incentive problem of this sort would arise, e.g., if both managers and principals
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are risk neutral and the manager gets some form of convex pay-scheme (e.g. through the use

of options); similarly, excessive risk taking arises if managers and principals are risk neutral and

�rms su¤er costs of �nancial distress - making the principal�s payo¤ e¤ectively concave in pro�ts.

Interestingly, even though the incentive problem di¤ers substantially, the models may share the

same comparative statics predictions that risk and incentives are positively related.

8 Appendix

To ease notation, we introduce the following variables, that are functions of the underlying para-

meters.

De�nition 1

� � 2 (1� �)
2 (1� �)� � ;� � �

2�
2(1��)�� �

�
2(1��)�� ;

� �
�
1

2
+
�

�

��
�1����

� 2
2(1��)��

; � �
�
�1����

� 1
2(1��)��

:

Moreover,

� � r � s;

where

r � a
��

2(1��)�� and s � c
�2�

2(1��)�� :

Proof of Proposition 1. We �rst establish part ii, then parts i), iii) and iv).

ii) It is straightforward to compute the interior solution from the �rst-order conditions. For a

given share �; the agent�s e¤ort and volatility choice are given by

� (�; t) = �r
1��
� s

1
2�

2��1
2(1��)�� (20)

and

e (�; t) =
�

�
r
2(1��)��

�� s
2(1��)��

2� �2� (�; t)
2
: (21)

As shown in the main text, the optimal share �� is given by �� = � � ��1
�

�
� :

� (�; t) de�ned by (20) is decreasing in a and c: The implied mean is

� (e (�; t) ; � (�; t)) =

�
�

�

��
�2�+��

2���
2(1��)�� rs;

a decreasing function of a and c:
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i) The function � (a) is de�ned by the condition � (�; t) = �; that is

�r
1��
� s

1
2

�
2�� �
2 (1� �)

�

�

� 2��1
2(1��)��

= �: (22)

Solving for c; we obtain

c = �(a) � �
2(1��)��

�

�
2�� �
2 (1� �)

�

�

� 2��1
�

a
��1
� ��

2(1��)��
� :

iii) For values of a and c such that c < � (a) ; it is not optimal to implement � (�; t) de�ned by

(3) : Instead, the relevant implementation constraint becomes (4) : Two possibilities arise. Firstly,

(4) holds as an equality - which is the case for values of t close to the locus de�ned by c = �(a) :

Since e¤ort is always interior, we can compute �� (t) from (4) as an equality:�
�

�
r
2(1��)��

�� s
2(1��)��

2� � (t)
2
�2
��
����1 � a� (t)� = 0;

which yields

�� (t) =
�
���1��a��1c�����2(1��)

� 1
1�2�

; (23)

a decreasing function of a and c: Clearly also, when substituting for c = �(a) into (23) ; we obtain

�� (t) = �: Thus, the solution is continuous at the boundary c = �(a) separating the parameter

values that give rise to interior and corner solutions, respectively: The implied mean is

� (e (�� (t) ; t) ; �) = �
�

1�2� �
�

1�2��
��2�
1�2� a�

�
1�2� c�

�
1�2� ;

a decreasing function of a and c:

Secondly, it can be the case that (4) is satis�ed automatically - i.e. holds as a strict inequality.

Solving the �rst-order condition for e¤ort for the optimal level of e¤ort for any given contract �;

we obtain

e (�; t) = �
1

1�� c
�1
1���

�
1���

1
1�� :

This implies that the equilibrium mean of the return distribution is

�� = � (e (�; t) ; �) = �
�

1�� c
�1
1���

�
1���

�
1�� :

Hence, the principal�s problem becomes

max
�

n
�

�
1�� c

��
1���

�
1���

�
1�� � a

2
�2�2 � �

1
1�� c

��
1���

�
1���

1
1��

o
(24)

The solution satis�es the �rst-order condition

�
1

1��
1

1� �c
��
1���

�
1���� (t)

2��1
1�� � a�2�� (t)� �

1
1��

1

1� �c
��
1���

�
1���� (t)

�
1�� = 0: (25)
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By the second-order condition and the fact that the left-hand side of (25) is decreasing in a and c;

we note that the optimal �� (t) is decreasing in a and c: Moreover, �� = � over this range. Note

again that �(e (�� (t) ; t) ; �) is decreasing in a and c.

