
Sonderforschungsbereich/Transregio 15 · www.sfbtr15.de 
Universität Mannheim · Freie Universität Berlin · Humboldt-Universität zu Berlin · Ludwig-Maximilians-Universität München 

Rheinische Friedrich-Wilhelms-Universität Bonn · Zentrum für Europäische Wirtschaftsforschung Mannheim 
 

Speaker: Prof. Dr. Klaus M. Schmidt · Department of Economics · University of Munich · D-80539 Munich, 
Phone: +49(89)2180 2250 · Fax: +49(89)2180 3510 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

* Toulouse School of Economics 
 
 
 
 

  
 

 
 

 

March 2014 

 
 

 

 

 
Financial support from the Deutsche Forschungsgemeinschaft through SFB/TR 15 is gratefully acknowledged. 

 
Discussion Paper No. 462 

 
 

Optimal Delegated Search  
with Adverse Selection  

and Moral Hazard 
 

Robert Ulbricht * 
 



Optimal Delegated Search with

Adverse Selection and Moral Hazard∗

Robert Ulbricht

Toulouse School of Economics

March 11, 2014.

Abstract

The paper studies a model of delegated search. The distribution of search

revenues is unknown to the principal and has to be elicited from the agent in

order to design the optimal search policy. At the same time, the search process

is unobservable, requiring search to be self-enforcing. The two information

asymmetries are mutually enforcing each other; if one is relaxed, delegated

search is efficient. With both asymmetries prevailing simultaneously, search is

almost surely inefficient (it is stopped too early). Second-best remuneration

is shown to optimally utilize a menu of simple bonus contracts. In contrast

to standard adverse selection problems, indirect nonlinear tariffs are strictly

dominated.
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1 Introduction

Searching is an important aspect of many agency relationships. To name a few,

recruiting agencies are hired to search for job candidates. Real estate agents are

contracted to search for prospective tenants or housing. And insurance brokers are

employed to attract new clients. More generally, many forms of problem-oriented

thinking require searching for ideas or solutions. This includes research centers searching

for new product ideas, advocates thinking about strategies to defend their clients, and

business consultancies (or managers) looking for profitable business strategies.

This paper analyzes optimal searching when it is delegated to an agent. The

model is based on the standard (single-agent) search model, in which a problem-solver

sequentially samples “solutions” from a time-invariant distribution until she is satisfied

(McCall, 1970; Mortensen, 1970). Departing from the standard search model, I study

equilibrium search when the revenues are not collected by the problem-solver but by a

distinct principal.

I consider two information asymmetries governing the relationship between the

problem-solving agent and the principal. First, motivated by the aforementioned

examples, I model the agent as an expert who has an ex ante informational advantage

over the principal in assessing the prospects of searching. For instance, real estate

agents are likely better in assessing the likelihood that a house sells at a certain price

compared to house owners; recruiting agencies are likely to be better informed about

the chances of finding qualified candidates than their clients; et cetera. In an effort

to capture this notion of asymmetry, I assume that payoffs x are sampled from a

time-invariant but state-dependent distribution F (x|θ), where θ is privately known

by the agent. Second, I assume that the search process itself cannot be observed (or

verified) by the principal. This second asymmetry reflects that many search routines

are either intrinsically unobservable (e.g., thinking for ideas), or are hard to be verified

due to their soft and easily manipulatable nature (e.g., sampling a genuine buyer).

In this search environment the precise configuration of information frictions is

crucial to the delegated search process. If either of the two asymmetries occurs in

isolation, then the efficient benchmark can be sustained as a delegation equilibrium.

This holds true independent of cash constraints or the risk attitude of the agent. If,

however, both asymmetries prevail simultaneously, then each acts as a catalyst to the
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other one, and search is almost surely inefficient (it is stopped too early).1

A natural question then is: how should one design the contractual arrangements

to achieve second-best optimality?

Confronted with both asymmetries, the challenge is to bring the agent to reveal

the optimal search policy (which depends on θ) and, at the same time, to induce her to

also search according to the revealed policy. It turns out that the second-best optimum

can be implemented via a menu of simple bonus contracts. Each contract pays a fixed

bonus when a previously specified target is reached, and nothing otherwise. Other

information about the realized outcome is optimally ignored.

Underlying this result is an (endogenous) misalignment between the perceived

returns to searching between the agent and the principal. Contracts that are more

sensitive to the outcome of the search process than bonus contracts are shown to

increase this misalignment in states where the agent is least inclined to truthfully

reveal the optimal search policy. Accordingly, more complex contracts make it (weakly)

more costly to learn the optimal search policy. Simpler contracts, on the other hand,

are precluded by the requirement to incentivize the agent to search according to the

revealed policy. The same logic also rules out indirect tariffs that only condition on

the realized search revenues.

This result provides a novel angle to the common practice of using bonus schemes

rather than fully state-contingent schedules to set incentives (e.g., Moynahan, 1980;

Churchill, Ford and Walker, 1993). It thereby complements a small literature that

seeks to explain why real world compensation schemes are often simpler than standard

theories would suggest.2 In particular, Herweg, Muller and Weinschenk (2010) have

recently demonstrated that bonus schemes are optimal if agents are averse to losses

relative to an expectation-based reference point.3

More generally, the paper relates to a large literature focusing on the delegation of

1Put into context of the principal-agent literature, the combination of asymmetries works similarly
to how cash constraints and risk-aversion unleash the moral hazard in traditional settings (Holmstrom,
1979; Innes, 1990). A difference is, however, that the unleashing of asymmetries in the search
environment works both ways, a point that becomes important for the second-best contracting scheme
(see below).

2Seminal examples include Holmstrom and Milgrom (1987), Townsend (1979) and Innes (1990)
rationalizing linear compensations schemes and standard debt contracts.

3See also Park (1995), Kim (1997), Demougin and Fluet (1998) and Oyer (2000) showing that
bonus schemes are “knife-edge” optimal under limited liability if agents are exactly risk-neutral, while
they are generally suboptimal if agents are risk-averse to only the slightest degree (Jewitt, Kadan
and Swinkels, 2008).
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certain tasks subject to contracting constraints. The delegation of search has recently

been explored by Lewis and Ottaviani (2008) and Lewis (2012).4 Lewis and Ottaviani,

however, study search over a long-term horizon, using techniques from the dynamic

moral hazard literature (Toxvaerd, 2006; Sannikov, 2008). In these environments search

revenues are decreasing in time and the central challenge is to induce the agent to

search at the right speed.

In this paper, in contrast, search is taken to take place during a comparatively

short time span and the main challenge is to learn (and induce) the preferred stopping

rule. From the view of the principal, the difficulty lies thereby in disentangling an ex

ante poor distribution of search revenues from a poorly chosen search policy. At a more

technical level, this aspect of our paper is closely related to the theory of regulation

and procurement where similar combinations of asymmetries are often taken into

account (e.g., Laffont and Tirole, 1986, 1993; McAfee and McMillan, 1987).5

On the empirical side, the efficiency of search agencies has been studied in the

context of the real estate industry. In line with the findings in this paper, the literature

documents that search spells are generally inefficiently short (Rutherford, Springer

and Yavas, 2005; Levitt and Syverson, 2008).

The remainder of this paper is organized as follows. Section 2 presents the model.

Section 3 provides the first-best benchmark and shows how it can be implemented

as an equilibrium outcome if only one of the two asymmetries is active. Section 4

analyzes the solution to the model with both information asymmetries, and Section 5

concludes. All proofs are confined to the appendix.

2 A simple model of delegated search

There are two parties, a principal and an agent. Both parties are risk-neutral and have

unlimited access to cash.6 The principal hires the agent to operate a search technology

4For an overview of the (non-delegated) search literature, see Mortensen (1986) and Rogerson,
Shimer and Wright (2005). Multi-agent variations include Albrecht, Anderson and Vroman (2010)
and Compte and Jehiel (2010) looking at non-homogeneous search committees that jointly decide
over the continuation of a search process.

