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1 Introduction

While a class of dynamic Markov games was formalized many years ago, see
Maskin and Tirole (1988) and Ericson and Pakes (1995) for an empirical frame-
work, empirical applications have been limited until recently. Several papers,
including Jofre-Bonet and Pesendorfer (2003), Aguirregabiria and Mira (2007),
Bajari, Benkard and Levin (2007), Pakes, Ostrovsky and Berry (2007), Pe-
sendorfer and Schmidt-Dengler (2008), Arcidiacono and Miller (2011), Kasahara
and Shimotsu (2012), and Linton and Srisuma (2012) proposed two-step esti-
mation methods for dynamic Markov games under varying assumptions. They
led to a number of empirical papers that apply these methods to empirically
analyze dynamic interactions between multiple players.
The basic idea of two-step methods is as follows1 . In the first stage, players’

policies and state transition probabilities are estimated directly from the data
as functions of observable state variables. These functions are reduced-form in
that the estimated parameters are not the parameters of the underlying eco-
nomic model. In the second stage, a search for the structural model parameters
which best rationalizes observed behaviors of players and state transitions is
conducted. The second stage uses the estimated policies as estimates for the
equilibrium beliefs, since these two should coincide in Markov Perfect equilibria.
In this approach structural model parameters can be estimated without solving
an equilibrium even once.
Two step methods significantly broadened the research scope on dynamic

problems that can be empirically addressed. In practice, some of the neces-
sary conditions for these methods to work are not easily satisfied. To obtain
reasonable estimates of policy functions and state transition probabilities, the
data need to contain rich information on actions and state transitions for every
observable state which are generated from the same equilibrium. In a typical
IO application, a long time-series data may not be available. Researchers are
tempted to pool data from different markets (games) to perform the first stage
policy function estimation. To do so, researchers assume that the data are gener-
ated from a single (identical) equilibrium in every market. This assumption has
become popular in a number of recent papers.2 If this assumption is violated,
then the estimated policies are a mixture of different policies, each of which
corresponds to different equilibria. The assumption may be very restrictive as
multiplicity of equilibria is a well known feature inherent to games. Incorrectly
imposing this assumption leads to erroneous inference.
This paper proposes several test statistics to test the null hypothesis that

the data is generated from a single equilibrium in a class of finite-state Markov
games. Specifically, we test multiplicity of equilibria in three ways. The first

1A two-step method itself was pioneered by Hotz and Miller (1993).
2Examples include Beresteanu, Ellickson, and Misra (2010), Collard-Wexler (2010), Dunne,

Klimek, Roberts, and Xu (2011), Fan and Xiao (2012), Jeziorski, (2012), Lin (2011), Maican
and Orth (2012), Minamihashi (2012), Nishiwaki (2010), Ryan (2012), Sanches and Silva Ju-
nior (2012), Snider (2009), Suzuki (2012), and Sweeting (2011). They impose this assumption
either explicitly or implicitly. The empirical sections of Aguirregabiria and Mira (2007) and
Arcidiacono, Bayer, Blevins, and Ellickson (2012) also impose the same assumption.
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test directly compares the set of conditional choice probabilities estimated from
the pooled (across markets) sample with the one estimated from each market
separately. The second test is based on the result that a steady-state distribution
of states is associated with a generically unique transition matrix of states under
the assumption of communicating Markov chains. Based on this result, the
second set of tests compares the steady-state distribution estimated from the
pooled sample with the one from each market. This test has two variants,
the Chi-squared test and the Kolmogorov test, depending on either L2 norm
or sup norm being used, respectively. The third test uses the distribution of
states conditional on the initial (observed) state. We apply the conditional
Kolmogorov test developed by Andrews (1997). It turns out that the third test
does not require several assumptions on Markov chains that are imposed for the
second test. The third test has wider applicability.
To illustrate the performance of our tests, we first apply our tests to a simu-

