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Abstract

We explore how pricing dynamics in the European airline industry vary with the

competitive environment. Our results highlight substantial variations in pricing dynamics

that are consistent with a theory of intertemporal price discrimination. First, the rate

at which prices increase towards the scheduled travel date is decreasing in competition,

supporting the idea that competition restrains the ability of airlines to price-discriminate.

Second, the sensitivity to competition is substantially increasing in the heterogeneity of the

customer base, reflecting further that restraints on price discrimination are only relevant if

there is initial scope for price discrimination. These patterns are quantitatively important,

explaining about 83 percent of the total within-flight price dispersion, and explaining 17

percent of the observed cross-market variation of pricing dynamics.
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1 Introduction

The tendency for airline ticket prices to rise as the scheduled departure date approaches

is one of the most well-known regularities of dynamic oligopoly pricing. This tendency

is often regarded as a prime example of intertemporal price discrimination, reflecting

that customers in the airline industry are likely to have different demand elasticities

correlating with their ability or willingness to book in advance.1 While there is now a

small literature with a focus on intertemporal price discrimination when firms have

monopoly power (e.g., Lazarev, 2013; Williams, 2013), our understanding on the scope

and working of intertemporal price discrimination in oligopoly markets is still limited.

However, many important markets are oligopolistic and it is far from obvious how

insights into intertemporal price discrimination from monopoly markets extend to

oligopolies.

In this paper, we take a step towards filling this gap using new data on the time

path of prices from the European airline industry. In particular, we empirically explore

how pricing dynamics vary with the competitive environment and to what extend the

identified variations are consistent with intertemporal price discrimination.

From an empirical perspective, the analysis of pricing dynamics has proved difficult

mainly due to a lack of public data. In the airline industry, price data has been

available at a (quarterly) level that does not allow to differentiate intertemporal

price variations for a given flight from variations across different travel dates and

from variations across different flights on a given route. This has led the empirical

price discrimination literature to focus on the impact of competition on broader

dispersion measures that do not differentiate among different dimensions of dispersion

(e.g, Borenstein and Rose, 1994; Hayes and Ross, 1998; Gerardi and Shapiro, 2009).

We address this issue using manually collected price data from the internet.2 In

particular, we construct a panel including about 1.4 million prices for airline tickets

on the intra-European market where for each route-date pair (which we refer to as a

“market”) we record a time series of prices ranging from 10 weeks to 1 day prior to

1The usual example are business travelers who learn about travel requirements on short notice
and have a high willingness to pay in contrast to leisure travelers with longer planning horizons.

2Recent studies using similar approaches to collect airline price data include Lazarev (2013) and
Williams (2013) who also explore pricing dynamics, but focus on monopoly markets. In contrast,
McAfee and Te Velde (2007), Gaggero and Piga (2011), Escobari (2012), and Escobari, Rupp and
Meskey (2013) have access to competitive price data, but are interested in the determinants of price
levels and dispersion rather than pricing dynamics and their determinants.
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departure. Using this time series dimension permits us to shift the focus on pricing

dynamics and their determinants.

We begin our analysis by estimating the intertemporal slope of prices and its sensi-

tivity to competition. Overall, we find that prices in our sample increase substantially

over time, but at a rate that is highly sensitive to competition. While monopoly

prices increase by an average of 1.31 percent with every day that a customer waits

to book, this slope is reduced to 1.19 percent in duopolies and continues to decrease

monotonically to a slope of only 0.68 percent in markets with six competing airlines.

A nonparametric treatment of pricing dynamics further reveals that these differences

are mainly driven by the last 5 weeks before departure, where prices differentially

steepen, implying a cumulative increase of 95 percent in monopolies compared to

about 50 percent in markets with six competitors.

At a first sight, these pricing dynamics are consistent with a theory of competitive

price discrimination, reflecting the idea that competition restrains the ability of airlines

to price-discriminate between customers with long planning horizons and customers

who book at short notice. In an effort to make this argument more rigorous, we use

hotel bookings data to construct measures for the tourist intensity in a given market

and to identify variations in customer heterogeneity. If price discrimination is a major

aspect of dynamic oligopoly pricing, then the degree to which an airline’s ability

to price-discriminate becomes restrained as competition intensifies should depend

on how much it would discriminate if it were unconstrained. Accordingly, if price

discrimination plays an important role, competition should have a stronger impact on

the intertemporal slope in markets with considerable customer heterogeneity.

Consistent with these considerations, we find that the sensitivity of the pricing

dynamics to competition varies substantially with the identified heterogeneity. In

markets characterized by a highly heterogeneous customer base, competition flattens

the intertemporal slope from a daily rate of 1.42 percent in monopolies to 0.77 percent

in markets with 6 competitors. In contrast, we find that in markets characterized by

little customer heterogeneity, competition has virtually no impact on the intertemporal

slope.

Comparing our results to the empirical price discrimination literature, the negative

relation between competition and the intertemporal slope appears to be in line with

the finding of Gerardi and Shapiro (2009) that competition decreases dispersion

(measured by the Gini coefficient on a given route across flights and travel dates), but
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disagree with Borenstein and Rose (1994) who find the opposite. Using the ability

to distinguish between the different dimensions of dispersion in our data, we show

that the negative relation between competition and price dispersion is strongest when

dispersion is defined as intertemporal within-flight dispersion, i.e. the dispersion in

prices paid for the same physical flight. When dispersion is, in contrast, defined by

pooling either across travel dates or across flights (on the same route), the relation

becomes diluted (in the former case) or overturned (in the latter case). Hence, while

we find competition to have an unambiguous negative impact on intertemporal price

dispersion, the relation between competition and cross-flight dispersion in our data is

less clear and may explain seemingly contradicting findings in the earlier literature.

In the context of the empirical price discrimination literature, it is natural to ask:

how much of the intertemporal price dispersion observed in our data is due to the

pricing dynamics described above, and how much is due to unsystematic volatility

within flights? We find that for the average flight the identified pricing dynamics

account for 83 percent of the overall within-flight dispersion. That is, while there is a

random component in prices that is consistent with stochastic demand fluctuations, a

large share of the pricing dynamics that we observe follows a pre-determined path.

Looking, by comparison, at the differences in pricing dynamics across markets,

about 17 percent of the observed variation can be explained by our measures of

customer heterogeneity. On the one hand, this underscores again the significant

impact of customer heterogeneity on pricing dynamics. At the same time this leaves,

however, also a substantial amount of unexplained variation in pricing dynamics. This

suggests that, while the impact of stochastic demand fluctuations on prices is small

compared to the systematic trend of prices to increase, idiosyncratic fluctuations are

likely to play a distinct role in resolving the existing variations in this trend across

markets.3

The paper relates most closely to two areas of the literature: the empirical price

dispersion literature and the literature on dynamic pricing schemes in oligopoly

markets. In the context of the price dispersion literature (Borenstein and Rose, 1994;

Hayes and Ross, 1998; Stavins, 2001; Gerardi and Shapiro, 2009), it is closely related

to the works of Gaggero and Piga (2011) and Puller, Sengupta and Wiggins (2012),

isolating specific dimensions of price dispersion to provide an explicit mapping to

3See also, Alderighi, Nicolini and Piga (2012) and Williams (2013) for empirical evidence that
airlines dynamically adjust prices in response to demand fluctuations.
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certain theoretical channels.4 Our paper provides a unifying perspective to these

works by disentangling various dimensions of price dispersion and by linking them to

a more structured identification of pricing dynamics.

Our investigation of pricing dynamics also complements a growing literature that

examines dynamic pricing strategies in various industries.5 In the airline industry,

Lazarev (2013) and Williams (2013) have recently used structural models to quantify

the effects of price discrimination in monopoly markets, but do not consider changes

in the market structure. At a methodological level, our reduced form identification

approach is more closely related to Escobari (2012), who explores how prices adjust

to demand shocks, and to Escobari, Rupp and Meskey (2013), who study price-

discrimination between bookings in business hours versus bookings in the evening. To

the best of our knowledge, this is the first paper which investigates empirically how

(and why) pricing dynamics vary with the competitive environment.

The paper is structured as follows. Section 2 describes the data. Section 3 estimates

the pricing dynamics and how they vary with the competitive environment. Section 4

introduces our customer heterogeneity measures and investigates the explanatory role

of price discrimination. Section 5 explores how intertemporal price dispersion compares

to various alternative dispersion categories. Section 6 explores the explanatory power

of systematic pricing dynamics relative to idiosyncratic fluctuations, and Section 7

concludes.

2 Data

We use newly collected panel data for airline ticket prices on 92 intra-European routes

and 41 distinct travel dates, where for each route-date pair we record a time series

of prices ranging from 10 weeks to 1 day prior to departure. Figures 1 provides an

overview over the cross-section of routes; details on the selection process and a full

4In particular, Puller, Sengupta and Wiggins (2012) study within-route price dispersion to
empirically evaluate the “peak-load” pricing mechanisms formalizes by Gale and Holmes (1992, 1993)
and Dana (1998, 1999a,b, 2001). Similar to our analysis in Section 5, Gaggero and Piga (2011) look
at several intertemporal price dispersion measures, but do not explore how these compare against
other dimensions of dispersion and do not consider any of the dynamic pricing analysis which is at
the core of our contribution.