5Several other literatures are based on similar combinations of asymmetries, perhaps most notably
the seminal Mirrlees (1971) framework. See Bolton and Dewatripont (2005, ch. 6) for an overview.

6Both assumptions can be relaxed without affecting the results. Maintaining them helps simplifying
notation, avoids dealing with (irrelevant) corner solutions, and highlights that any inefficiency emerging
in this search environment is unrelated to limited liability and risk-sharing.
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that yields a monetary outcome x ∈ X = [0, B]. The agent samples outcomes at

constant (non-monetary) costs c > 0 from a twice differentiable cumulative distribution

function F (x|θ), where θ is an exogenous state with support Θ = [
¯
θ, θ̄]. The prior

cumulative distribution function of θ is common knowledge, is denoted by P , and

has a differentiable density p such that p(θ) > 0 for all θ ∈ Θ. Each time the agent

samples an outcome, she can either stop search and select any previously sampled

outcome, or continue searching. If she selects an outcome, the principal collects its

monetary value, the agent receives her remuneration, and the game end. The outside

option from not selecting any outcome and from not contracting is normalized to zero

for both parties. I restrict attention to the case where, in the absence of information

asymmetries, solving the problem is profitable in all states (E{x|θ} ≥ c for all θ ∈ Θ).

To conclude the model, let me specify an information structure. I consider two

information asymmetries.

Assumption A1 (Adverse Selection). The state θ is privately revealed to the agent

before she contracts with the principal. The principal knows the set of potential states

Θ and their distribution P (θ).

Assumption A2 (Moral Hazard). Search by the agent and the sampled selection of

outcomes cannot be observed by the principal. The value of the selected outcome is

observable and verifiable.

3 Benchmark cases

For reference, I first describe the full information (first-best) benchmark and examine

the special cases where only one of the two information asymmetries prevails.

3.1 Full information

Under full information the principal reaps the (joint) surplus and implements the

search policy that maximizes it. This is merely the standard search model. I skip the

derivation and simply state the result. For details, see e.g. McCall (1970).

Proposition 1. In the first best, the agent searches as long as for all previously sampled

outcomes it holds that x ≤ x̄FB(θ). Otherwise she stops search and selects the last-

sampled outcome. The first-best stopping rule is defined by a mapping x̄FB : Θ→ X,
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such that x̄FB satisfies:

c =

∫ B

x̄FB(θ)

(x′ − x̄FB(θ)) dF (x′|θ). (1)

Under full information, the problem is separated across states. Conditional on θ,

search continues until the agent samples a solution of at least value x̄FB(θ). The

optimal “stopping rule” x̄FB(θ) is hereby chosen to equate the marginal expected

benefit of finding a better outcome than x̄FB(θ) (the right-hand side of equation (1))

with the marginal (social) cost of continuing search c.

3.2 Only adverse selection

Consider now the case where the principal is able to observe (and verify) the sam-

pled selection of outcomes, and only faces uncertainty from not knowing the state θ

(Assumption A1 holds but not A2). In this case, the first-best search policies can be

implemented by exactly compensating the agent for her search costs. Because this

makes her payoffs effectively independent of the pursued search policy, she is indifferent

and finds it (weakly) optimal to adopt the first-best policy. I state the precise result

in the following.

Proposition 2. Suppose Assumption A1 holds, but the principal is able to verify the

sampled selection of outcomes. Then the first-best search policies can be implemented

by specifying a transfer T (N) from the principal to the agent, where T (N) = N c, and

N is the number of outcomes in the final sample.

Proof Sketch. Consider the first-best equilibrium where the agent accepts the contract,

pursues first-best search policies, and selects the outcome with the highest value. Under

the proposed contract T , the agent breaks even independently of her search behavior,

preventing any profitable deviation. Moreover, since returns to the principal define the

joint first-best surplus, x−N c, they are maximal (subject to the agent’s participation

constraint), precluding any profitable deviation of the principal. Q.E.D.

With only adverse selection, the principal is able to construct a contract, in which

the agent’s private knowledge about the state θ is not payoff-relevant to her. The

agent is therefore willing to reveal the state without any explicit incentives. Critical to

this contract is that the principal is able to verify the sampled selection of outcomes,
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allowing him to assess the actual search costs of the agent. This is precisely what

is prevented by Assumption A2. Under moral hazard, the principal can only form

an expectation about how often the agent sampled before selecting an outcome,

preventing him to differentiate a poor distribution of outcomes (caused by θ) from an

too early termination of search by the agent. In this sense, Assumption A2 “unleashes”

Assumption A1 by rendering the agent’s private knowledge of θ necessarily payoff-

relevant (for any non-trivial contracting).

3.3 Only moral hazard

A similar conclusion holds regarding the flipside scenario where Assumption A2 holds

but not Assumption A1. Again the first-best search policies can be implemented via

a simple contractual arrangement. Perhaps the most obvious approach is to make

the agent residual claimant, as it is then in her own interest to maximize the joint

surplus.7

Proposition 3. Suppose Assumption A2 holds, but the principal learns θ prior to

contracting the agent. Then first-best search policies can be implemented by specifying

a transfer T (x) from the principal to the agent, where T (x) = −x̄FB(θ) + x.

Proof Sketch. Under the proposed contract, returns to the agent, −x̄FB(θ) + x−N c

define the joint surplus up to a constant. Search is hence efficient. There remains the

question whether both parties agree to the specified “price” x̄FB(θ). To verify this,

note that x̄FB(θ) defines the first-best expected surplus (conditional on θ). Hence the

principal reaps all the surplus, and therefore happily proposes this contract, which the

agent accepts in equilibrium since she breaks even. Q.E.D.

Again, this arrangement is not feasible if both asymmetries co-exist. The reason

is that with θ unknown the price x̄FB(θ) will be subject to adverse selection in the

original sense (Akerlof, 1970). Accordingly, adverse selection triggers the moral hazard

problem in the search environment similar to how risk aversion and limited liability

unleash moral hazard in traditional principal-agent settings.

7This requires that the agent has sufficient cash reserves and is not too risk-averse. However, there
exists an alternative scheme similar to the optimal scheme in the next section that here implements
the first best without violating limited liability and without imposing any monetary risk on the agent.
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4 Adverse selection and moral hazard

I now turn to the case where both asymmetries co-exist. The challenge for the

principal then becomes to design an incentive scheme that brings the agent to reveal

her knowledge of the state θ and, at the same time, induces her to search according to

the search policies that the principal finds optimal given θ.

Let a contract be a (possibly state-contingent) mapping Tθ : X → R, which

specifies, for every outcome x ∈ X, a transfer from the principal to the agent. Under

Assumption A2 it is clear that all incentives to search have to be self-enforcing given Tθ.

Taking into account the mapping from Tθ to search policies, the principal’s objective

is to maximize expected search revenues net of transfers. By the revelation principle, a

solution to this problem may be obtained via a direct revelation mechanism in which

the agent truthfully reports the state θ, and for each θ is assigned a contract Tθ. The

principal’s problem is then to find the optimal set of contracts {Tθ}θ∈Θ.

I approach this problem as follows. Since any contract Tθ effectively designs a search

problem from the perspective of the agent, I first characterize the agent’s optimal

search policy for an arbitrary contract. With this implementability constraints at hand,

I then examine the optimization problem of the principal and obtain some defining

properties of the optimal menu. In particular, I establish the optimality of bonus

contracts. After simplifying the problem accordingly, I lastly solve for the optimal

menu {Tθ}θ∈Θ and derive the equilibrium search policies.