lated data using an example of multiple equilibria in Pesendorfer and Schmidt-
Dengler (2008) to investigate finite-sample properties. Our tests, particularly
the chi-squared test based on the steady-state distribution, perform well and
have high power even with a small number of markets and time periods. Then,
we apply the chi-squared test to the empirical application of Ryan (2012) that
analyzes dynamics of the U.S. Portland Cement industry and test if his assump-
tion of single equilibrium is supported by the data. We find that the hypothesis
of single equilibrium is rejected at the 5% level. A further investigation shows
that several outlier markets appear to be generating the rejection. If we exclude
outlier markets, the test does not reject the null hypothesis.
To the best of our knowledge, this is the first paper that proposes tests

of multiple equilibria in a general class of dynamic Markov games. Our tests
may give a researcher guidance on whether she can pool different markets to
estimate policy functions in the first stage. Furthermore, as a by-product, our
tests work as specification tests. One common practice in the literature of
estimating dynamic games is to impose parametric functional forms on policy
functions estimated in the first stage. Under the assumption of stationary MPE,
the steady-state distribution of states implied by the estimated policy functions
and observed states should be consistent. Thus, if functional forms are not
flexible enough, the test rejects the null hypothesis.
Our test based on the steady-state distribution provides a natural and for-

mal way to check goodness of fit of policy functions for dynamic Markov models.
Typically researchers check goodness of fit for their model in somewhat arbi-
trary ways. One common practice is to simulate the model at the estimated
parameter values and compare several simulated key endogenous variables with
the observed counterparts by eyeballing.3 Another way is to look at the R2

3Collard-Wexler (2010) compares various moments including entry/exit rates, the number
of plants per market, and so on. Fan and Xiao (2012) examine the percentage of markets
with n firms, where n = 0, 1, 2, and above. Jeziorski (2012) examines the average likelihood
of observing a merger. Jofre-Bonet and Pesendorfer (2003) compare the bid levels (mean and
standard deviation) and the probability of observing a regular bid. Lin (2011) compares several
moments such as entry/exit rates, the percentage of low quality nursing homes, etc. Nishiwaki
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or the pseudo R2 obtained from estimated policy functions.4 While these are
informative to some extent, it is diffi cult to know precisely how well the model
fits the data based on these figures. There are several formal specification tests,
for example the overidentification test when an economic model is estimated
with GMM. Our test based on the steady-state distribution fully exploits the
conditions imposed by MPE. It nicely serves as a specification test in dynamic
Markov games.
It should be emphasized that multiplicity of equilibria is observationally

equivalent to time-invariant unobservable market-level heterogeneity in our frame-
work. Our tests apply when there exist multiple equilibria, unobservable het-
erogeneity, or both.5 Thus, a rejection of our tests points to an inconsistency
of the first stage estimates that arise from pooling different markets. Naturally,
since the framework of this paper nests single agent settings as a special case
with only one player, our tests can also be thought of as testing the existence
of unobservable types in single agent dynamic models.
There is a close link between our analysis and the recent literature on iden-

tification of finite mixture models. Since the number of equilibria is generi-
cally finite, dynamic games with multiple equilibria and a well-defined selection
rule can be regarded as one class of finite mixture models. Kasahara and Shi-
motsu (2009) consider identifiability of finite mixture models of dynamic discrete
choices. Among other things, they provide a condition to identify the lower
bound of the number of mixture components. Theoretically, if the identified
lower bound is larger than one, it implies multiplicity of equilibria. While this
identification result may potentially be useful, it is not obvious to build on this
to construct an implementable test.
Our paper also relates to de Paula and Tang (2011) that use tests of con-

ditional independence between players’actions to test multiplicity of equilibria
in the context of static games with incomplete information. Since our tests
exploit the panel structure of the data and rely on the way that the game and
states evolve, their tests and our tests are fundamentally different. One notable
difference is that while de Paula and Tang (2011) maintain the assumption of
independent-across-players private shocks, we can allow for within-period cor-
relation in players’private shocks.
This paper is organized as follows. Section 2 lays out a class of general

dynamic Markov games we work with and proves several important properties on

(2010) compares the number of divestment. Sanches and Silva Junior (2012) compare entry
probabilities. Snider (2009) plots the model time series for prices and capacities versus the
actual series. Sweeting (2011) investigates the share of radio stations that switch formats and
changes in station revenues over time.