Finally, suppose that (4) holds as an equality at t̂ and as a strict inequality at ~t and choose t̂

and ~t arbitrarily close to each other: Then it must be the case that ��
�
~t
�
� ��

�
t̂
�
: To see this,

suppose we had ��
�
~t
�
< ��

�
t̂
�
: However, then the agent would have a strictly higher incentive to

choose marginal incentive to increase � at t̂; contradicting that (4) holds as an equality at t̂ and

as a strict inequality at ~t:

iv) This follows from the continuity of the solution at the boundary separating the two sets

TC and TI in conjunction with the comparative statics properties of the optimal share �� (t) for

t 2 TC :

Proof of Proposition 2. Let P (TC) � Pr (t 2 TC) and let P (TI) � Pr (t 2 TI) :

COV (~��; ~��) = E [~��~��]� E [~��]E [~��] :

We can rewrite this as

COV (~��; ~��) = E [ ~��~��jTC ]P (TC) + E [ ~��~��jTI ]P (TI)

� (E [ ~��jTC ]P (TC) + E [ ~��jTI ]P (TI)) (E [ ~��jTC ]P (TC) + E [ ~��jTI ]P (TI)) :

Simplifying, we obtain

COV (~��; ~��) = �E [ ~��jTC ]P (TC) + �E [ ~��jTI ]P (TI)

� (E [ ~��jTC ]P (TC) + �P (TI)) (�P (TC) + E [ ~��jTI ]P (TI)) :

Multiplying out and rearranging yields

COV (~��; ~��) = �E [ ~��jTC ]P (TC)(1� P (TC)) + �E [ ~��jTI ]P (TI)(1� P (TI))

���P (TI)P (TC)� E [ ~��jTI ]E [ ~��jTC ]P (TI)P (TC):

Using the fact that P (TI) = 1� P (TC) we can rewrite this into

COV (~��; ~��) = (� � E [ ~��jTI ])P (TI) (E [ ~��jTC ]� �)P (TC) > 0;

where the conclusion follows from the facts that � > E [ ~��jTI ]) and E [ ~��jTC ] > �:

Part ii) is a trivial consequence of the fact that the functions �� (t) ; �� (t), and �� (t) are

comonotone.
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Part iii): Since ~�� is strictly decreasing in each variable a and c, �xing one of these variables,

one can write ~�� as a (weakly increasing) function of ~��. The function ~��(~��) is nondecreasing in

~��, because both ~��(a; c) and ~��(a; c) are decreasing functions of a and c. We have

COV (~��(~��); ~��) = E [(~�� � E [~��])(~��(~��)� E [~��(~��)])] :

Expanding terms, we have

COV (~��(~��); ~��) = E [(~�� � E [~��]) (~�� (~��)� ~�� (E [~��]))]

+E [(~�� � E [~��]) (~�� (E [~��])� E [~��(~��)])] :

The term on the second line is zero because ~�� (E [~��])�E [~��(~��)] is non-stochastic and E [~�� � E [~��]] =

0: Hence, we have

COV (~��(~��); ~��) = E [(~�� � E [~��]) (~�� (~��)� ~�� (E [~��]))] > 0:

The conclusion follows from the fact that ~�� (~��) is non-decreasing, so ~�� (~��)� ~�� (E [~��]) R 0 if

~�� � E [~��] R 0: Since the function ~��(~��) is strictly increasing on a set of positive measure, the

strict inequality holds.

The proof for the covariance of ~�� and ~�� is identical. In particular, because ��(a; c) and

��(a; c) are comonotone, we can write ~�� as a monotonic function of ~��; ~�� (~��) : The remainder

of the argument is then exactly as stated above.

Proof of Lemma 1. A simple, and incentive compatible way to exclude types � < �m is to

o¤er the null contract � (�) = � (�) = 0 for all types � < �m: Assume thus that the principal o¤ers

such a scheme.

Consider now incentive compatibility. A type � should not have an incentive to mimic any type

�̂; so

� (�) + (�� �) �� (�)� � �
�
�̂
�
+ (�� �) ��

�
�̂
��
:

Likewise, a type �̂ should not have an incentive to mimic any type �; so

�
�
�̂
�
+ (�� �) �̂�

�
�̂
��
� � (�) + (�� �) �̂� (�)� :

Adding the two constraints, and rearranging, we get

(�� �)
�
� � �̂

��
� (�)

� � �
�
�̂
���

� 0:

Hence � (�) must be nondecreasing in �:
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Let ! (�) � max�̂

n
�
�
�̂
�
+ (�� �) ��

�
�̂
��o

: Given truthtelling at the optimum, it follows

that !� (�) = (�� �)� (�)� almost everywhere: Imposing the participation constraint at �m; we

get

! (�) =

�Z
�

(�� �)� (z)� dz =
�Z

�m

(�� �)� (z)� dz;

where the second equality follows from the fact that � (�) = 0 for all � < �m: Since

! (�) = � (�) + (�� �) �� (�)� ;

we have

� (�) =

�Z
�m

(�� �)� (z)� dz � (�� �) �� (�)� for all � � �m:

The proof that these conditions are su¢ cient is standard and thus omitted.