4.1 Implementability constraints

Once the agent has chosen a contract Tθ̃ from the menu offered to her, sequential

rationality requires that she pursues the search policy which is then optimal for her.

Since the agent is effectively facing a search problem over the transfers Tθ̃(x) specified

by the chosen contract, equilibrium search is characterized by the solution to this

search problem. The following lemma states the solution.

Lemma 1. An agent with distribution θ and contract Tθ̃ searches as long as for all

previously sampled outcomes it holds that Tθ̃(x) ≤ T̄θ̃(θ). Otherwise she stops search

and selects the last-sampled outcome. Let ψθ̃ : X×R→ {0, 1} be an indicator function,
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such that

ψθ̃(x, T̄θ̃(θ)) =

0 if Tθ̃(x) ≤ T̄θ̃(θ), and

1 if Tθ̃(x) > T̄θ̃(θ).

Then the stopping rule is defined by a mapping T̄θ̃ : Θ→ X, such that T̄θ̃(θ) satisfies

c =

∫ ({
Tθ̃(x

′)− T̄θ̃(θ)
}
· ψθ̃(x

′, T̄θ̃(θ))
)

dF (x′|θ) , (2)

whenever
∫
Tθ̃(x

′) dF (x′|θ) ≥ c. Otherwise the agent does not search at all.

Similar to the first-best case, the optimal stopping rule T̄θ̃ equates the marginal

cost of searching c with the marginal expected benefits from finding a better outcome.

However, in contrast to the first best, the value of searching from the perspective of

the agent is now defined by T (x) rather than x. For what is coming next, it will be

crucial to formulate the solution to the agent’s problem in terms of outcomes x ∈ X.8

To ensure that Tθ̃(x) maps back into a unique solution in X, I therefore impose the

following restriction.

Assumption A3. Contracts are monotonically increasing, i.e. Tθ(x
′) ≤ Tθ(x

′′) for

all (x′, x′′, θ) ∈ {X2 ×Θ |x′ ≤ x′′}.

It is well known that this assumption can be rationalized by the possibility of free

disposal; i.e., the ability of the agent to freely downscale any realized outcome x.9

Under Assumption A3, inverting T̄θ̃ then immediately defines a stopping rule in X,

given by,

x̄(Tθ̃, θ) = max
x

{
x : Tθ̃(x) ≤ T̄θ̃(θ)

}
. (3)

The following proposition formulates the resulting implementability constraints by

defining x̄(Tθ̃, θ) directly as a function of Tθ̃ (eliminating the intermediate dependence

on T̄θ̃).

8This guarantees that the Spence-Mirrlees property holds with respect to any change in the
payment scheme dT . See Footnote 11 for details.

9To see this note that with free disposal the agent can guarantee herself a payoff of T ∗θ (x) ≡
maxx′∈[0,x]{Tθ(x′)}. Hence, w.l.o.g., one could replace Tθ by T̂θ, which for all x, pays T̂θ(x) = T ∗θ (x),

whereas it can be easily verified that T̂θ is indeed increasing in x.

8



Proposition 4. Suppose Assumptions A2 and A3 hold. Let M be the space of

monotonically increasing functions X → R. Then search is determined by a function

x̄ :M×Θ→ X, which specifies, for a contract Tθ̃ ∈M and a state θ ∈ Θ, a number

x̄(Tθ̃, θ), such that the agent searches as long as for all previously sampled outcomes

it holds that x ≤ x̄(Tθ̃, θ). Otherwise she stops search and selects the last-sampled

outcome. The stopping rule x̄ is defined by the following inequalities.

c ≤
∫ B

x̂

(
Tθ̃(x

′)− Tθ̃(x̂)
)

dF (x′|θ) for all x̂ ≤ x̄(Tθ̃, θ) (4a)

c >

∫ B

x̂

(
Tθ̃(x

′)− Tθ̃(x̂)
)

dF (x′|θ) for all x̂ > x̄(Tθ̃, θ) . (4b)

4.2 Contract properties

I am now ready to characterize the problem from the perspective of the principal.

The optimal menu of contracts {Tθ}θ∈Θ is given by the solution to the following

maximization problem:

max
{Tθ}θ∈Θ

{∫
θ∈Θ

∫ B

x̄(Tθ,θ)

(
x′ − Tθ(x′)
F̄ (x̄(Tθ, θ)|θ)

)
dF (x′|θ) dP (θ)

}
subject to the constraints,

1

F̄ (x̄(Tθ, θ)|θ)

[∫ B

x̄(Tθ,θ)

Tθ(x
′) dF (x′|θ)− c

]
≥ 0 (IRθ)

1

F̄ (x̄(Tθ, θ)|θ)

[∫ B

x̄(Tθ,θ)

Tθ(x
′) dF (x′|θ)− c

]
≥ 1

F̄ (x̄(Tθ̃, θ)|θ)

[∫ B

x̄(Tθ̃,θ)

Tθ̃(x
′) dF (x′|θ) − c

]
(ICθ,θ̃)

for all (θ, θ̃) ∈ Θ2, where x̄(Tθ̃, θ) is characterized by

c ≤
∫ B

x̂

(
Tθ̃(x

′)− Tθ̃(x̂)
)

dF (x′|θ) for all x̂ ≤ x̄(Tθ̃, θ) (SP −
θ,θ̃

)

c >

∫ B

x̂

(
Tθ̃(x

′)− Tθ̃(x̂)
)

dF (x′|θ) for all x̂ > x̄(Tθ̃, θ) . (SP +

θ,θ̃
)
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The objective of the principal here is to maximize his expected payoff subject to

three kinds of constraints. First, constraints (IRθ) require that it must be individually

rational for the agent in state θ to accept contract Tθ, rather then choosing her outside

option. Second, constraints (ICθ,θ̃) require that it must be optimal for the agent in

state θ to truthfully reveal the state to the principal by choosing Tθ from the menu

of all contracts {Tθ̃}θ̃∈Θ. These constraints stem from the principal not knowing the

state θ. The third set of constraints reflect the requirement to also incentivize search

by the agent. As follows from Proposition 4, (SP −
θ,θ̃

) and (SP +

θ,θ̃
) pin down the stopping

rule x̄(Tθ̃, θ) implemented in state θ under contract Tθ̃.

Inspecting (SP −
θ,θ̃

) and (SP +

θ,θ̃
) it can be seen that for a general contract Tθ, the

implemented search policy depends on the state θ̃. In particular, off-equilibrium

search policies x̄(Tθ, θ̃) do not necessarily equal x̄(Tθ, θ). The key question guiding the

following analysis will be: what search policy should a contract designed for state θ

implement in state θ̃? An intuitive answer here is that the principal wants to design a

contract Tθ that implements a search policy in all states θ̃ other than θ that makes it

as unattractive as possible in the relevant subset of these states to choose contract Tθ.

In the following I will show that bonus contracts achieve this goal.

Before proving this claim, let me impose some structure on the distribution of

outcomes F (x|θ) and states P (θ). Let F̄ ≡ 1− F , and let H ≡ ∂F̄−1/∂x. Then:

Assumption A4. ∂H/∂θ ≤ 0, and ∂2H/∂θ2 ≥ 0.

Assumption A5. ∂H/∂x ≤ 0, and ∂2H/∂x∂θ ≤ 0.

The first part of Assumption A4 introduces a stochastic ordering over distributions

in θ. A sufficient condition for H to be decreasing is the commonly used monotone

likelihood ratio condition.10 Intuitively, the imposed ordering in H requires that at

any point of search, continuing search will yield higher outcomes—in the sense of

first-order stochastic dominance—in state θ′′ than in state θ′ < θ′′. At a technical

level, this guarantees that the Spence-Mirrlees property holds in a stochastic sense.11

The second part of Assumption A4 strengthens the ordering, such that H is convexly

10Another condition which is less strict than the monotone likelihood ratio condition, and which
also implies H decreasing, is sometimes referred to as monotone hazard ratio condition.