4Ryan (2012) compares the R2, the pseudo R2, and the value of likelihood in first stage pol-
icy function estimations among several specifications. The empirical section of Aguirregabiria
and Mira (2007) look at the R2 of the number of entries and exits.

5Aguirregabiria and Mira (2012) discuss diffi culties of identifying and estimating models
with both unobservable heterogeneity and multiple equilibria. Arcidiacono and Miller (2011)
develop a two-step method that can account for unobservable heterogeneity with finite sup-
port. Since the knowledge of the number of points in the support (and values of those variables)
is required, this method is not directly applicable to the case where multiple equilibria are
present in the data.
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Markov chains, steady-state distributions, and multiplicity of equilibria. Based
on these properties, Section 3 proposes several test statistics. In Sections 4 we
conduct a Monte Carlo study to examine finite-sample properties. Section 5
applies one of our tests to data of Ryan (2012). Section 6 concludes.

2 Model

This section describes elements of a general dynamic Markov game with discrete
time, t = 1, 2 . . . ,∞. We focus on the description of players’state variables and
actions. These states and actions are the observable outcome variables for some
underlying dynamic game which we do not observe. We leave the details of the
game unspecified. Instead we shall focus on testable properties of the observed
outcomes. Our setting includes the single agent case as a special case when
there is one agent per market.

2.1 Set-up

We first describe the framework which applies for all markets j ∈M = {1, . . . ,M}.
We then expand on the cross market structure.
Players. The set of players is denoted by N = {1, . . . , N} and a typical

player is denoted by i ∈ N. The single agent case arises when N = 1. The
number of players is fixed and does not change over time. Every period the
following variables are observed:
States. Each player is endowed with a state variable sti ∈ Si = {1, . . . , L}.

The state variable sti is publicly observed by all players and the econometrician.
The vector of all players’public state variables is denoted by st = (st1, . . . , s

t
N ) ∈

S = ×Nj=1Sj . The cardinality of the state space S is finite and equals ms = LN .
Actions. Each player chooses an action ati ∈Ai = {0, 1, . . . ,K}. The deci-

sions are made after the state is observed. The decisions can be made simulta-
neously or sequentially. The decision may also be taken after an idiosyncratic
random utility (or a random profit shock) is observed. We leave the details of
the decision process unspecified. Our specification encompasses the random-
utility modelling assumptions, and allows for within-period correlation in the
random utility component across actions and across players. An action profile at

denotes the vector of joint actions in period t, at = (at1, . . . , a
t
N ) ∈A= ×Nj=1Aj .

The cardinality of the action space A equals ma = (K + 1)
N .

Choice probability matrix. Let σ(a|s) denote the conditional probability that
action profile a will be chosen conditional on state s. The matrix of conditional
choice probabilities is denoted by σ. It has dimensionms×(ma ·ms). It consists
of conditional probabilities σ(a|s) in row s, column (a, s), and zeros in row s,
column (a, s

′
) with s

′ 6= s.
State-action transition matrix. The state-action transition is described by an

indicator function g :A×S×S −→ {0, 1} where a typical element g
(
at, st, st+1

)
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denotes the probability that state st+1 is reached when the current action pro-
file and state are given by (at, st). We require

∑
s′∈S g (a, s, s′) = 1 for all

(a, s) ∈A×S. We use the symbol G to denote the (ma ·ms)×ms dimensional
state-action transition matrix in which column s

′ ∈ S consists of the vector of
probabilities

[
g (a, s, s′)a∈A,s∈S

]
.