5Outside the airline industry, Leslie (2004) and Courty and Pagliero (2012) have recently assessed
intertemporal price discrimination in the market for Broadway theater and concert tickets. Similarly,
Nair (2007) and Hendel and Nevo (2013) have recently explored intertemporal price discrimination
for storable goods (video games and beverages, respectively).
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Figure 1: Map of routes

listing can be found in Appendix A.

Prices are recorded for flights taking off between October 31, 2010 and March

26, 2011, which defines the 2010/2011 European winter flight schedule.6 Within that

period, we record prices for all direct flights leaving on Friday and returning on Sunday,

as well as for all direct flights leaving on Monday and returning on Thursday. This

gives us two route-date pairs per route and week in our sample and 41 travel dates

per route (uniquely defined by the date of the outbound flight). We refer to these

route-date pairs as “markets”.

For each market, we record flights and prices once a week, starting 10 weeks prior

to the travel date. In the last week prior to departure, prices are recorded on a daily

6Flight schedules and routings within Europe are planned on a semiannual basis. Within these
periods, routings and most flight characteristics do not typically vary.
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basis to account for an increased frequency of price changes. Hence, we obtain up to

17 different prices for each physical flight.

In what follows, we will use the term “itinerary” to refer to a specific roundtrip

itinerary, characterized by the combination of outbound and return flight identification

numbers.7 For example, in our terminology one “itinerary” on the route Paris–London

would be using flight number BA 333 on the outbound flight and flight number BA 334

on the return flight. We reserve the term “flight” for the combination of an itinerary

and a specific travel date.

Overall we have data on 3762 out of 3772 distinct markets (41 travel dates times

92 routes).8 Each market averages 377 prices that are recorded over up to 17 different

dates prior to departure for an average of 41.9 flights (i.e., roundtrip combinations)

per market. In total, our data set consists of 1.42 million individual prices (92 routes

times 41 travel dates times 377 recorded prices per market). Routes are on average 560

miles long and connect metropolitan areas with an average of 3.9 million inhabitants.9

The share of domestic routes in our sample is roughly 13 percent (12 out of 92 routes).

Prices constitute offers by a leading website for airline ticket purchases, which

accounts for a major share of bookings on the European market. The recorded prices

in our sample range from 27 to 2581 Euros, with a weekly average of 364 Euros and a

standard deviation of 466. Figure 2 relates the observed prices to the time remaining

until departure. Prices increase from an average of 327 Euros ten weeks prior to

departure to more than 500 Euros within the last week before departure.

To investigate the impact of competition on the observed pricing dynamics, we

use the number of airlines that compete in a given market as our baseline measure.10

Thereby we treat airlines that are affiliated through cross-holdings as single com-

petitors. An airline is matched to an affiliate group if that group owns more than

25% of the airline’s equity (see Appendix A for details). Table 1 summarizes the

7For each route, the direction of the outbound flight is randomly selected, so that for each city
pair one of the two cities is the origin of the outbound flight, whereas the other one is the origin of
the return flight.

8Of the ten remaining markets, seven are “missing” on the route Brussels–Leeds, where we did
not find any flights offered on seven travel dates; the other three markets are missing on the routes
Bordeaux–Madrid, Moscow–Budapest and Stockholm–Berlin.

9The average city population is 1.8 million.
10In 7.9 percent of our sample, the number of airlines offering services on the outbound flight differs

from the number of airlines offering services on the return flight. In these cases, we set competition
to the rounded up mean.
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Figure 2: Average prices (in Euros) as a function of time remaining until departure

Table 1: Competition in the sample

Prices Markets

Competing airlines Frequency Percent Frequency Percent

1 229 218 16.17 905 24.06
2 648 371 45.74 1696 45.08
3 275 680 19.45 656 17.44
4 185 051 13.05 382 10.15
5 68 237 4.81 107 2.84
6 11 078 0.78 16 0.43

resulting distribution of competitors. Alternative competition measures are explored

in Appendix B.

3 Estimation of pricing dynamics

We begin our analysis by estimating the intertemporal slope of prices and their

sensitivity to competition. Exploiting the within-flight time series structure of our

data, our baseline empirical model estimates the intertemporal slope of log prices

using only the intertemporal variations of prices within flights. All variations in prices

that are route, time or itinerary-specific are absorbed by fixed effects specified for the

travel date, the date of the price offer, and both the outbound and return itinerary

(using flight numbers as identifiers). Section 3.2 generalizes our baseline setup to allow
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for nonlinear pricing dynamics and Appendix B provides some robustness analysis for

alternative competition measures.

3.1 Baseline specification

Let Priceijtd denote the price for a round trip that involves the outbound itinerary i

and the return itinerary j (both identified by their flight numbers), for which the

outbound flight departs at date t, and which is offered for sale at date d. Further, let

Compijt denote a vector of dummy variables that covers all competition categories,

and let Dayslefttd denote the difference between t and d in days. As a baseline, we

estimate the following equation:

ln(Priceijtd) = (α + βDayslefttd)× Compijt + λi + µj + νt + ξd + εijtd, (1)

where we treat λi, µj, νt, and ξd as fixed effects.11 Here, α is a vector of competition-

specific constants and β is the relevant coefficient-vector on the interaction term

Compijt ×Dayslefttd. Note that λi and µj both nest a complete set of route specific

fixed effects since any flight number uniquely pins down the corresponding city-pair.

Together the specified set of fixed effects absorbs all itinerary-related effects such as

departure time or length of flight; all route characteristics such as connected cities or

alternative means of transportation; and all time-related effects such as travel dates,

and dates of price offer.

The impact of competition on the observed pricing dynamics is captured by our

estimates of β. Table 2 reports the estimated coefficients. Our estimates for the

corresponding standard errors are adjusted for clustering at the market level. All

reported coefficients are economically and statistically significant (at any reasonable

level).12

11Because our sampling is weekly for all but the last week before departure, a daily specification of
fixed effects for d would completely absorb all last week effects of Dayslefttd; ξd is therefore modeled
on a weekly level.

12The (unreported) competition-specific constants are only weakly identified in our sample by
variations across travel dates but within routes since competition typically does not vary within
routes for a given flight schedule. With this qualification in mind, we observe a hump-shaped relation
between price levels and competition, peaking at three competitors. While the decreasing relation
on the competitive side is in line with standard textbook theories, we can only conjecture about
the increasing part on the monopolistic side. A possible explanation would be that within-route
variations in competition are positively correlated with a high market demand.
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Table 2: Baseline estimation of intertemporal slopes

Coefficients Clustered Std. Errors

(Compijt = 1)×Dayslefttd -1.31 0.09
(Compijt = 2)×Dayslefttd -1.19 0.09
(Compijt = 3)×Dayslefttd -1.15 0.09
(Compijt = 4)×Dayslefttd -1.07 0.09
(Compijt = 5)×Dayslefttd -0.93 0.10
(Compijt = 6)×Dayslefttd -0.68 0.12

Observations 1 417 635
R-squared (adj.) 0.58

Notes: The dependent variable is ln(Priceijtd). Unreported but included in the estimation are
levels of Compijt and fixed effects λi, µj , νt and ξd. Reported coefficients and standard errors are
multiplied by 100. Standard errors are clustered at the market level. All reported coefficients are
significant at the 0.1 percent level.

It can be seen that for all competition categories prices increase as the scheduled

travel date approaches, but that the intertemporal slope decreases substantially in

the number of competitors. While in monopoly markets prices increase by an average

of 1.31 percent with every day that a customer waits to book, this slope is reduced

to 1.19 percent in duopoly markets and is reduced to 0.68 percent in markets with 6

competitors.

These results are consistent with the idea that airlines operating in competitive

markets are restrained in their ability to price-discriminate, leading to less intertempo-

ral variation in prices. Section 4 explores this possibility further using hotel bookings

data to identify variations in customer heterogeneity in an effort to make this argument

more rigorous.

3.2 Nonlinear advanced purchase discounts

Our baseline estimation imposes that conditional on a competition category, log prices

depend linearly on Dayslefttd. Since this is likely not to be the case, we now generalize

our baseline model to allow for nonlinear pricing dynamics. To this end, we use the

same model as above, but replace Dayslefttd by a vector of dummy variables covering

all values of Dayslefttd, hence imposing virtually no parametric restrictions on the

9
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Figure 3: Nonlinear estimation of pricing dynamics.
Notes: Dependent variable is ln(Priceijtd). Coefficients are multiplied by 100 and are normalized
relative to the prices 1 day (left panel) and 38 days (right panel) before takeoff. Accordingly, the
reported estimates approximately correspond to percentage price changes relative to the reported
reference points. The estimation controls for levels of Compijt and fixed effects λi, µj , νt and ξd.

evolution of prices over time. Our empirical model can be written as:

ln(Priceijtd) = φ(Dayslefttd, Compijt) + λi + µj + νt + ξd + εijtd, (2)

where φ : {1, . . . , 74} × {1, . . . , 6} → R is an arbitrary function determined by the

data.