11More precisely, Assumption A4 implies that the agent’s indifference curves between expected
transfers and different stopping rules cross only once over different states. To see this, let T eθ ≡
E{T (x) |x ≥ x̄, θ} denote the expected transfers to the agent in state θ with a given contract T ,
and let uθ(T

e
θ , x̄) ≡ T eθ − c/F̄ (x̄|θ) denote the expected utility of the agent when pursuing stopping

rule x̄. Then the single crossing property holds, if for any (θ, θ′) ∈ {Θ2|θ > θ′} it holds that
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increasing in θ. Intuitively, this requires that the benefit of being in a better state

than θ is decreasing in θ. Assumption A5 is of more technical nature, ensuring that

the objective function of the principal is concave.12

To keep the results clear, I impose two further assumptions that ensure the existence

of an interior optimum.

Assumption A6. d
dθ

( p(θ)
1−P (θ)

)
≥ 0.

Assumption A7. ∂2

∂x̄∂θ
E{x|x ≥ x̄, θ} ≥ 0.

Assumption A6 is standard in many mechanism design applications, meaning that

the likelihood to be in a better state than θ is decreasing in θ. A sufficient condition for

this to hold is that the likelihood p(θ) is weakly decreasing in θ (e.g., θ being uniform).

Finally, Assumption A7 requires the marginal benefit of search to be increasing in θ.

Together with Assumptions A4 and A6 this ensures the optimum to be interior.13

Parametric distributions for F consistent with these assumptions exist, for instance,

within the Beta family and the (generalized) family of Pareto distributions (see the

end of the next subsection for a particular simple example).14

I am now ready to show that the principal optimally designs a menu of contracts

which is exclusively comprised of bonus contracts as defined below.

Definition. Let τ be a nonrandom constant. Then a contract T is called a bonus

contract when it is of the following form:

T (x) =

0 if x < x̄

τ if x ≥ x̄ .

The argument establishes that a menu of bonus contracts implements any set of

equilibrium search policies in a weakly optimal way and, therefore, any equilibrium

− ∂uθ/∂x̄
∂uθ/∂T eθ

≤ − ∂uθ′/∂x̄
∂uθ′/∂T

e
θ′

, which simplifies to H(x|θ) ≤ H(x|θ′). In conjunction with Assumption A3

this then ensures that indifference curves are indeed single-crossing for any differential dT , since for
any monotonic contract it holds that dT eθ ≥ dT eθ′ .

12This assumption can be relaxed to HHxθ−HxHθ ≤ 0, with subscripts denoting partial derivatives.
13In many cases Assumption A6 is not necessary. Specifically, when p(θ)/(1−P (θ)) is increasing at

a sufficiently high rate, or when H is sufficiently convex (HHθθ −H2
θ ≥ 0, with subscripts denoting

partial derivatives), it can be simply dropped. For details see the proof of Proposition 6.
14Given certain regularity conditions that ensure that a first-best solution exists, the analysis in

this paper also seamlessly extends to the case where B →∞, permitting distributions for F with
half-bounded supports (e.g., the exponential distribution with F̄ (x|θ) = e−x/θ for

¯
θ > 0).
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can be implemented by a menu of such contracts. First, I investigate the implications

of a menu that consists exclusively of bonus contracts. The following lemma asserts

that in this case the optimal menu resembles many of the characteristics of a standard

adverse selection problem. In particular, I have that (IRθ), (ICθ,θ̃), (SP −
θ,θ̃

) and (SP +

θ,θ̃
)

in the principal’s maximization problem can be replaced by (a), (b) and (c) below.

Lemma 2. Suppose Assumption A1–A4 hold. Let {Tθ}θ∈Θ be a menu of bonus con-

tracts, let x̄(θ) be the search targets implemented by contract Tθ, and let τ(θ) be the

transfer paid to the agent when x > x̄(θ). Then if {Tθ}θ∈Θ is a solution to the princi-

pal’s optimization program, then it is also a solution to a program where the principal

maximizes her payoff subject to the following constraints:

(a) x̄(θ) is nondecreasing in θ,

(b) U(
¯
θ) = 0, and

(c) dU
dθ

= − ∂
∂θ

(
c

F̄ (x̄(θ)|θ)

)
,

where U(θ) ≡ u(x̄(θ), τ(θ), θ) denotes the agent’s indirect utility in state θ (given

contract Tθ = (x̄(θ), τ(θ))).

Equipped with Lemma 2, I show the following result.

Proposition 5. Suppose Assumptions A1–A7 hold. Then to any equilibrium in the

game defined in Section 2, there corresponds an associated menu of bonus contracts

{Tθ}θ∈Θ, which implements the same actions and is (weakly) preferred by the principal.

The proof establishes a weak optimality of bonus contracts by showing that for any

set of search policies a menu of bonus contracts implementing these policies defines a

lower bound on the utility of the agent. To develop an intuition, suppose the principal

wants to implement the stopping rule x̄(θ) in state θ. In order to incentivize the agent to

continue search for all x < x̄(θ), he needs to provide her with a certain expected benefit

of finding x ≥ x̄(θ). Let τ̂(θ) denote the expected payment necessary to implement

this benefit.15 Then it must hold that
∫ B
x̄(θ)

Tθ(x
′) dF (x′|θ) ≥ τ̂(θ). The precise shape

of Tθ on [x̄(θ), B] is, however, irrelevant for the purpose of incentivizing the agent

in state θ and can be freely used to reduce the agent’s temptation of misreporting

15Generally τ̂(θ) depends on sup{Tθ(x) : x ∈ [0, x̄(θ)]} in conjunction with (SP±θ,θ). For small
values of the former term it is pinned down by (IRθ) instead.
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the state θ. As is typical for adverse selection problems, the relevant temptation in

this context is to underreport the state, giving the agent in all states better than θ

a stochastic advantage in finding high outcomes relative to state θ. Because of this

stochastic advantage, any schedule Tθ that is strictly increasing on [x̄(θ), B] yields

an expected return that is strictly higher than τ̂(θ) in all states better than θ. By

paying a fixed remuneration, bonus contracts eliminate this premium associated with

misreporting.16

Regarding the question which search policy should be implemented off-equilibrium,

it immediately follows:

Corollary. Let {Tθ}θ∈Θ be a solution to the principal’s optimization program. Then

without loss of generality one may assume that x̄(Tθ, θ̃) = x̄(Tθ, θ) ≡ x̄(θ) for all

(θ, θ̃) ∈ Θ2.

Intuitively, implementing any off-equilibrium search policy that stops later than

the one designed for state θ would necessarily generate a premium from misreporting

the state. Any off-equilibrium search policy that stops earlier than in state θ does

not need to be deterred.17 Accordingly, I henceforth suppress the second argument of

x̄(Tθ, θ
′) and use x̄(θ) to denote the search policy implemented by contract Tθ. With

this (and Lemma 2), we can then write {Tθ}θ∈Θ as a function of {x̄(θ)}θ∈Θ:

Corollary. The second-best optimum can be achieved by a menu of bonus contracts

of the following form. For all θ ∈ Θ,

Tθ(x) =

0 if x < x̄(θ)

[F̄ (x̄(θ)|θ)]−1c+ U(θ) if x ≥ x̄(θ) ,

where

U(θ) =

∫ θ

¯
θ

− ∂

∂θ̃

(
c

F̄ (x̄(θ̃)|θ̃)

)
dθ̃

is the minimal rent necessary to deter misreporting of θ.

16There still remains a second type of rent associated with underreporting the state that accrues
from having smaller expected costs of pursuing a particular search policy. Because of this second
rent, delegated search is still inefficient in equilibrium.