State transition matrix. Let P = σG denote the ms×ms dimensional state
transition matrix induced by the choice probability matrix σ and state-action
transition matrix G. A typical element p (s, s′) equals the probability that state
s′ is reached when the current state is given by s, p (s, s′) =

∑
a∈A σ(a|s) ·

g (a, s, s′). Since the elements in each row of P sum to 1,
∑

s′∈S p (s, s′) = 1 for
all s ∈ S, the matrix P is a right stochastic matrix. The matrix P ∈ P is called
a Markov chain. The set P denotes the set of all right stochastic matrices.
Limiting steady-state distribution. When the limit exists, let Qs(s′) denote

the long run proportion of time that the Markov chain P spends in state s when
starting at the initial state s0 = s′

Qs(s
′) = lim

n−→∞

1

n

n∑
t=1

1(st = s|s0 = s′)

The unconditional long run proportion of time that the Markov chain P spends
in state s is given by

Qs = Qs(s
′) with probability 1 for all initial states s′.

If for all s ∈ S, Qs exists and is independent of the initial state s′, satisfies∑
s′∈SQs′ = 1, then the 1×ms dimensional vector of probabilities Q = (Qs)s∈S

is called the steady-state distribution of the Markov chain. Observe that the
state space is finite, and Q describes a multinomial distribution.

2.2 Some properties

The properties of Markov chains are well known. We next describe properties
useful for our purpose. To do so, we introduce the concept of communicating
states.
Communicating states. We say that a state s′ is reachable from s if there

exists an integer T and a sequence of states
(
s1, . . . , sT

)
so that the chain P

will be at state s′ after T periods. If s′ is reachable from s, and s is reachable
from s′, then the states s and s′ are said to communicate.

Lemma 1 Suppose all states s, s′ ∈ S × S of the chain P ∈ P communicate
with themselves. Then the following properties hold:
(i) The steady-state distribution Q exists. It satisfies Qs > 0 for all s ∈ S and

Q = QP.

(ii) The steady-state distribution Q is unique.
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Property (i) states that the long run proportion of time that the Markov
chain P spends in state s is strictly positive for any state s ∈ S and the equation
Q = QP must hold. Property (ii) states that the steady-state distribution
is unique. A proof of the above properties is given in Proposition 1.14 and
Corollary 1.17 in Levin, Peres and Wilmer (2009).
Communicating states are typically invoked in applied work, see Ericson

and Pakes (1995). Communicating states naturally emerge in dynamic discrete
choice models using a random utility specification, see McFadden (1973). The
random component having full support in the real numbers implies that all
actions arise with strictly positive probability for any state s ∈ S. Thus, states
will communicate if the state-action transition matrix allows that state s′, or
s, can in principle be reached when starting from state s, respectively s′, for
any pair of states s, s′ ∈ S. The full support assumption is made in standard
dynamic discrete choice models, see Arcidiacono and Miller (2011) for a recent
formulation.
The feature that all states communicate may also emerge when actions are

chosen with probability one for some (or all) states. Our set-up includes these
settings as well. What is required for states to communicate in this case is that
there exists a sequence of state-action profiles

((
s1,a1

)
, . . . , (sn,an)

)
so that

the chain starting at state s will be at state s′ after n periods for any s, s′ ∈ S.
Next, we highlight that a sequence of realizations of a steady state Markov

chain represent random draws from the steady state distribution Q. This prop-
erty is commonly used to generate random numbers drawn from a distribution.

Lemma 2 Suppose
(
s0, . . . , sT

)
are realizations of a Markov chain P ∈ P with

steady-state distribution Q and with the property that all states communicate
with themselves. If s0 ∼ Q, then st ∼ Q for all t = 1, . . . , T .

Proof. Given any distribution Q on the state space S, from the definition
of the Markov chain transition matrix P it follows that if s0 ∼ Q, then s1 ∼
QP, s2 ∼ QP2, ..., sT ∼ QPT . From Lemma 1 property (i), we know that if Q
is the steady-state distribution, then it must satisfy Q = QP. Multiplying both
sides of the equation (on the right) by P yields QP = QP2 and so on yielding
Q = QPt for t = 1, . . . , T . Thus, we can conclude that if s0 ∼ Q, then st ∼ Q
for all t = 1, . . . , T .