The resulting nonlinear relationships are summarized in Figure 3. In the figure,

we normalize φ such that for each Compijt the average log price r days before takeoff

is set to zero.13 The numbers on the y-axis report

ln

(
pijtd

pijtd|d=t−r

)
× 100,

13As before, we again scale all coefficients by 100. The displayed relations are hence given by
{φ(x, y)− φ(r, y)} × 100.
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which approximately amounts to the difference in prices between date t and date r,

expressed in percent of the price charged r days before departure.

In the left panel, we set r = 1. The y-axis thus approximately reflects the estimated

advanced purchase discount relative to the price charged one day before departure. It

can be seen that, although nonlinear, the slopes are again monotonically decreasing in

the number of competitors. Accordingly, the relative discount for booking a flight in

advance is less pronounced on routes that are served by a larger number of competitors,

reinstating the conclusion drawn from our baseline estimation.

Taking a closer look at the identified pricing dynamics, it can further be seen that

prices are increasing at similar slopes until about five weeks before takeoff. Only in

the last five weeks, prices in less competitive routes have a significantly steeper slope

than prices in more competitive routes. To illustrate this further, we set r = 38 in the

right panel. Until about five weeks before takeoff log prices increase virtually along

a single line across all competitive environments, showing an increase of about 0.45

percent for each day a customer waits to book. This translates into an overall discount

of approximately 16% for purchasing tickets ten weeks before departure compared to

five weeks before departure.

Starting about five weeks before departure, prices increase significantly faster, with

prices on the least competitive environments increasing the fastest. On monopoly

routes, customers pay a premium of 95.09 percent for purchasing their ticket a day

before takeoff rather than five weeks in advance (the intercept with the y-axis on the

right). This premium is reduced to 81.70 percent in duopoly markets, and is further

reduced to 77.16 percent in markets with three competitors, 72.81 percent in markets

with four competitors, 59.84 percent in markets with 5 competitors, and 50.83 percent

in markets with 6 competitors.

In sum, the nonlinear estimation reinforces the clear pattern of dynamic oligopoly

pricing revealed by our baseline specification: While airlines offer substantial advanced

purchase discounts across all market structures, the magnitude of these discounts

is highly sensitive to competition, suggesting that airlines operating in competitive

markets are restrained in their ability to price-discriminate. The next section explores

this possibility in more detail.
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4 Intertemporal price discrimination

We now turn to the question whether price discrimination can explain the pricing

dynamics identified in this paper. Above we have already argued that the observed

“flattening” of the intertemporal slope for more competitive routes is in line with

airlines being more restrained in their ability to price-discriminate. In this section, we

construct a number of measures for the heterogeneity in the customer base in a given

market in an effort to make this argument more rigorous.

The idea is that the degree to which an airline’s ability to price-discriminate

becomes restrained in more competitive markets should depend on how much it would

discriminate among customers if it were unconstrained (i.e., in a monopoly). In the

extreme case where customers are completely homogeneous, we would not expect any

price discrimination even in monopoly markets. Accordingly, if price discrimination is

the driver behind the observed pricing dynamics, then competition should have less of

an impact on the intertemporal slope in more homogenous markets.

4.1 Customer heterogeneity measures

In the airline industry the co-existence between tourists (and other leisure travelers)

and business customers is arguably the largest source of heterogeneity in the customer

base. Our approach to evaluating customer heterogeneity is therefore aimed at

measuring the tourist intensity in a given market. In particular, we use Eurostat

data on hotel bookings to construct two heterogeneity measures that are likely to

be positively correlated with tourist intensity. Some alternatives are discussed in

Appendix B.

Our first measures (Durationij) computes the average number of nights per visit

booked in hotels and similar residencies at the destination.14 Here the idea is that

the average duration of a given booking is larger for tourists, so that small values

of Durationij are likely to reflect a high fraction of business travelers, whereas high

values should reflect a larger share of tourists. Our second measure (NightsPCij)

is defined by the number of nights booked in hotels and similar residencies relative

14The measure is computed using Eurostat data at the NUTS-2 level. For large cities the NUTS-2
level typically coincides with the city level (e.g., Berlin, Lisbon or Prague), while smaller cities or
less densely populated areas are typically clustered into urban areas or regions (e.g., Manchester into
Greater Manchester or Aberdeen into North Eastern Scotland).

12
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Figure 4: Summary of customer heterogeneity measures.
Notes: Means and ±1 standard deviation bands are indicated by the circled dots and boxes. Supports
are indicated by the extending lines.

to the population at the destination, capturing instead the intensity of the tourist

industry at the destination.

To give an overview over these measures, Figure 4 plots their means (marked by the

circled dots), standard deviation bands (marked by the boxes), and supports (marked

by the lines) conditional on the number of competitors. Here we have normalized

NightsPCij in terms of 1000 inhabitants at the destination. It can be seen that

the variation across competition categories is small relative to the within-category

standard deviation and supports. This suggests that the competition effect that

we have identified above are not merely driven by a correlation between customer

heterogeneity and competition.15 Instead, even for a given (average) level of customer

heterogeneity, airlines in more competitive markets seem to be less able to price

discriminate.

15More formally, the correlation coefficients are below 0.04 in absolute terms and are not statistical
different at the 1 percent level. Testing pairwise for difference in means between all 15 competition
pairings for each measure, the data rejects any difference in 80 percent of the cases for Durationij
and in 67 percent of the cases for NightsPCij .
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4.2 Impact of customer heterogeneity on pricing dynamics

To investigate how changes in customer heterogeneity affect the sensitivity of the

intertemporal slope to competition, we estimate the following model:

ln(Priceijtd) = (α + βDayslefttd)×Xijt + λi + µj + νt + ξd + εijtd, (3)

with

Xijt = (1, Nijt, Hetijt, Nijt ×Hetijt),

where Nijt is the number of competitors16, Hetijt is the customer heterogeneity

measure, and λi , µj , νt and ξd are treated as fixed effects. To facilitate the discussion

below, we normalize Hetijt to have zero mean and unit variance. Here β is the relevant

vector of “slope” coefficients that define the intertemporal slope. Table 3 reports the

estimated coefficients and standard errors (clustered at the market level).

From Panel (a) it can be seen that in line with our baseline estimation, the

coefficients for Dayslefttd are negative (and large) in both specifications, whereas

the coefficients for Dayslefttd × Nijt are positive. Accordingly, in line with our

baseline model, prices are again unambiguously increasing as the scheduled travel date

approaches, and the intertemporal slope “flattens” in more competitive environments.

Quantitatively, the identified competition effects are similar to our baseline model.

Given that Hetijt has a zero mean and is largely uncorrelated with Nijt this should not

come as a surprise. Still, we find that customer heterogeneity has an important effect

on pricing dynamics. The coefficients for Dayslefttd × Hetijt, are about twice the

size of the ones for Dayslefttd ×Nijt, meaning that one standard deviation change in

customer heterogeneity has an impact on the intertemporal slope that is comparable

to the effect of two additional competitors.

To evaluate the hypothesis that the intertemporal slope is more sensitive to

competition in more heterogeneous markets, we need to take a stand on whether

our tourist intensity measures increase or decrease the customer heterogeneity in

a given market. We interpret a change in Hetijt that steepens the intertemporal

16See Appendix B for a competition-specific treatment of customer heterogeneity. In sum, we
do not find much evidence for non-linear effects of Nijt. Accordingly, our conclusions are both
qualitatively and quantitatively akin to the linear case. In an effort to streamline the following
exposition, we hence focus on a linear model in this section and confine the competition-specific
setting to the appendix.
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Table 3: Competition, customer heterogeneity, and pricing dynamics

(1) (2)
Customer Heterogeneity Measure: Durationij NightsPCij

(a) Estimated Slope Coefficients

Dayslefttd −1.41 −1.37
(0.10) (0.10)

Dayslefttd ×Nijt 0.07 0.08
(0.01) (0.01)

Dayslefttd ×Hetijt −0.13 −0.16
(0.02) (0.02)

Dayslefttd ×Nijt ×Hetijt 0.06 0.08
(0.01) (0.01)

(b) Sensitivity and Overall Slope

Low heterogeneity markets
sensitivity to competition 0.01 −0.01
implied monopoly slope −1.27 −1.22
implied competitive slope (Nijt = 6) −1.22 −1.24

High heterogeneity markets
sensitivity to competition 0.13 0.16
implied monopoly slope −1.42 −1.38
implied competitive slope (Nijt = 6) −0.77 −0.60