17While it is possible that x̄(Tθ, θ̃) = 0 for some θ̃ < θ, it is never necessary in these cases to deter
the agent from choosing Tθ. One may thus assume without loss of generality that x̄(Tθ, θ̃) = x̄(Tθ, θ).

13



4.3 Optimal search policies

I now solve for the second-best search policies. Substituting for Tθ using the last

corollary and again using Lemma 2, the challenge of incentivizing search is effectively

solved and the maximization problem of the principal reduces to a standard adverse

selection problem. The following proposition states the solution.

Proposition 6. Suppose Assumptions A1–A7 hold. Then for some (nonempty) Φ ⊆ Θ,

search is “directed”, with {x̄(θ)}θ∈Φ satisfying:

c+Dθ(x̄(θ)) =

∫ B

x̄(θ)

(x′ − x̄(θ)) dF (x′|θ) , (5)

for some x̄(θ) > 0, and where Dθ : X → R+ is defined by

Dθ(x) =


0 if x = 0

−1− P (θ)

p(θ)

∂H(x|θ)
∂θ

c

H(x|θ)
if x > 0 .

(6)

For all θ /∈ Φ, search is “undirected”, satisfying x̄(θ) = 0.

Comparing equation (5) to its first-best counterpart (1), the marginal cost of

delegated search is inflated by an agency term Dθ. Dθ reflects the cost of learning

the optimal search policy: Under delegation, increasing x̄(θ) not only increases the

expected search costs, but also makes it more tempting for the agent to misreport the

search policy in states θ′ ∈ {θ′ ∈ Θ : θ′ > θ}. To offset for this additional temptation,

the principal needs to pay the agent an (higher) rent U(θ′) in all states θ′, making it

(in expectations) more expensive to search in state θ.

Since the benefits of search are the same under delegation (the right-hand sides of

(5) and (1)), we have:

Corollary. Suppose Assumptions A1–A7 hold. Then delegated search is almost surely

inefficient: x̄SB(θ) < x̄FB(θ) for all θ ∈ [0, B).

Proposition 6 distinguishes two cases. First, for all θ ∈ Φ, second-best search

policies continue to be directed towards some target x̄(θ), but the target is generally

set too low (search stops too early). Second, for θ /∈ Φ, sequential (delegated) search

is not profitable at all and the principal simply asks the agent to sample a single

outcome and to unconditionally select it as final.

14



c

x̄SBx̄FB x

Directed Search (θ ∈ Φ)
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Undirected Search (θ /∈ Φ)
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x̄

(x′ − x̄) dF (x′|θ)

c+Dθ(x̄)

Figure 1: Second-best search.

Figure 1 illustrates the two cases. Delegated search is undirected (θ /∈ Φ) if Dθ

increases the left-hand side of (5) beyond the right-hand side for all x̄ > 0, either

because it is unprofitable to search from an ex post perspective (taking into account the

agency rents paid in θ), or because it is sufficiently unlikely to be in state θ, such that

it is not worth the increase in rents in more likely states from an ex ante perspective.

Because the agent is equally good at securing x > 0 in all states, there are no rents

from deviating to x̄ = 0 that have to be compensated. Together with monotonicity

of x̄ this implies Dθ(0) = 0 for all θ. Undirected search is therefore preferred over no

search whenever implementing x̄ > 0 is too costly.

A sufficient condition for θ ∈ Φ is c+Dθ(x̄) < E(x|θ) for a marginal x̄:

c+ lim
x↘0

Dθ(x) <

∫
x dF (x|θ). (7)

Using that agency rents U(θ′) are increasing in x(θ) for all θ′ > θ, the condition can

be shown to be also necessary.

Proposition 7. Suppose Assumptions A1–A7 hold. Then θ ∈ Φ if and only if θ fulfills

condition (7).

In particular, since x̄(θ) is increasing, it follows that Φ has the following “mono-

tonicity” property.

Corollary. Let θ′′ > θ′. Then it holds that (i) if θ′ ∈ Φ, then θ′′ ∈ Φ; and (ii) if
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Figure 2: Optimal search policies.

0
x− x+ B
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Figure 3: Indirect tariff.

θ′′ /∈ Φ, then θ′ /∈ Φ.

For an example, consider the case where θ is uniform on [ 1
10
, 4] and F̄ (x|θ) =

(1 − x)1/θ.18 Figure 2 displays the optimal search policies as a function of θ. The

example is chosen so that
¯
θ is the lowest value of θ for which search is (first-best)

profitable (x̄FB(
¯
θ) ≈ 0). In state θ̄, delegated search is efficient (indicated by x+ ≈ 0.81).

For all θ < θ̄, second-best search stops too early compared to the first best, and is

undirected on [
¯
θ, θ0].

4.4 Indirect tariffs

The second-best bonus scheme is arguably a particular simple scheme among the class

of direct mechanisms. An interesting question is, however, whether there also exists a

simple indirect mechanism that implements the second best. In particular, does there

exists a nonlinear (possibly discontinuous) tariff T ∗ : X → R that implements the

second best?

The answer is no. In contrast to pure adverse selection problems, any tariff T ∗

that implements the optimal search policies {x̄(θ)} is strictly more costly then the

direct bonus scheme.

18While this choice for F fails to satisfy the strict version of Assumptions A5 and A7, it is consistent
with the relaxed versions given in Footnotes 12 and 13, so that all results apply.
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Proposition 8. Suppose Assumptions A1–A7 hold. Let {x̄(θ)} define the second best

search policies and let T ∗ define the tariff that implements {x̄(θ)} at lowest expected

costs. Then T ∗ exists, and expected transfers from the principal to the agent are strictly

higher than τ(θ) for all θ > inf Φ.

Underlying this inefficiency result is that the implementability conditions (SP −
θ,θ̃

)

and (SP +

θ,θ̃
) deplete most degrees of freedom in designing T ∗. Specifically, T ∗ must

satisfy the following integral equation:

F̄ (x|q(x))T ∗(x) + c =

∫ B

x

T ∗(y) dF (y|q(x)) for all x ∈ (x−, x+), (8)

where x− ≡ x̄(inf Φ), x+ ≡ x̄(θ̄), and q(x) ≡ x̄−1(x) (for details, see the proof in the

appendix). This leaves only the shape of T ∗ on [x+, B] as a means to replicate the

second-best compensation scheme. It turns out that this degrees of freedom do not

suffice to fulfill (ICθ,θ̃) and (IRθ) at the (expected) second-best costs.

To build an intuition, note that T (x̄(θ) defines the indirect utility of the agent

in state θ, since for any x = x̄(θ) she must be indifferent whether or not to continue

searching. The key insight is that any solution to (8) is necessarily steeper than U(q(x))

(see Figure 3 for an illustration). Hence, satisfying individual rationality in state inf Φ

necessarily increases the rents in all other states beyond their second-best level. The

reason is closely related to the optimality of bonus contracts. Because T ∗ must be

strictly increasing on [x−, x+] in order to implement the (continuous) mapping θ 7→ x̄,

the agent can generate the deviation premium that bonus contracts had eliminated by

choosing x̄(θ′) in state θ > θ′. In order to nevertheless implement {x̄(θ)}, benefits of

continued search have to compensate this premium, reflected in the steeper slope of

T ∗ (defining the agent’s utility under T ∗) compared to U .

5 Summary

I have studied a model of delegated search under varying assumptions about what can

be observed by the principal. If the principal can observe either the search process or

shares the same information as the agent regarding its prospects, then delegated search

is demonstrated to be efficient. If, however, the relation between the principal and

the agent is governed by both imperfect monitoring of search and ex ante uncertainty
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about its prospects, these sources of uncertainty exacerbate each other, and search

is found to be stopped too early. In the light of this inefficiency, utilizing a menu

of bonus contracts is shown to be second-best. The scheme strictly dominates any

nonlinear (indirect) tariff.