For completeness, observe that no type � < �m has any incentive to mimic any type �̂ � �m by

the standard reasoning. In particular, the utility such a type can get this way is

�
�
�̂
�
+ (�� �)

�
� � �̂

�
�
�
�̂
��
+ (�� �) �̂�

�
�̂
��

= !
�
�̂
�
+ (�� �)

�
� � �̂

�
�
�
�̂
��

However, since !� (�) = (�� �)� (�)� and ! (�m) = !; we have

!
�
�̂
�
+ (�� �)

�
� � �̂

�
�
�
�̂
��

= ! +

�̂Z
�m

(�� �)� (z)� dz + (�� �)
�
� � �̂

�
�
�
�̂
��

= ! +

�̂Z
�m

(�� �)
�
� (z)

� � �
�
�̂
���

dz + (�� �) (� � �m)�
�
�̂
��
< !

where the inequality follows from the monotonicity of � (�) and the fact that � < �m:

Proof of Lemma 2. We demonstrate the following three facts:

i) for � 2
�
�; �
�
;

F (�) =

minfr; �sgZ
r

G

�
�

r

���� r� q (r) dr;
and

f (�) =

minfr; �sgZ
r

1

r
g

�
�

r

���� r� q (r) dr;
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where G (sj r) (g (sj r)) is the cdf (pdf) of the conditional distribution of s given r and q (r) is the

density of the marginal distribution of r;

ii) the distribution satis�es f (�) = 0 and f (�) > 0 for � > �;

iii) the distribution satis�es, for � > �;

@

@�

1� F (�)
�f (�)

� 0

if g (sj r) satis�es
gs (sj r)
g( sjr)
s

� �1:

i) Consider the random variable

~� = rs:

With a slight abuse of notation, let � denote the level that the rv ~� takes. Let h (r; s) denote the

joint density of r and s: Hence, for rs � � � rs;

Pr
h
~� � �

i
= Pr [rs � �] =

�
sZ
r

�
rZ
s

h (r; s) dsdr; (26)

while for rs � � � rs;

Pr
h
~� � �

i
= Pr [rs � �] =

rZ
r

�
rZ
s

h (r; s) dsdr:

We treat these two cases in sequence now beginning with the former.

We can rewrite (26), for �
s < r,

�
sZ
r

�
rZ
s

h (r; s) dsdr =

�
sZ
r

�
rZ
s

g (sj r) dsq (r) dr =

�
sZ
r

G

�
�

r

���� r� q (r) dr: (27)

The derivative of this expression with respect to � is

@

@�

264
�
sZ
r

G

�
�

r

���� r� q (r) dr
375 =

�
sZ
r

1

r
g

�
�

r

���� r� q (r) dr +G
 
�
�
s

����� r = �

s

!
q

�
�

s

�
:

Since G
�

�
�
s

���� r = �
s

�
= 0, this simpli�es to

@

@�

264
�
sZ
r

G

�
�

r

���� r� q (r) dr
375 =

�
sZ
r

1

r
g

�
�

r

���� r� q (r) dr: (28)

For �
s > r; we can write

Pr
h
~� � �

i
=

rZ
r

�
rZ
s

h (r; s) dsdr =

rZ
r

�
rZ
s

g (sj r) dsq (r) dr =
rZ
r

G

�
�

r

���� r� q (r) dr: (29)
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The derivative of this expression with respect to � is

rZ
r

1

r
g

�
�

r

���� r� q (r) dr (30)

It follows that we can write the density for all � as

f (�) =

minfr; �sgZ
r

1

r
g

�
�

r

���� r� q (r) dr;
and the cdf for all � as

F (�) =

minfr; �sgZ
r

G

�
�

r

���� r� q (r) dr:
ii) Evaluating the density at

� = rs;

we obtain
rZ
r

1

r
g
� rs
r

��� r� q (r) dr = 0:
That is, the density goes to zero at the low end. It is easy to see that the density is strictly positive

for � > �:

iii)

1� F (�)
�f (�)

=

1�

minfr; �sgZ
r

G
�
�
r

�� r� q (r) dr
minfr; �sgZ

r

�
r g
�
�
r

�� r� q (r) dr
:

Di¤erentiating for � > rs; we �nd that @
@�

1�F (�)
�f(�) is proportional to

��

0@ rZ
r

1

r
g

�
�

r

���� r� q (r) dr
1A2

�

0@ rZ
r

�
g

�
�

r

���� r�+ �r gs
�
�

r

���� r�� q (r)r dr

1A0@1� rZ
r

G

�
�

r

���� r� q (r) dr
1A :

The expression is negative if g (sj r)+sgs (sj r) � 0; which is satis�ed if the elasticity of the density

is larger than minus unity,
gs (sj r)
g( sjr)
s

� �1:
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Di¤erentiating for � < rs; we �nd that @
@�

1�F (�)
�f(�) is proportional to

�

0B@
�
sZ
r

1

r
g

�
�

r

���� r� q (r) dr +G�sj �s
�
q

�
�

s

�
1

s

1CA
�
sZ
r

�

r
g

�
�

r

���� r� q (r) dr

�

0B@
�
sZ
r

1

r
g

�
�

r

���� r� q (r) dr +
�
sZ
r

�

r2
gs

�
�

r

���� r� q (r) dr + sg�sj �s
�
q

�
�

s

�
1

s

1CA
0B@1�

�
sZ
r

G

�
�

r

���� r� q (r) dr
1CA :

Since G
�
sj �s
�
= 0; the same condition on the conditional density of r implies the result.

Proof of Proposition 4. Using Leibniz�rule for di¤erentiation of integrals, we �nd

V 0 (�m) = �
n�
�m�� (�m)

��1 � ��m� (�m)�
�
f (�m)� (�� �)� (�m)� (1� F (�m))

o
+!f (�m) :

Recall the �rst-order condition for the optimal � :�
(� � 1) ��� (�)��2 � ���� (�)��1

�
f (�)� (�� �) �� (�)��1 (1� F (�)) = 0:

Multiplying by � (�) and rearranging, we �nd that�
��� (�)

��1 � ��� (�)�
�
f (�)� (�� �)� (�)� (1� F (�)) = ��

�
� (�)

��1
f (�) :

Noting that � (�) = ��� (�)��1 ; the result follows.

Proof of proposition 5. Part i): Note that �� (�) and �� (�) = ��� (�)��1 are nondecreasing

functions of �. Applying the same argument as in the proof of proposition 2 the result follows

immediately.

Part ii): Since �� (�) is nondecreasing in �, the proof of proposition 2 can be extended to the

present case if �� is nondecreasing in its arguments r and s and if these random variables are

associated.14

We now give conditions for the monotonicity properties of � (�; t)�. Recall that r � a
��

2(1��)��

and s � c
�2�

2(1��)�� and that

� (�; t)
�
= �a

��1
2(1��)�� c

��
2(1��)��� (�)

2��1
2(1��)��

= �r
1��
� s

1
2� (rs)

2��1
2(1��)�� :

We have
@� (�; t)

�

@r
=
1� �
�

� (�; t)
�

r
+

2�� 1
2 (1� �)� �

� (�; t)
�

�

@� (�)

@�
s;

14 In principle, one could apply the same logic to the case where � is decreasing in its arguments to conclude

that the covariance between ~�� and �~�� becomes positive (and hence the covariance between ~�� and ~�� negative);

however, we have not been able to �nd a meaningful su¢ cient condition on the distribution that ensure this.
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so @�(�;t)�

@r � 0(� 0) if and only if

� (�) � (�) � (1� 2�)
(1� �) (2 (1� �)� �)

@� (�)

@�
�:

Similarly, we have

@� (�; t)
�

@s
=
1

2

� (�; t)
�

s
+

2�� 1
2 (1� �)� �

� (�; t)
�

� (�)

@� (�)

@�
r;

so @�(�;t)�

@s � 0(� 0) if and only if

� (�) � (�) 2 (1� 2�)
2 (1� �)� �

@� (�)

@�
�:

Noting that 2 � �
1�� by assumption, � (�; t) is increasing in both arguments i¤

� (�) � 2 (1� 2�)
2 (1� �)� �

@� (�)

@�
�:

Likewise, � (�; t) is decreasing in both arguments i¤

� (�) � � (1� 2�)
(1� �) (2 (1� �)� �)

@� (�)

@�
�:

Di¤erentiating the optimal � with respect to �; we obtain

�� (�) = �� � 1
�

�

�
� + (�� �) 1� F (�)

�f (�)

��2
(�� �) @

@�

1� F (�)
�f (�)

= �� (�)
@
@�

1�F (�)
�f(�)

�
��� +

1�F (�)
�f(�)

= �� (�)
@
@�

1�F (�)
�f(�)

�+2�
2(1��)�� +

1�F (�)
�f(�)

Therefore, � is increasing in both arguments i¤

� (�) � �� (�) 2 (1� 2�)
2 (1� �)� �

@
@�

1�F (�)
�f(�)

�+2�
2(1��)�� +

1�F (�)
�f(�)

�

Since � � 2� implies that 2(1�2�)
2(1��)�� � 1; a su¢ cient condition is

� @

@�

1� F (�)
�f (�)

� � � + 2�

2 (1� �)� � +
1� F (�)
�f (�)

which is equivalent to

� @

@�

1� F (�)
f (�)

� � + 2�

2 (1� �)� � ;

the condition given in the proposition.
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