Observations 1 255 125 1 286 687
R-squared (adj.) 0.57 0.57

Notes: The dependent variable is ln(Priceijtd). Unreported but included in the estimations are
levels of Dayslefttd, Nijt, Hetijt and Nijt ×Hetijt, and fixed effects λi, µj , νt and ξd. The variable
used for Hetijt is indicated at the top of each column. Hetijt is transformed to have zero mean and
unit variance. Clustered standard errors (at the market level) are reported in parentheses. Reported
coefficients and standard errors are multiplied by 100. All reported coefficients are significant at
the 0.1 percent level. Low and high heterogeneity markets in Panel (b) are defined as markets with
Hetijt = ±1 standard deviation relative to the mean. Number of observations depends on availability
of heterogeneity data.

slope in monopoly markets as an increase in customer heterogeneity. This is based

on the presumption that increases in the customer heterogeneity should steepen

the intertemporal slope when airlines are unconstrained in their ability to price-

discriminate. Given our empirical model, Hetijt steepens the slope in monopolies

if
∂2 ln(Priceijtd)

∂Dayslefttd ∂Hetijt

∣∣∣∣
Nijt=1

= βHet + βN×Het < 0,

where we use βHet and βN×Het to refer to the estimated slope coefficients for Hetijt and
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Nijt×Hetijt in model (3). From the estimated coefficients, we can see that this is the

case for both our measures, suggesting that Hetijt increases customer heterogeneity.

A potential concern regarding this interpretation of Hetijt is that changes in

the tourist intensity may have a non-monotonic impact on customer heterogeneity.

For instance, on routes where there is a small number of tourists, any additional

tourists may increase the heterogeneity of the customer base, while on markets with a

large share of tourists, the same change may reduce the heterogeneity. We explore

this concern in Appendix B using a quadratic specification in Hetijt, but do not

find any evidence for non-monotonicity. Both measures unambiguously steepen the

intertemporal monopoly slope over their complete support. With this in mind, we

henceforth interpret increases in Hetijt as increases in the customer heterogeneity.

Based on our interpretation of Hetijt, does the sensitivity to competition increase

in customer heterogeneity as it should when price discrimination is the major source

behind the observed pricing dynamics? Looking at the estimated slope coefficients of

Nijt ×Hetijt, it turns out that this is indeed the case: The estimated slope coefficient

of Nijt ×Hetijt is statistically significant and positive in both specifications.

To assess the economic significance of this heterogeneity-caused variation in the

sensitivity, we use the estimated model to compute the sensitivity for values of Hetijt

at one standard deviation above and below its mean (meant to indicate markets with

high and low customer heterogeneities, respectively). Exploiting the fact that we have

normalized Hetijt to have zero mean and unit variance, these sensitivities are given by

∂2 ln(Price)

∂Dayslefttd ∂Nijt

∣∣∣∣
Hetijt=±1

= βN ± βN×Het.

Panel (b) of Table 3 reports the computed sensitivities and the implied overall

slope. Driving down the heterogeneity to one standard deviation below its mean

virtually shuts down the sensitivity of the intertemporal slope to competition. This is

consistent with the idea that in the absence of customer heterogeneity airlines do not

discriminate much to begin with and, hence, they are also not getting restrained in

their ability to price-discriminate when competition intensifies. Conversely, in high

heterogeneity markets the slope of prices is highly sensitive to changes in competition.

Here, an increase in competition “flattens” the intertemporal slope by between 0.13

and 0.16 percentage points per day.

Put into relation to the overall intertemporal slope, these findings suggest a
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substantial impact of competition on pricing dynamics in the presence of customer

heterogeneity. Specifically, while in low heterogeneity markets the difference in the

intertemporal slope between monopolies and competitive markets with Nijt = 6

amounts to only 0.05 percentage points per day, the gap rises to 0.65 percentage points

per day in high heterogeneity markets. We interpret the 0.60 percentage points per

day difference in these gaps due to variations in customer heterogeneity as being likely

to be caused by price discrimination. Compared to the overall slope in markets with

Nijt = 6, this amounts to nearly a doubling of the intertemporal slope, suggesting that

intertemporal price discrimination is an important driver of the dynamic oligopoly

pricing patterns that we have identified in this paper.

5 Decomposing price dispersion

To reconcile our study of pricing dynamics with the empirical price dispersion literature,

we now construct a measure of intertemporal price dispersion and contrast it with

more broadly defined dispersion measures used by the previous literature.

Due to limitations in the available data, the empirical price dispersion literature has

so far focused on dispersion measures for airfares that do not disentangle intertemporal

dispersion within flights from the dispersion in prices across different flights (pooling

both, different itineraries and different travel dates). Different studies have thereby

reached different conclusions regarding the relation between competition and these

dispersion measures, ranging from positive (Borenstein and Rose, 1994), over no clear

relation (Hayes and Ross, 1998), to negative (Gerardi and Shapiro, 2009).

We use the two time series dimensions of our panel to distinguish the impact

of competition on intertemporal price dispersion for a given flight from its impact

on various types of cross-flight dispersion. Following the literature, we use the Gini

coefficient to measure the dispersion within a given set of prices. Intuitively, the Gini

coefficient corresponds to half the expected price difference in terms of the average

price. A Gini coefficient of 0.10 would accordingly represent an expected absolute

difference between two randomly selected prices of 20 percent of the average price.17

Panel (a) of Table 4 summarizes the average Gini coefficients in our data set.

17To make the Gini coefficients comparable to the previous literature, we compute all Gini
coefficients after up-sampling observations with more than seven days left to departure in order to
compensate for the increased sampling frequency in the last week.
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Column 1 reports the average price dispersion across all flights (and dates of ticket

offers) offered by a given competitor on a given route. As in the previous literature,

this pools together different itineraries (within the same route) and different flights

across different travel dates. We find an average dispersion within routes of 64 percent

of the average offer.18 Column 4 shows in contrast the intertemporal dispersion within

a given flight (defined by a particular itinerary at a particular travel date). We see

that the intertemporal dispersion is substantially smaller (24 percent of the average

price offer).

The two intermediate cases where we pool flights only across itineraries (within

markets) or only across travel dates (within itineraries) are reported in Columns 2

and 3. As expected, pooling along either dimension increases the dispersion relative

to Column 4. The increase in dispersion due to specific flight characteristics (e.g.,

departure time) thereby appears to be higher than the dispersion due to travel date

characteristics (e.g., flights departing on Monday versus flights departing on Friday).

In the following we explore the relation between competition and the different

dispersion measures. We do no longer include itinerary specific fixed effects, since

these would absorb any dispersion on the itinerary and route level. Instead we include

a large number of control variables Xijt that were previously nested into λi and µj.
19

Moreover, since the Gini coefficient is bounded between zero and one, we follow the

previous literature and transform it into an unbounded statistic, using instead the

Gini log-odds ratio Glodd
ijt = ln[Gijt/(1−Gijt)].

We estimate the following empirical model:

Glodd
ijt = α + β ×Nijt + γ ×Xijt + νt + ξd + εijt, (4)

where Nijt is the number of competitors20, Xijt contains our set of control variables,

and νt and ξd are vectors of fixed effects for the travel date and the date of the price

18Since the within-route dispersion is strongly right-skewed in our sample, the median dispersion
is somewhat smaller, evaluating to 56 percent of the average offer.

19Specifically, Xijt includes a full set of dummies for the departure city, destination city, and the
time of the day of the outgoing and returning itineraries (at an hourly level); as well as measures for
the market size, share, and symmetry; GDP and weather data of the connected cities; the weekday
and length of the itineraries; holidays; and the tourist intensity in a given market (see Section 4 for a
detailed presentation of these measures).

20Using the number of competitors Nijt instead of a vector of dummy variables allows us to
compare the impact of competition on the different dispersion measures in a straightforward way.
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offer. The estimated coefficients are reported in Panel (b) of Table 4. All reported

coefficients are significant at the 0.1 percent level (using standard errors that are

clustered at the market level).

In line with the pricing dynamics identified above, competition has a negative

impact on the intertemporal price dispersion (Column 4).21 Adding one additional

competitor on a given market decreases the log odds ratio by 0.46 which corresponds

to 0.10 standard deviations of Glodd
ijt . Moving from a monopoly to an environment

with six competitors hence decreases the dispersion by 1/2 standard deviation.

Comparing this to the estimated coefficients in Columns 1 to 3, we see that the

negative impact of competition on price dispersion is diluted (Column 3) or even

overturned (Columns 1 and 2) when using one of the broader dispersion measures.

Intertemporal price dispersion therefore seems to be more sensitive to competition

than the dispersion among other dimensions, possibly because the dispersion among

other dimensions is more likely to reflect differences in product characteristics rather

than reflecting price discrimination.