Beyond the specific context of search agencies, the analysis may also illuminate the

delegation of certain non-routine problems. Solving non-routine problems often requires

investigating potential solutions that in the process may turn out unsatisfactory and

require further thinking until a sufficiently promising solution strategy is conceived.

Delegating such tasks resembles many aspects of the environment considered in this

paper. For instance, managers are expected to come up with good business plans,

consultants are hired to search for solutions to pending problems, and advocates need

to find good strategies to defend their clients.

The optimal utilization of bonus contracts provides theoretical support for their

widespread usage. The necessity to adopt these remuneration schemes depends, however,

on the simultaneous relevance of the two asymmetries. If learning the optimal search

policies is the main concern, a simple piece rate scheme that compensates the agent

for each sampled solution suffices. If implementing search is the main concern, then

linear payment schemes that make compensation highly sensitive to the value of the

adopted solution are found to be optimal.

Of course, the precise configuration of asymmetries is often hard to determine

for a particular application. With regards to the adopted notion of moral hazard,

I conjecture that searching for solutions in non-routine tasks is often intrinsically

unobservable, in particular when the search is of cognitive nature. Adverse selection

regarding the optimal search policy, in contrast, is expected to increase in relevance

with the expertise of the agent. I therefore suspect the delegation of search to be

particularly challenging when tasks are both non-routine and require specialized skills.

For less specialized tasks the experience of tenured agents may serve as a substitute.
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A Mathematical Appendix

A.1 Proof of Lemma 1

Let V (x|θ) denote the indirect utility of the agent in state θ after sampling x. Then:

V (x|θ) = max

{
Tθ̃(x), −c+

∫
V (x′|θ) dF (x′|θ)

}
, (9)

whereas outcome x is selected as final whenever the associated transfer Tθ̃(x) exceeds

the expected utility from continuing search. Since this expected utility is independent

of x, it holds that the agent selects outcome x whenever Tθ̃(x) > T̄θ̃(θ), where T̄θ̃(θ) =

−c+
∫
V (x′|θ) dF (x′|θ). Let ψθ̃ : X × R→ {0, 1} be an indicator, such that

ψθ̃(x, T̄θ̃(θ)) =

0 if Tθ̃(x) ≤ T̄θ̃(θ) , and

1 if Tθ̃(x) > T̄θ̃(θ) .
(10)

Then, using (9), I can rewrite T̄θ̃(θ) as

T̄θ̃(θ) = −c+

∫ ((
1− ψθ̃(x

′, T̄θ̃(θ))
)
T̄θ̃(θ) + ψθ̃(x

′, T̄θ̃(θ))Tθ̃(x
′)
)

dF (x′|θ),

(11)

or

T̄θ̃(θ)
(

1−
∫ (

1− ψθ̃(x
′, T̄θ̃(θ))

)
dF (x′|θ)

)
= −c +

∫
ψθ̃(x

′, T̄θ̃(θ))Tθ̃(x
′) dF (x′|θ), (12)

or

c =

∫
ψθ̃(x

′, T̄θ̃(θ))Tθ̃(x
′) dF (x′|θ)− T̄θ̃(θ)

∫
ψθ̃(x

′, T̄θ̃(θ)) dF (x′|θ) (13)

=

∫
ψθ̃(x

′, T̄θ̃(θ))
(
Tθ̃(x

′)− T̄θ̃(θ)
)

dF (x′|θ). (14)

Because any increase in T̄θ̃(θ) weakly decreases ψθ̃(x
′, T̄θ̃(θ)), the RHS of (14) is strictly

decreasing in T̄θ̃(θ). Hence, if there exists a solution to (14), it is unique. Moreover,

maxx Tθ̃(x) exists since X is compact, whereas the RHS of (14) is zero at maxx Tθ̃(x),
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implying that (14) uniquely characterizes T̄θ̃(θ) whenever
∫
T (x) dF (x|θ) ≥ c. Other-

wise, marginal costs of searching always exceed the marginal benefits, and the agent

trivially abstains from search.

A.2 Proof of Proposition 4

By construction of x̄(Tθ̃, θ), for some x ∈ X, Tθ̃(x) ≥ T̄θ̃(θ) (see the proof to Lemma 1).

Further, whenever search is directed, for some x ∈ X, Tθ̃(x) ≥ T̄θ̃(θ). Thus for Tθ̃
strictly increasing and continuous, x̄(Tθ̃, θ) ≡ T−1

θ̃
(T̄θ̃(θ)) ∈ X obviously exists, and

is given by (4a) and (4b). To verify the remaining cases, suppose that T̄θ̃(θ) is not

attained by Tθ̃(x) on X. Then from (4a) and (4b), x̄(Tθ̃, θ) is assigned to the point

of discontinuity where limx↗x̄(Tθ̃,θ)
Tθ̃(x) < T̄θ̃(θ) and limx↘x̄(Tθ̃,θ)

Tθ̃(x) > T̄θ̃(θ). So

search given by x̄(Tθ̃, θ) is identical to search given by T̄θ̃(θ). Finally, suppose that

T̄θ̃(θ) is attained on an interval [
¯
x, x̄]. Then from Lemma 1, the agent continues search

for all x ≤ x̄ and stops search for x > x̄. Thus x̄(Tθ̃, θ) = x̄, identical to the rule given

by (4a) and (4b).

A.3 Proof of Lemma 2

To proof this lemma, I first characterize the set of stopping rules x̄(θ) that are

implementable via bonus contracts. From (SP −
θ,θ̃

) and (SP +

θ,θ̃
) it follows that an agent

with bonus contract Tθ̃ = (x̄(θ̃), τ(θ̃)) chooses a stopping rule

x̄(Tθ̃, θ) =

0 if τ(θ̃) < [F̄ (x̄(θ̃)|θ)]−1 c, and

x̄(θ̃) if τ(θ̃) ≥ [F̄ (x̄(θ̃)|θ)]−1 c.
(15)

Accordingly, let u(θ, θ̃) ≡ max{0,−[F̄ (x̄(θ̃)|θ)]−1c+ τ(θ̃)} denote the agent’s indirect

utility in state θ when she chooses bonus contract Tθ̃ = (x̄(θ̃), τ(θ̃)). Note that (IRθ)

implies that τ(θ̃) ≥ [F̄ (x̄(θ̃)|θ̃)]−1 c, and thus I can ignore (SP −
θ,θ̃

) and (SP +

θ,θ̃
) if (ICθ,θ̃)

holds.

Moreover, Assumption A4 implies that u(θ, θ̃) ≥ u(θ̃, θ̃) for all θ ≥ θ̃. Thus,

u(θ, θ̃) = −[F̄ (x̄(θ̃)|θ)]−1c+ τ(θ̃) for all θ ≥ θ̃. Therefore, for the agent in state θ to
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not locally deviate, it must be that the first order condition

−H(x̄(θ̃)|θ)dx̄(θ̃)

dθ̃
c+

dτ(θ̃)

dθ̃
= 0 for θ̃ = θ, (16)

and the second order condition

d

dθ̃

(
−H(x̄(θ̃)|θ)dx̄(θ̃)

dθ̃
c+

dτ(θ̃)

dθ̃

)
≤ 0 for θ̃ = θ (17)

hold locally at θ̃ = θ. Moreover, since (16) must hold for all θ ∈ Θ, it is an identity

in θ, and thus

d

dθ̃

(
−H(x̄(θ̃)|θ)dx̄(θ̃)

dθ̃
c+

dτ(θ̃)

dθ̃

)
− d

dθ

(
H(x̄(θ̃)|θ)dx̄(θ̃)

dθ̃
c

)
= 0 for θ̃ = θ.