The Lemma illustrates that a sequence of realizations from a Markov chain
in steady-state are random draws from the steady-state distribution.

2.3 Multiplicity

This section discusses some implications on the steady state distribution when
there are multiple markets and individual markets are governed by possibly
distinct transition matrices. A typical data set contains a collection of outcomes
of the game independently played in M different markets.
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As discussed in Pesendorfer and Schmidt-Dengler (2008), even though multi-
plicity of equilibria are prevalent in the class of games we study, the Markovian
assumption implies that a single equilibrium is played in a market-level time
series. Let Pj be the transition matrix induced by the equilibrium choice prob-
abilities σj played in market j and let Qj = (Qjs)s∈S be the steady-state dis-
tribution that is associated with that transition matrix. This section requires
that the steady-state distribution Qj exists and is unique, see Lemma 1.
The possibility of distinct transition matrices in distinct markets arises nat-

urally in games as multiplicity of equilibria is a well known feature inherent to
games. Distinct transition matrices for distinct markets may also arise if some
of the unobserved elements in the market are distinct. This section considers the
case in which at least two markets have distinct transition matrices P1 6= P2.
We illustrate implications on the steady state distribution.
The following Lemma establishes that with probability one the market spe-

cific steady state distributions will differ Q1 6= Q2.

Lemma 3 Consider any two arbitrary right stochastic matrices P1,P2 ∈ P
with P1 6= P2. With probability one the steady state distributions differ, Q1 6=
Q2.

Proof. Consider the steady state distribution property (i) for the matrix P2 in
Lemma 1. If Q1 is also the steady state distribution for the transition matrix
P2, then this places (ms−1) linear restrictions on P2 of the form Q1 = Q1 ·P2.
The event that an arbitrary matrix P2 satisfies these restrictions has Lebesgue
measure zero on the set of all ms ×ms dimensional right stochastic matrices.

The proof argument is based on property (i) in Lemma 1 which requires that
a steady state distribution satisfies the linear relationship Q = Q ·P. The prob-
ability that an arbitrary transition matrix P satisfies these linear restrictions
for a specific steady state distribution Q has probability zero.

3 Tests for multiplicity

This section describes the hypothesis that we aim at testing and introduces
three types of test statistics for this purpose. Under the null hypothesis the
observed data are generated from an identical data generating processes in all
markets. The alternative is that the data generating process is distinct for some
markets.
For each market j ∈M a sequence of action and state profiles (atj , stj)t=1,...,T

is observed, where T is the length of time periods in the data set. These observ-
ables allow us to make inference about the conditional choice probability matrix
σ, the transition matrix P and the distribution of states Q by using a suitable
estimator. Our null hypothesis is whether the individual markets j ∈ M yield
the same estimator. The alternative is the negation of the null.

8



The null and alternative hypotheses can be written in terms of conditional
choice probabilities σ:

H0 : σj = σ for all j ∈M;

H1 : σj 6= σj
′
for some j, j′ ∈M.

Assuming that all the states in the Markov chain P = σG ∈P communi-
cate with themselves, then by Lemma 1- 3, these hypotheses are generically
equivalent to a test of identical steady-state distributions:

H ′0 : Qj = Q for all j ∈M;

H ′1 : Qj 6= Qj′ for some j, j′ ∈M.

By Lemma 1 and 3 we also know that the null and the alternative in the above
test cannot be observationally equivalent.
Finally, there may be circumstances in which the researcher does not know

whether all states in the Markov chain P communicate with themselves, or when
there is a concern that the initial conditions matter. In this case, the conditional
state distribution may form the basis of the test:

H
′′

0 : Qj(s′) = Q(s′) for all j ∈M, s′ ∈ S;

H
′′

1 : Qj(s′) 6= Qj′(s′) for some j, j′ ∈M and s′ ∈ S.