In sum, while we find an unambiguously negative impact of competition on

intertemporal price dispersion, once we include cross-flight dispersion the impact

depends on the precise definition of the dispersion measure. This suggest that the

seemingly contradicting findings in the earlier literature may be driven by a confounding

of different dimensions of dispersion. In particular, the fact that we find a negative

competition effect of −0.45 on the within-flight dispersion, but obtain a positive effect

of 0.30 on the within-market dispersion indicates that the price dispersion across

itineraries is increasing in competition.22 Whether or not the impact of competition

on within-market dispersion (or even broader: on within-route dispersion) is positive

or negative is therefore likely to depend on various factors, such as the number of price

observations for a given flight relative to the number of different flights contained in

the sample. This can explain why the literature so far (which pools prices within and

across flights) has obtained ambiguous results regarding the impact of competition on

price dispersion.

21See also, Gaggero and Piga (2011).
22While this positive relation may at first seem puzzling, Borenstein (1985) and Holmes (1989)

have shown that the theoretical relation between dispersion across flights and competition is indeed
ambiguous and may be positive when consumers’ cross-price elasticities between different airlines is
lower than the elasticity of industry demand. See also, Armstrong and Vickers (2001).
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6 Stochastic pricing dynamics

This section analyzes the relevance of the systematic pricing dynamics identified in

Sections 3 and 4 relative to residual pricing dynamics. While we do not attempt

to explain the residual components, an obvious source consistent with the residual

variations documented below are random demand fluctuations that cause airlines to

dynamically adjust their prices.23

6.1 Systematic vs. unsystematic pricing dynamics

We start by asking how much of the intertemporal dispersion documented in the last

section is due to the systematic advanced purchase discounts documented in Section 3

(instead of random price fluctuations).

To answer this question, we use our estimates of the baseline model (1) and of

the nonlinear model (2) to project samples of counterfactual price data in which the

intertemporal variation in prices is fully determined by the identified intertemporal

slopes. For these samples, we then compute the intertemporal dispersion on the flight

level, defining the systematic dispersion implied by the estimated pricing dynamics.

Columns 5 and 6 of Panel (a) in Table 4 report these intertemporal price dispersion

measures in the two samples.

It can be seen that for the average flight the within-flight price dispersion pro-

jected from our baseline estimation (Column 5) closely resembles the one in the data

(22 percent of the average price), whereas the dispersion implied by our nonlinear

estimation (Column 6) is somewhat smaller (20 percent of the average price).24 Based

on the nonlinear estimation, 83 percent of the within-flight dispersion of the average

flight (0.10 out of 0.12) can be attributed to the identified pricing dynamics seen in

Figure 3. Systematic advanced purchase discounts therefore seem to be the major

23See, for instance, Alderighi, Nicolini and Piga (2012), Williams (2013), and Puller, Sengupta and
Wiggins (2012). On the theory side, on particular channel why random demand fluctuations may
cause variations in pricing dynamics in ex ante identical markets is modeled by the peak-load pricing
literature (Gale and Holmes, 1992, 1993; Dana, 1998, 1999a,b, 2001).

24The difference between the two estimations is likely due to the increased sampling frequency
in the last week before departure. Because prices are generally increasing at a steeper slope during
that period, the sample-average slope exceeds the time-average in our sample. Projecting the
sample-average slope throughout the ten week horizon does therefore overestimate the contribution
of systematic advanced purchase discounts relative to unsystematic volatility. This bias vanishes,
once we allow slopes to vary with the time left until departure, as we do in the projection based on
our nonlinear estimation.
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source of within-flight price dispersion, as opposed to unsystematic volatility around

the price trend.25

We also use the projected price data to relate the (projected) Gini coefficient to the

number of competitors. Using exactly the same specification as in the previous section,

we find that the impact of competition on the dispersion that is due to systematic

advanced purchase discounts is slightly higher (in absolute terms) than the impact

on its empirical counterpart (Columns 5 and 6 in Panel (b) of Table 4 compared to

Column 4). This suggests that the impact of competition on price dispersion is mainly

driven by its impact on the intertemporal slope.26

6.2 Systematic vs. unsystematic variations

in pricing dynamics

Given that systematically increasing prices appear to account for a large share of the

price dispersion on the average flight, we now address the related issue of how much

of the variation in pricing dynamics across markets can be systematically explained.

In particular, we are interested in the combined explanatory power of competition

and customer heterogeneity. (See Figure 8 in Appendix C for a schematic illustration

how this differs from the exercise in the previous subsection.)

We proceed in two stages. In stage 1, we split our data into 3762 market-specific

sub-samples, defined by the combination of a route r and a travel date t. In each of

these market samples, we run the following first stage regression:

ln(Priceijtd) = αrt + SrtDayslefttd + εijtd,

where αrt and Srt are the estimated market-specific coefficients. Collecting Srt from

all regressions, this gives us a sample of market-specific intertemporal slopes.

25Because the intertemporal slope maps nonlinearly to the projected Gini, our estimate is not
identical to the one obtained from estimating the intertemporal slope for each flight and then using
the flight-specific estimations to project the Gini. While such an exercise would be meaningless for
the nonlinear estimation (for each flight, the identified nonlinear price path would be identical to
the observed price path, so that the resulting Gini would perfectly predict the empirical one), it is
feasible for the linear estimation. Doing so, we find a slightly higher average Gini of 0.12, suggesting
that our results (slighly) underpredict the systematic contribution of pricing dynamics compared to
random price fluctuations.

26In fact, consistent with the idea that the impact of competition on the empirical dispersion
is primarily due to its impact on the systematic trend of prices to increase, the ratio of slopes
0.45
0.52 ≈ 0.865 is very similar to the identified systematic dispersion share of 83 percent.
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Table 5: Explanatory power of customer heterogeneity

Part of Xrt (1) (2) (3)

Comprt Yes Yes Yes
Comprt ⊗Hetrt Yes Yes
Comprt ⊗ (Router, F lightdatet) Yes

R-squared 0.05 0.17 0.63

Notes: The dependent variable is Srt (the intertemporal slope in market rt, estimated by market-
specific first stage regressions on Dayslefttd and a constant). Comprt, Router and Flightdatet are
vectors containing a full set of competition, route, and flight date dummies, and Hetrt is a vector
containing all herogeneity measures. The number of observations are 3 311 (all markets with variation
in Dayslefttd and available heterogeneity data).

In stage 2, we then relate the identified slopes Srt to a number of explanatory

variables Xrt in order to assess their share in explaining the observed variations in Srt.

To this end, we estimate the following relation:

Srt = α + β ×Xrt + εrt, (5)

where Xrt varies across our specifications. For each specification, we use the R-squared

statistic to identify the fraction of the cross-market variations in Srt explained by Xrt.

Table 5 reports the results.

In Column 1, we let Xrt = Comprt to get an idea of the cross-market variations

in the intertemporal slope that can be solely explained by variations in the compet-

itive environment (analogous to the patterns identified in Section 3). We find that

competition accounts for about 5 percent of the cross-market variation.

Given that our main interest lies on the share of cross-market variations explained by

intertemporal price discrimination, we next let Xrt include a number of different market-

characteristics that are likely to correlate with customer heterogeneity. Specifically, we

include both measures used in Section 4 as well as a number of further measures that

we discuss in detail in Appendix B. While individually each of these measures only

captures some variations in customer heterogeneity, our hope is that their combination

spans a large part of the actual variations in customer heterogeneity.

Recycling notation by letting Hetrt denote the vector of these measures, Column 2

defines Xrt = (Comprt, Comprt⊗Hetrt) in order to allow these heterogeneity measures

to interact with competition along the lines of the argumentation in Section 4. Using
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this Xrt, the share of variations in Srt that is explained by Xrt is 17 percent. Under the

conjecture that Hetrt spans most of the empirical variations in customer heterogeneity,

this suggests that in addition to customer heterogeneity there exist a number of

unrelated factors that explain a large part of the variations in the intertemporal slopes

across markets.

To get some idea at which level these factors are likely to operate, we lastly let Xrt

include a set of route and travel date fixed effects (again interacted with Comprt). The

explanatory power of this fixed effects specification is 63 percent, providing an upper

bound on the explanatory power of any route or travel data specific characteristics.

The remaining 37 percent are only explainable using factors that vary across travel

dates and routes. While it is beyond the scope of this paper to identify the source

of these residual variations in the intertemporal slope, we find it hard to reconcile

them fully with any deterministic pricing scheme. We therefore conjecture that they

represent, at least in parts, the adjustments of prices (and, hence, measured slopes) in

response to demand shocks that materialize within the last ten weeks before departure.

7 Summary

This study documents two systematic variations of airline pricing dynamics. First, the

rate at which airline ticket prices increase as the scheduled departure date approaches is

highly sensitive to the number of airlines active in a given market. While in monopoly

markets prices increase by an average of 1.31 percent per day, this slope is reduced

to 1.19 percent in duopoly markets, and is further decreasing in competition to 0.68

percent in markets with six competitors (the most competitive ones in our sample).