(18)

Substituting (17) in (18) together with Assumption A4 thus yields dx̄/dθ ≥ 0. This

establishes that any solution to the principal’s optimization program implies condi-

tion (a).

Next I argue that (16) is also sufficient to prevent the agent from deviating globally.

First note that in the case where x̄(Tθ̃, θ) = 0, u(θ, θ̃) = 0 ≤ u(θ, θ) and thus I can

restrict attention to the case where the agent chooses x̄(Tθ̃, θ) = x̄(θ̃) under contract Tθ̃.

Suppose to the contrary that the incentive constraint is violated in at least one state,

i.e. u(θ, θ̃) − u(θ, θ) > 0 for some (θ, θ̃) ∈ Θ2, or by the fundamental theorem of

calculus,

∫ θ̃

θ

(
−H(x̄(θ′)|θ)dx̄(θ′)

dθ′
c+

dτ(θ′)

dθ′

)
dθ′ > 0. (19)

Suppose θ̃ > θ. Then, Assumption A4 implies that H(x̄(θ̃)|θ̃) ≤ H(x̄(θ̃)|θ), and

therefore (19) implies

∫ θ̃

θ

(
−H(x̄(θ′)|θ′)dx̄(θ′)

dθ′
c+

dτ(θ′)

dθ′

)
dθ′ > 0 (20)

since dx̄/dθ ≥ 0. However, equation (16) implies that the integrand in (20) is equal

to 0 for all θ′, contradicting that for any θ̃ > θ, contract Tθ̃ is preferred over Tθ. The
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same logic establishes a contradiction for the case where θ̃ < θ.

Now, let U(θ) ≡ u(θ, θ). Then

dU

dθ
= −H(x̄(θ)|θ)dx̄(θ)

dθ
c+

dτ(θ)

dθ
− ∂

∂θ

c

F̄ (x̄(θ)|θ)
. (21)

Thus (c) holds if and only if (16) holds. Therefore, (a) and (c) are both sufficient and

necessary for (ICθ,θ̃) to hold. Moreover, as shown above, (ICθ,θ̃) implies (SP −
θ,θ̃

) and

(SP +

θ,θ̃
). Thus I am left to show that (a), (b) and (c) are sufficient and (b) is necessary

for (IRθ) to hold. Consider sufficiency first. From (c) I have that dU/dθ is increasing

in θ (by Assumption A4 implies ∂F̄ (x̄(θ)|θ) ≥ 0). Thus U(
¯
θ) = 0 implies (IRθ) for all

θ ∈ Θ. That U(
¯
θ) = 0 is also necessary for a solution to the principal’s optimization

program follows trivially from the above analysis, since shifting U(
¯
θ) doesn’t affect

any other constraints.

A.4 Proof of Proposition 5

Consider an arbitrary menu of contracts {Tθ}θ∈Θ, and let u(T, x̄, θ) be the utility

of the agent in state θ when she chooses contract T and search policy x̄. Then

u(Tθ̃, x̄(Tθ̃, θ), θ) ≥ u(Tθ̃, x̄(Tθ̃, θ̃), θ), and therefore a necessary condition for (ICθ,θ̃) to

hold is that

U(θ) = u(Tθ, x̄(Tθ, θ), θ) ≥ u(Tθ̃, x̄(Tθ̃, θ̃), θ) for all θ̃ ∈ Θ .

Hence θ̃ = θ maximizes the RHS of the inequality, with U(θ) also being the value

function of maxθ̃ u(Tθ̃, x̄(Tθ̃, θ̃), θ). The envelope theorem implies

dU

dθ
=

 ∂

∂θ

∫ Bx̄(Tθ̃,θ̃)
T (x′) dF (x′|θ)

F̄ (x̄(Tθ̃, θ̃)|θ)

− ∂

∂θ

(
c

F̄ (x̄(Tθ̃, θ̃)|θ)

)
∣∣∣∣∣∣
θ̃=θ

, (22)

and since by Assumptions A3 and A4 the first term in (22) is positive, I have that

dU

dθ
≥ − ∂

∂θ

(
c

F̄ (x̄(Tθ, θ)|θ)

)
. (23)

Moreover, (IRθ) implies U(
¯
θ) ≥ 0. Thus for any x̄ that is nondecreasing in θ, the

agent’s utility under a menu of bonus contracts as given by Lemma 2(b) and (c)
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constitutes a lower bound on the agent’s utility under any menu of contracts that

implements x̄. As long as the restriction on x̄ is not binding for bonus contracts, a

menu of bonus contracts is therefore optimal. That the restriction that x̄ is increasing

is indeed not binding is established in the proof of Proposition 6.

A.5 Proof of Proposition 6

Using {Tθ}θ∈Θ as given by the second corollary to Proposition 5, the principal’s

objective function is

∫ θ̄

¯
θ

(∫ B

x̄(θ)

x′

F̄ (x̄(θ)|θ)
dF (x′|θ)− c

F̄ (x̄(θ)|θ)

+

∫ θ

¯
θ

∂

∂θ̃

(
c

F̄ (x̄(θ̃)|θ̃)

)
dθ̃

)
dP (θ), (24)

or, after an integration by parts,

∫ θ̄

¯
θ

(∫ B

x̄(θ)

x′

F̄ (x̄(θ)|θ)
dF (x′|θ)− c

F̄ (x̄(θ)|θ)

+
1− P (θ)

p(θ)

∂

∂θ

(
c

F̄ (x̄(θ)|θ)

))
dP (θ). (25)

By Lemma 2 the only relevant constraint which I have to take care of is that x̄(θ)

is nondecreasing in θ. Ignoring this constraint for the moment, the maximizer of (25)

is given by

c+Dθ(x̄(θ)) =

∫ B

x̄(θ)

(x′ − x̄(θ)) dF (x′|θ), (26)

where function Dθ : X → R+ is defined by,

Dθ(x) = −1− P (θ)

p(θ)

∂H(x|θ)
∂θ

c

H(x|θ)
. (27)

(From Assumption A5, (25) is concave at any x̄(θ) that satisfies (26), so (25) is globally

quasi-concave, and the second-order condition is satisfied.)

I still have to show two things. First, that x̄(θ) as given by (26) is indeed nonde-
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creasing. Second, I have to extend the analysis to the possibility that for some θ ∈ Θ,

a corner solution might be optimal.

From Assumption A4, the RHS of (26) is increasing in θ, so x̄(θ) will trivially be

nondecreasing whenever Dθ(x̄(θ)) is nonincreasing in θ. This will be the case whenever

p/(1− P ) is increasing at a sufficiently high rate, and/or H is sufficiently convex in θ.

Otherwise, x̄(θ) will still be increasing if the RHS of (26) is increasing at a sufficiently

high rate. A sufficient condition for this to be the case is that

H(x̄(θ̂)|θ)
∫ B

x̄(θ̂)

(x′ − x̄(θ̂)) dF (x′|θ) (28)

is increasing in θ at θ̂ = θ. Assumption A7 ensures that this is always the case. Hence,

any interior solution to the principal’s program is characterized by equations (26)

and (27).

Because for x̄(θ) = B benefits of search (the RHS of (26)) are equal to 0, corner

solutions may at most be given by x̄(θ) = 0. They occur whenever the left-hand side

of (26) exceeds the right-hand side for all values of x̄(θ), indicating that the “solution”

to (26) is negative. Given the constraint x̄ ≥ 0 and quasi-concavity of the problem,

we hence have x̄ = 0 as long as the principal wishes to still implement search. To see

that this indeed the case, note that the last term in (25) drops out for x̄ = 0 since

F̄ (0|θ) = 1 for all θ. Hence, for x̄ = 0 the problem collapses to the first-best problem

where per assumption E(x|θ) ≥ c for all θ ∈ Θ.