Second, this sensitivity of the intertemporal slope to competition varies substantially

with the heterogeneity among customers. With an highly heterogeneous customer

base, prices on monopoly routes increase by 0.65 percentage points per day more than

prices on markets with six competitors. Conversely, on markets with very homogenous

customers, this difference is almost zero.

We interpret these findings as evidence for intertemporal price discrimination

being a major source of the observed pricing dynamics: Competition is likely to

restrain an airline’s ability to price-discriminate, but this constraint is more relevant

in markets with an highly heterogeneous customer base where there is scope for

price-discrimination in the first place.
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Our results suggests that these forces are quantitatively important. Systematic

advanced purchase discounts explain about 83 percent of the total within-flight

dispersion on the average flight. Moreover, competition and customer heterogeneity

explain 17 percent of the observed variation in the intertemporal slope across markets.

These numbers suggest that while systematically increasing prices are the main

source behind intertemporal price dispersion, there are likely a number of factors

alongside price discrimination that are responsible for the observed variations in the

intertemporal slope. In particular, we find that 37 percent of the cross-market variation

can only be accounted by factors that vary across travel dates and routes. While it

is beyond the scope of this paper to identify the source of these residual variations,

we conjecture that price adjustments in response to random demand fluctuations are

likely to play an important role in explaining these variations.

25



A Data construction (for online publication)

A.1 Routes

Our cross-section of routes is sampled from the existing connections between a set of

60 European cities with international airports. All routes are defined on the city-level.

In case there exist multiple airports within one city, we include routes to all airport

combinations (e.g., routes between London and Paris cover all offered combinations

between {LCY, LGW, LHR, LTN} and {CDG, ORY}).
The 60 cities were chosen to ensure regional variety as well as variety in the size and

importance of the residing airports. To this end, the set includes the cities with the

four largest airports in each of the EU5 countries (measured by 2009 total passenger

traffic):

• France: Paris, Nice, Lyon, Marseille

• Germany: Frankfurt, Munich, Duesseldorf, Berlin

• Italy: Rom, Milan, Venice, Catania

• Spain: Madrid, Barcelona, Palma de Mallorca, Malaga

• UK: London, Manchester, Edinburgh, Birmingham

The remaining 40 cities are selected from both the EU5 and the rest of Europe

(including Russia and Turkey): Aberdeen, Amsterdam, Athens, Belgrade, Bilbao,

Bologna, Bordeaux, Brussels, Bucharest, Budapest, Copenhagen, Dublin, Geneva,

Hamburg, Hannover, Helsinki, Innsbruck, Istanbul, Leeds, Leipzig, Lisbon, Liverpool,

Moscow, Nantes, Naples, Nuernberg, Oporto, Oslo, Palermo, Prague, Sofia, Stockholm,

Strasbourg, Stuttgart, Toulouse, Turin, Valencia, Vienna, Warsaw, and Zurich.

From the simplex of routes spanned by those 60 cities, we then sampled 100 random

routes, disregarding all routes for which not at least one direct daily connection was

offered at the beginning of our sampling period (October 31, 2010). To this routes,

we added, if not yet contained, the ten routes connecting the cities with the largest

airports in each of the EU5 countries (Paris, Frankfurt, Milan, Madrid, and London).

A limitation of our data source is that it does not contain prices set by Ryanair,

a major competitor in the intra-European market. To prevent our data from being

affected by an unobserved competitor, we therefore excluded all routes that were

26



served by Ryanair within a 40 miles (65 km) radius of the corresponding city centers.

From the above city list, this applies to all (existing) Ryanair route combinations

between the following cities: Barcelona, Birmingham, Berlin, Bologna, Bordeaux,

Brussels, Budapest, Catania, Dublin, Edinburgh, Leeds, Leipzig, Lisbon, Liverpool,

London, Madrid, Malaga, Manchester, Marseille, Milan, Nantes, Nice, Nuernberg,

Oporto, Palma de Mallorca, Palermo, Rome, Strasbourg, Turin, Valencia, Venice, and

Warsaw. However, the majority of the possible combinations among those cities are

not served by Ryanair, so that only a small number of drawn routes were affected.

These steps give the 92 connections between cities underlying our final sample.

For each of them, we randomly assigned one of the two cities as departing city for the

outbound flight and the other one as the departing city for the return flight. Table 6

lists the resulting cross-section of routes.

A.2 Affiliate groups

Our baseline measure for competition treats airlines that are affiliated through cross-

holdings as single competitors. An airline is matched to an affiliate group if a member

of that group owns more than 25% of the airline’s equity. Out of the airlines observed

in our sample, we have identified the following affiliate groups based on this criterion.

• Aegean, Aegean Airlines, Olympic

• Air France, KLM

• Air One, Alitalia, Meridiana fly, Wind Jet

• British Airways, Iberia, Vueling Airlines

• Air Dolomiti, Austrian Airlines, bmi, Brussels Airlines, Condor, Germanwings,

Lufthansa, SunExpress, Swiss International Air Lines

• Blue 1, Cimber Sterling, Norwegian Air Shuttle, SAS, Spanair

• airberlin, Niki

• LAN Airlines, TAM Airlines, TAM Brazilian Airlines

• Singapore Airlines, Virgin Atlantic
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Table 6: List of routes

Origin Destination Origin Destination Origin Destination

Aberdeen Manchester London Bordeaux Paris Dublin
Amsterdam Barcelona London Frankfurt Paris Hamburg
Amsterdam Zurich London Hannover Paris London
Athens Budapest London Prague Paris Madrid
Athens London London Sofia Paris Marseille
Barcelona Lyon London Zurich Paris Prague
Belgrade Vienna Liverpool Amsterdam Paris Stockholm
Berlin Helsinki Lyon Madrid Paris Turin
Berlin Vienna Madrid Barcelona Paris Valencia
Bilbao Paris Madrid Copenhagen Paris Warsaw
Bologna Madrid Madrid Lisbon Palermo Turin
Bordeaux Madrid Madrid Milan Prague Helsinki
Bordeaux Nantes Madrid Stockholm Prague Milan
Brussels Leeds Madrid Valencia Prague Rome
Brussels London Madrid Zurich Rome Nice
Bucharest Milan Malaga Madrid Rome Vienna
Budapest Munich Milan Copenhagen Stockholm Berlin
Copenhagen Geneva Milan Duesseldorf Stockholm Duesseldorf
Copenhagen Helsinki Milan Frankfurt Stockholm Oslo
Duesseldorf Athens Milan Lyon Stuttgart Milan
Edinburgh Manchester Milan Paris Strasbourg Paris
Frankfurt Innsbruck Moscow Budapest Toulouse Brussels
Frankfurt Istanbul Munich Athens Toulouse Paris
Frankfurt Madrid Munich Madrid Vienna Amsterdam
Frankfurt Moscow Munich Paris Vienna Barcelona
Frankfurt Paris Munich Vienna Vienna Frankfurt
Frankfurt Toulouse Naples Milan Vienna Lyon
Hamburg Warsow Nice Brussels Vienna Paris
Hannover Amsterdam Nuremberg Amsterdam Zurich Frankfurt
Leipzig Munich Oporto Paris Zurich Mallorca
Lisbon Amsterdam Paris Copenhagen

Notes: Prices are recorded for 41 distinct travel dates for each route. In 10 instances, we did not
find any of our roundtrip combinations offered; 7 of them missing on the route Brussels–Leeds; the
remaining 3 markets are missing on the routes Bordeaux–Madrid, Moscow–Budapest and Stockholm–
Berlin.
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• Air Seychelles, Etihad Airways

• Aeroflot-Russian Airlines, Malev Hungarian Airlines

B Robustness specifications (for online publication)

B.1 Alternative competition measures

This appendix contains some robustness analysis with respect to our baseline approach

to measure competition.

First, we consider two variations of our baseline approach to identify the number

of competitors. Specifically, in our baseline measure, we treat codesharing airlines as

competitors. Accordingly, if the same physical connection is marketed under different

flight numbers that correspond to different (non-affiliated) airlines, this increases our

measure of competition. The reasoning behind this choice is that in so-called “block

space” codeshare agreements, each of the codesharing partner still controls a distinct,

ex ante fixed amount of seats. In practice, by the pricing agreements between the

carrier operating a service and the codesharing partner, the codesharer is usually

granted considerable freedom to set prices independently.27 In line with that, prices

in our data differ indeed substantially across different codesharers.28

To evaluate whether implicit pricing agreements between codesharing airlines

systematically affect our findings, we consider N csh
ijt as a first alternative, which defines

competition as the number of airlines that operate their own services on a particular

market.29 Similarly, we also consider Nallie
ijt , which counts the number of competing

airline alliances, for which a similar concern might be raised.30 Finally, we also use

27See, e.g., the report by the European Commission, “Competition impact of airline code-share
agreements: Final report” (2007), available on the EC Website (last checked: October 2012).

28In our data set, 33.5 percent of the same physical roundtrip combinations ij for a given travel
date t and a given date of the ticket offer d are offered by a codesharing operator. Among those
observations, the within-ijtd standard deviation across codesharers (i.e., the standard deviation
among tickets sold at the same day for the same physical flight by different codesharers) is on
average 137.45 Euros. While this large value is driven by a strongly right-skewed distribution, a
median standard deviation of 21.73 Euros and an average standard deviation among the first 90
percentiles of 75.09 Euros, suggest that there is indeed significant leeway for independent pricing
among codesharing partners.

29To be consistent with this approach, we also pool all physically identical roundtrips into a single
observation, where at each date the pooled roundtrip is assigned the lowest price offered by any of
the codesharing partners.

30Specifically, Nallie
ijt treats all airlines within “Star Alliance”, “Sky Team” and “One World” as
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the Herfindahl index, which is a common alternative used in the literature.31 For each

of these measures, we consider both a log and a level variant.32

Table 7 reports the results to the following estimation:

ln(Priceijtd) = (α + βDayslefttd)× Compijt + λi + µj + νt + ξd + εijtd, (6)

where Compijt is a stand-in for the eight competition measures that we consider, and

where λi, µj, νt, and ξd are treated as fixed-effects.

The first thing to note, as can be seen in Panel (b), is that all competition measures

yield the same qualitative conclusions as our baseline setup. In order to assess the

quantitative implications across the variety of competition measures, we compute the

linear combination of the baseline slope (Panel a) with the competition effects for the

minimum and maximum realization of competition for each of the measures. The

implied range of intertemporal slopes for each of our measures is reported in Panel (c).

Here it can be seen that also quantitatively, the different measures yield very similar

conclusions: While the different measures find a daily price increase ranging from 1.27

percent to 1.39 percent for the least competitive routes in our sample, the daily price

increase estimated for the most competitive routes ranges from 0.87 percent to 1.02

percent.

B.2 Alternative customer heterogeneity measures

In this appendix, we consider some alternatives to the customer heterogeneity measures

considered in the main body of the paper.

As a first alternative, we use two measures aimed at capturing variations in the

customer heterogeneity across time. Specifically, we use dummy variables (Weekendt

and Holidayst) to distinguish weekend trips (departing on Friday and returning on

Sunday) from trips that depart on Monday and return on Thursday, and to identify

single competitors. Airlines not belonging to any of these alliances are counted as independent
competitors according to our baseline competition measure.

31Since a Herfindahl index of one indexes the highest concentration of market power, we use −Hijt

to make it qualitatively comparable with the other measures.
32To facilitate the comparison across the different measures which share different supports (the

Herfindahl index is defined on the real line, whereas Nijt, N
csh
ijt , and Nallie

ijt are natural numbers
with different ranges), we adopt linear specifications for each of the competition measures in our
estimation.
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roundtrips over the Christmas and New Years holidays.

The next two alternatives are based on an idea by Brueckner, Dyer and Spiller

(1992) who argue that a good proxy for the share of leisure travelers on a route are

temperature differentials between the destination and origin.33 Accordingly, we define

∆Tempijt as the temperature differentials between destination and origin during the

month of travel. In the same spirit, we also use ∆Precijt to measure precipitation

differentials between destination and origin during the month of travel.

Finally, we use regional GDP data to measure for business activity.34 Accordingly,

GDP o
ij and GDP d

ij are defined as log GDP at the origin and destination, respectively.

To give an overview over these measures, Figure 5 plots their means (marked by

circled dots), standard deviation bands (marked by boxes), and supports (marked

by lines) conditional on the number of competitors. Again the correlation across

competition levels is typically small relative to the standard deviation and supports,

although somewhat larger than for our two baseline measures.

To investigate how changes in customer heterogeneity affect the sensitivity of the

intertemporal slope to competition, we use the same empirical model as in Section 4:

ln(Priceijtd) = (α + βDayslefttd)×Xijt + λi + µj + νt + ξd + εijtd, (7)

with

Xijt = (1, Nijt, Hetijt, Nijt ×Hetijt),

where Nijt is the number of competitors, Hetijt is the corresponding customer het-

erogeneity measure, and λi, µj, νt and ξd are treated as fixed effects. Again, we

normalize Hetijt to have zero mean and unit variance. Here β is the relevant vector of

“slope” coefficients that define the intertemporal slope. Table 8 contains the estimated

coefficients and standard errors (clustered at the market level). For convenience,

Columns 1 and 2 reprint the results for our baseline measures.

As before, we look at the impact of Hetijt on the slope in monopoly markets

to determine whether it is likely to increase or decrease customer heterogeneity.

33See also Stavins (2001) and Goolsbee and Syverson (2008), who have used similar temperature-
based proxies to measure for tourist intensities.

34We use GDP data provided by the European commission at the NUTS-2 level. See also
Footnote 14.
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Figure 5: Summary of customer heterogeneity measures by competition.
Notes: Means and ±1 standard deviation bands are indicated by the circled dots and boxes. Supports
are indicated by the extending lines. Competition categories are indicated on the x-axis.

Accordingly, we interpret Hetijt as increasing in the customer heterogeneity if

∂2 ln(Priceijtd)

∂Dayslefttd ∂Hetijt

∣∣∣∣
Nijt=1

= βHet + βN×Het < 0,

and vice versa. Applying this criterion to the estimated models, we classify increases

in ∆Precijt and GDP d
ij as increasing customer heterogeneity, and classify increases in

Weekendt, Holidayst and GDP o
ij as decreasing customer heterogeneity. For ∆Tempijt,

its impact on the intertemporal slope is not statistically different from zero, both

economically and statistically (at the 5 percent level). With this qualification in

mind, increases in ∆Tempijt are increasing customer heterogeneity according to our

classification approach. For convenience, these classifications are listed at the bottom

of Table 8.

Recall that for the sensitivity to increase in more heterogeneous markets, the
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slope coefficient for Nijt ×Hetijt has to go into the same direction as the impact of

Hetijt on heterogeneity. That is, if we have associated Hetijt with an increase in

heterogeneity, then the slope coefficient for Nijt ×Hetijt has to be positive in order

for the intertemporal slope to be more sensitive to increases in competition in more

heterogeneous markets, and vice versa.

Comparing the above classifications with the slope coefficients on Nijt ×Hetijt,
these estimations confirm the conclusions based on hotel bookings data for all measures

except ∆Tempijt (for which we could not reject the possibility of a false classification

at the 5 percent level). Looking again at the sensitivity to competition for Hetijt at

one standard deviation above and below its mean,

∂2 ln(Price)

∂Dayslefttd ∂Nijt

∣∣∣∣
Hetijt=±1

= βN ± βN×Het.

we see that all measures with the exception of ∆Tempijt yield similar patterns (but

to a lesser extent) to the ones seen for our baseline measures. The difference is likely

to result from a somewhat looser correlation between these alternative measures and

customer heterogeneity, so that evaluation Hetijt at one standard deviation above

and below its mean is likely to map into an actual customer heterogeneity evaluated

substantially within its one standard deviation circle.

B.3 Non-monotonic impact of customer heterogeneity

In this section, we generalize our approach in the main body of the paper to evaluate

how the sensitivity of the intertemporal slope to competition changes with customer

heterogeneity in a potential non-monotonic fashion.

We use the following quadratic specification in Hetijt to allow for such non-

monotonicities:

ln(Priceijtd) = (α + βDayslefttd)×Xijt + λi + µj + νt + ξd + εijtd, (8)

with

Xijt = (1, Nijt, Hetijt, Het
2
ijt, Nijt ×Hetijt, Nijt ×Het2ijt),

where Nijt is the number of competitors, Hetijt is the corresponding customer het-

erogeneity measure, and λi, µj, νt and ξd are treated as fixed effects. To ensure that
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computing the quadratic terms is a positive monotonic transformation, we normalize

Hetijt to have positive support.

To identify whether a certain change in Hetijt increases or decreases heterogeneity,

we generalize our previous approach to look at the impact of Hetijt on the intertemporal

slope in monopoly markets. In particular, we interpret a change in Hetijt as an increase

in customer heterogeneity if

∂2 ln(Priceijtd)

∂Dayslefttd∂Hetijt

∣∣∣∣
Nijt=1

= βHet + βN×Het + 2 (βHet2 + βN×Het2)Hetijt < 0,

and vice versa. Note that through the quadratic term, the classification may now

change with Hetijt. For example, we could have that the heterogeneity is increasing

in the tourist intensity if the tourist intensity is absolute low, but is decreasing once

the market is satiated with tourists.

Based on this criterion, we do not find any evidence for a non-monotonic impact

on customer heterogeneity. Both Durationijt and NightsPCijt have a positive impact

on heterogeneity throughout their complete support, motivating the non-monotonic

treatment in the main body of the paper.