A.6 Proof of Proposition 7

From Proposition 6 marginal costs of searching are given by c+Dθ(x̄). Differentiating

with respect to x̄ yields

−1− P
P

(
∂2H

∂x∂θ

1

H
− ∂H

∂θ

∂H

∂x

1

H2

)
c ≥ 0 , (29)

by Assumptions A4 and A5. Moreover, marginal benefits are trivially decreasing in x̄.

Thus a necessary and sufficient condition for x̄(θ) > 0 is that for x̂↘ 0 directed search

is beneficial:

lim
x̂↘0

{∫ B

x̂

(x′ − x̂) dF (x′|θ)− c−Dθ(x̂)

}
> 0 , (30)
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or

c+ lim
x↘0

Dθ(x) <

∫
x dF (x|θ). (31)

A.7 Proof of Proposition 8

Existence Consider existence of T ∗ first. By continuity of x̄, a necessary and sufficient

condition for T ∗ to implement {x̄(θ)} is that the equivalent to (SP±θ,θ) holds with

equality for all θ in (θ0, θ̄), where θ0 ≡ inf Φ, or equivalently:

c =

∫ B

x

(T (y)− T (x)) dF (y|q(x)), (32)

or

T (x) = − c

F̄ (x|q(x)
+

1

F̄ (x|q(x))

∫ B

x

T (y) dF (y|q(x)), (33)

for all x ∈ (x−, x+), x− ≡ x̄(θ0), x+ ≡ x̄(θ̄), and where q(x) ≡ x̄−1(x).19 Separate T ∗

into T− defined on [0, x+] and T+ defined on [x+, B], and fix some T+. Then T− is

given by the functional T ,

(T f)(x) = g(x) +
1

F̄ (x|q(x))

∫ x+

x

f(y) dF (y|q(x)), (34)

where

g(x) =
1

F̄ (x|q(x))

(
−c+

∫ B

x+

T+(y) dF (y|q(x))

)
. (35)

Inspecting T , it is clearly increasing in f . Moreover, for any constant k,

T (f + k)(x) = (Tf)(x) +
F (x+|q(x))− F (x|q(x))

1− F (x|q(x))
k.

By (1), x+ ∈ (0, 1), such that the term multiplying k is in (0, 1). Hence, T satisfies

Blackwell’s sufficient conditions to be a contraction, establishing existence of a unique

19Here I assume without loss of generality that ∂H/∂θ < 0, so that x̄ is invertible. If it were not, I
could simply define a new variable that treats all instances of θ where H is constant as a single state
and carry out the following analysis with respect to that variable.
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T− for a given T+.

Having taken care of implementing {x̄(θ)}, the only other constraints to address

are individual rationality. Since T is increasing in T+, individual rationality can be

guaranteed by setting T+ accordingly. We conclude that there exists a T ∗ implementing

the second best search policies and leave it to the reader to formally establish the

shape of T+ that defines the cost-minimizing tariff. (The answer is: T+(x) = const for

all x ∈ [x+, B], where const is set such that T−(x−) = 0.)

Inefficiency Suppose there exists a tariff T that implements {x̄(θ)} at the same

costs as in the second best in all states θ ∈ Θ. Since both parties are risk neutral, this

implies that U(θ) corresponds to the second-best rents for all θ. Contradicting the

existence of such a T , I first show that T necessarily violates individual rationality for

θ → θ0. Subsequently I then argue that restoring individual rationality for θ0 requires

increasing rents for all θ ∈ Φ above their second-best level.

Let U(θ) denote the second-best rents as given by the second corollary to Proposi-

tion 5, and suppose that T implements U(θ) for all θ. Then from (33), T (x) = U(q(x)).

Hence, implementability requires

F̄ (x|q(x))Ũ(q(x)) =

− c +

∫ B

x+

T (y) dF (y|q(x)) +

∫ x+

x

∫ q(x)

¯
θ

m(θ̃) dθ̃ dF (y|q(x)), (36)

for all x ∈ (x−, x+), where Ũ(θ) is the actual utility implemented by T , and

m(θ) = − ∂

∂θ

(
c

F̄ (x̄(θ)|θ

)
. (37)

After an integration by parts, a change in variables, and a collecting of terms, (36)

becomes

F̄ (x|q(x))Ũ(q(x)) =

− c+

∫ B

x+

T (y) dF (y|q(x))− F (x|q(x))

∫ q(x)

¯
θ

m(θ̃) dθ̃

+ F (x+|q(x))

∫ θ̄

¯
θ

m(θ̃) dθ̃ −
∫ θ̄

q(x)

m(θ̃)F (x̄(θ̃)|q(x)) dθ̃, (38)
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or, after another change in variables, and substituting again for U(θ),

F̄ (x̄(θ)|θ)Ũ(θ) = −c+

∫ B

x+

T (y) dF (y|θ)− F (x̄(θ)|θ)U(θ)

+ F (x+|θ)U(θ̄) −
∫ θ̄

θ

m(θ̃)F (x̄(θ̃)|θ) dθ̃. (39)

Consider the first two terms on the right-hand side. By Assumption A4, Ũ(θ) is

maximized for all θ < θ̄, subject to U(θ̄) being fixed, by setting T+ constant. Hence,

∫ B

x+

T (y) dF (y|θ)− c ≤ F̄ (x+|θ)
F̄ (x+|θ̄)

∫ B

x+

T (y) dF (y|θ̄)− c =

F̄ (x+|θ)
(
U(θ̄) +

c

F̄ (x+|θ̄)

)
− c. (40)

Substituting in (39) yields

F̄ (x̄(θ)|θ)Ũ(θ) ≤

− F (x̄(θ)|θ)U(θ) + U(θ̄)− c
(

1− F̄ (x+|θ)
F̄ (x+|θ̄)

)
−
∫ θ̄

θ

m(θ̃)F (x̄(θ̃)|θ) dθ̃ =

F̄ (x̄(θ)|θ)U(θ)− c
(

1− F̄ (x+|θ)
F̄ (x+|θ̄)

)
+

∫ θ̄

θ

m(θ̃)F̄ (x̄(θ̃)|θ) dθ̃. (41)

By Assumption A4, ∂H(x|θ̃)/∂θ̃ = ∂2[F̄ (x|θ̃)]−1/∂x∂θ̃ ≤ 0. Moreover, F̄ (x|θ) is also

(strictly) decreasing in x. Hence, the last term on the right-hand side satisfies

−c
∫ θ̄

θ

∂

∂θ̃

(
F̄ (x̄(θ̃)|θ)
F̄ (x̄(θ̃)|θ̃)

)
dθ̃ < −c

∫ θ̄

θ

∂

∂θ̃

(
F̄ (x+|θ)
F̄ (x+|θ̃)

)
dθ̃ = −c

[
F̄ (x+|θ)
F̄ (x+|θ̃)

]θ̄
θ̃=θ

.

(42)

Substituting in (41), the last two terms on the right-hand side cancel out. Hence,

Ũ(θ) < U(θ) for all θ ∈ (θ0, θ̄), (43)

contradicting Ũ(θ) = U(θ). In particular, it holds that for θ → θ0, Ũ(θ0) < 0 since

U(θ0) = 0. From the existence proof above, it is clear that the only degree of freedom

to restore individual rationality under the constraint of implementability consists in
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raising T+. Under Assumption A4 any change dT+ implies dU(θ) > dU(θ0) for all

θ > θ0. Moreover, since x̄ is increasing in θ, the difference between the left-hand side

to the right-hand side in (42) is decreasing in θ. Hence, any T+ that sets Ũ(θ0) = 0

necessarily sets Ũ(θ) > U(θ) for all θ > θ0.
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