Figure 6 plots the estimated sensitivity of the intertemporal slope to competition

as a function of Hetijt, formally given by the cross-derivative of the identified model

in Dayslefttd and Nijt:

∂2 ln(Priceijtd)

∂Dayslefttd∂Nijt

= βN + βN×HetHetijt + βN×Het2Het
2
ijt.

Not surprising giving the monotonic impact of Hetijt, the sensitivity of the slope

to competition is literally “in line” with the linear setup in the main body, yielding a

sensitivity that ranges from zero at the 5th percentile of Hetijt (largely homogenous

markets by our classification) to somewhat above 0.15 and 0.20, respectively, at the

95th percentile (substantially heterogeneous markets by our classification).

B.4 Competition-specific impact of customer heterogeneity

This appendix section generalizes the analysis in the main body of the paper to allow

for a competition-specific impact of customer heterogeneity.

To investigate how changes in customer heterogeneity affect the sensitivity of the
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Figure 6: Sensitivity of intertemporal slope to competition.
Notes: Plots display the impact of Nijt on the intertemporal slope as a function of Hetijt, resulting
from a quadratic specification in Hetijt. On the x-axes, Hetijt is scaled proportional to its own
scale with labels displaying the corresponding percentiles. The y-axes display the cross-derivative
of the estimated model in Nijt and Dayslefttd. Hetijt are properly normalized to have a positive
support. The estimations control for levels of Nijt, Hetijt, Het

2
ijt, Nijt ×Hetijt, Nijt ×Het2ijt; the

same variables interacted with Dayslefttd; and fixed effects λi, µj , νt and ξd.

intertemporal slope to competition, we estimate the following model:

ln(Priceijtd) = (α + βDayslefttd)×Xijt + λi + µj + νt + ξd + εijtd, (9)

with

Xijt = (Compijt, Compijt ×Hetijt),

where Hetijt is the corresponding customer heterogeneity measure, Compijt×Hetijt is

a vector of interaction effects between Hetijt and all competition dummies35, and λi, µj ,

νt and ξd are treated as fixed effects. To facilitate the discussion below, we normalize

Hetijt to have zero mean and unit variance within the corresponding competition

category when interacting with Compijt. Here β is the relevant vector of “slope”

coefficients that define the intertemporal slope. The impact of Hetijt for Compijt = 6

is not identifiable due to zero variation (see Figure 4). We therefore pool 5 and 6

competitors to a “Compijt = 5+” category. Table 9 contains the estimated coefficients

and standard errors (clustered at the market level).

From Panel (a) it can be seen that the non-interacted slope coefficients are again

35Since Compijt covers all competition categories there is no need to include Hetijt by itself.
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Table 9: Customer heterogeneity and intertemporal price dispersion by market competitiveness

(1) (2)
Customer Heterogeneity Measure: Durationij NightsPCij

(a) Estimated Slope Coefficients

(Compijt = 1)×Dayslefttd −1.36 −1.30
(0.10) (0.10)

(Compijt = 2)×Dayslefttd −1.26 −1.22
(0.10) (0.10)

(Compijt = 3)×Dayslefttd −1.22 −1.18
(0.10) (0.10)

(Compijt = 4)×Dayslefttd −1.12 −1.08
(0.10) (0.10)

(Compijt = 5+)×Dayslefttd −1.02 −0.98
(0.10) (0.10)

(Compijt = 1)×Hetijt ×Dayslefttd −0.10 −0.11
(0.02) (0.02)

(Compijt = 2)×Hetijt ×Dayslefttd −0.00 −0.02
(0.01) (0.02)

(Compijt = 3)×Hetijt ×Dayslefttd 0.08 0.05
(0.02) (0.01)

(Compijt = 4)×Hetijt ×Dayslefttd 0.11 0.18
(0.03) (0.02)

(Compijt = 5+)×Hetijt ×Dayslefttd 0.17 0.17
(0.04) (0.04)

(b) Sensitivity and Overall Slope

Low heterogeneity markets
average sensitivity to competition 0.02 0.01
implied monopoly slope −1.25 −1.19
implied competitive slope (Nijt = 5+) −1.19 −1.15

High heterogeneity markets
average sensitivity to competition 0.15 0.15
implied monopoly slope −1.46 −1.41
implied competitive slope (Nijt = 5+) −0.84 −0.81

Observations 1 255 125 1 286 687
R-squared (adj.) 0.57 0.57

Notes: The dependent variable is ln(Priceijtd). Unreported but included in the estimations are
levels of Compijt, Compijt × Hetijt, and fixed effects λi, µj , νt and ξd. The variable used for
Hetijt is indicated at the top of each column. Hetijt is transformed to have zero mean and unit
variance within the corresponding competition category when interacted with competition. Clustered
standard errors (at the market level) are reported in parentheses. Reported coefficients and standard
errors are multiplied by 100. All coefficients are significant at the 0.1 percent level, except for
(Compijt = 2)×Hetijt×Dayslefttd. Low and high heterogeneity markets in Panel (b) are defined as
markets with Hetijt = ±1 standard deviation relative to the mean in the corresponding competition
category. Number of observations depends on availability of heterogeneity data.
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Figure 7: Empirical relationships between intertemporal slope and competition for different degrees
of customer heterogeneity.
Notes: The intertemporal slopes are denominated in daily price changes in percent. The medium
heterogeneity lines are evaluated at the mean value (within-competition) of the corresponding tourist
measure. The high and low heterogeneity lines are evaluated at the mean ±1 standard deviation. The
tourist measure underlying panel (a) is Durationij ; the measure underlying panel (b) is NightsPCij .
All computations are based on the regressions reported in Table 9.

similar to our baseline model in Section 3, likely because there is little correlation

between Hetijt and Compijt. Accordingly, prices are again unambiguously increasing

as the scheduled travel date approaches, but at an intertemporal slope that “flattens”

in more competitive environments.

To evaluate the hypothesis that the intertemporal slope is more sensitive to

competition in more heterogeneous markets, we again need to take a stand on whether

our tourist intensity measures increase or decrease the customer heterogeneity in a

given market. As before, we interpret changes in Hetijt that steepen the intertemporal

slope on monopoly routes as increases in the customer heterogeneity. Given model (9),

this is true if
∂2 ln(Priceijtd)

∂Dayslefttd ∂Hetijt

∣∣∣∣
Nijt=1

= β(Comp=1)×Het < 0,

which—as in the main body of the paper—is the case for both our measures.

To give an overview over how changes in competition affect the intertemporal slope,

Figure 7 plots the intertemporal slope as a function of the number of competitors at

different values of Hetijt. Similar to the thought experiment conducted in the main

body of the paper, we plot the intertemporal slope for “low” and “high” heterogeneity
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markets (evaluated at one standard deviation below and above the competition-specific

mean of Hetijt), as well as for a “medium” heterogeneity market evaluated at the

mean.

While the linear model in the main body assumes that the intertemporal slope

is linear in competition (with the derivative defining the “sensitivity” to competi-

tion), the competition-specific setup considered here allows for an arbitrary relation.

Reassuring our findings in the main body, we however find that the sensitivity is

nearly constant conditional on Hetijt. As before, the intertemporal slope is highly

sensitive to competition in high heterogeneity markets, as is predicted by theories of

competitive price discrimination. In contrast, reducing the customer heterogeneity in a

given market to one standard deviation below its mean, makes the intertemporal slope

largely invariant to competition, in line with the idea that in homogeneous markets

airlines do not price-discriminate to begin with so that they are also not restrict in

their ability to do so by competition.

To reconcile these findings quantitatively with the linear model in the main body,

Panel (b) of Table 9 also reports the “average” sensitivity to competition, amounting

to the average change in the intertemporal slope displayed in Figure 7:

1

supp(N)

∫
N

∂2 ln(Priceijt)

∂Daysleftijt ∂Nijt

∣∣∣∣
Hetijt=±1

≈ 1

4

5∑
N=2

{[
βComp=N − βComp=N−1

]
±
[
β(Comp=N)×Het − β(Comp=N−1)×Het

]}
.

Not surprising given the nearly linear relation in Figure 7, the implied sensitivities

are numerically consistent with our linear model, motivating the simplified exposition

in the main body of the paper.
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C Additional figures (for online publication)
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Figure 8: Unsystematic pricing dynamics versus unsystematic variations in the intertemporal slope.
Notes: The figure displays fictitious price data in 2 markets. Panel (a) displays how projected data
based on a linear fit explains most of the dispersion (86 percent of the average Gini of markets 1 and
2)—reflecting that systematically increasing prices are the main source behind the observed dispersion.
Panel (b) illustrates how at the same time, the fitted model fails to explain any of the variation in
the market-specific slopes. The left panel is akin to the exercise conducted in Section 6.1. Section 6.2
explores, in contrast, how much of the variation in slopes depicted in Panel (b) is explainable by
variations in customer heterogeneity.
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