Our first test, the conditional choice probability test, is based on the first
set of hypotheses. Our second test, the (unconditional) steady-state distribution
test is based on the second set of hypothesis and the third test, the conditional
state distribution test, is based on the third set of hypotheses.
If more than one equilibrium is played in the data, then σ̂ and P̂ would

be estimates of a mixture of different choice and transition probabilities. Yet,
the theoretical distribution of choices and states implied by the mixture model
differs from the theoretical distribution with σ̂ and P̂. Each of our test statistics
is aimed at detecting whether such a difference is present in the data.
Before discussing each test statistic, we comment on estimators that are used

for testing. In principle, any consistent estimator for σ, P, Q, and Q(s′) can
be used in our tests and there is no unique way to estimate them. Thus, which
estimator should be used in practice depends on the application in question.
We consider three types of estimators in this paper: First, a frequency estimator
which is a natural non-parametric estimator for distributions and probabilities
on finite spaces. Second, when states communicate so that a unique Q exists
for any P (Lemma 1), instead of directly using a frequency estimator for Q, the
steady-state distribution implied by estimated transition probabilities could be
used. If the equilibrium Markov chain is a-periodic, then Q can be calculated
as Q(P̂) = 1

ms
· I · (limn→∞ P̂

n) where P̂ is a consistent estimator for P and
I denotes a row vector of one.6 Third, the conditional choice probabilities can

6 In general finding the steady-state probabilities Q amounts to finding the eigenvectors of
P . Gallager (1996) shows that the largest real eigenvalue of P is λ = 1 with associated right
eigenvector e = (1, 1, ..., 1)′ unique up to a scale factor. Furthermore, Q is the unique left
eigenvector of the eigenvalue λ = 1.
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be parametrized and form the basis to calculate the implied P and Q. Let
θ ∈ Θ ⊂ Rk be a parameter vector and σ(θ̂) be a parametric conditional choice
probability estimator. Then, σ(θ̂) can be used to calculate P and Q.7 An
advantage of this last approach is that k can be a much smaller number than
the dimensionality of σ. As we mentioned in the Introduction, this is a common
practice in the literature, as the sample size is typically small compared to the
dimensionality of σ.

3.1 Testing the conditional choice probabilities

We first form a generally applicable test statistic based directly on the condi-
tional choice probabilities. The test does not require that states communicate.
It holds for general Markov models even if the steady-state distribution is not
unique. The test is based on the idea that equilibrium choice probabilities are
unique. Any two equilibria will have distinct choice probabilities. Now, if there
are multiple equilibria played across markets, then this will result in variation
in choice probabilities across markets. Thus, the cross sectional variation can
be exploited to detect multiplicity.
Let σ̂(a|s) be an estimator for σ(a|s), the probability that action profile

a is chosen when the current state is given by s. When H0 is true, we let
σ0(a|s) denote the true value of σ(a|s). We assume that under H0, σ̂(a|s) is a√
T−consistent estimator of σ0(a|s). The estimate σ̂(a|s) can use all available

data, that is all data for all markets. Let σ̃ja|s be the observed frequency of
action profile a in state s for market j

σ̃ja|s =

{ ∑T
t=1 1(a

tj=a,stj=s)∑T
t=1 1(s

tj=s)
if
∑T
t=1 1(s

tj
= s) > 0;

0 otherwise.

It should be emphasized that σ̂(a|s) can be any consistent estimator including a
frequency estimator, while σ̃ja|s is the observed frequency. If conditional choice
probabilities are parameterized by θ, then σ(a|s) is replaced with σ(a|s;θ) in the
following discussion. In what follows, we keep σ(a|s) for notational simplicity.

Our conditional choice probabilities chi-squared test statistic is

CCP = T ·
∑
j∈M

∑
s∈S

∑
a∈A


[
σ̃ja|s − σ̂(a|s)

]2
σ̂(a|s) · 1

(
T∑
t=1

1(s
tj

= s) > 0

) , (1)

which counts the squared distance between the predicted probability σ̂(a|s) and
the observed market-j frequency across all actions, states and markets. We
arbitrarily count only those observations from markets j in which state s is
indeed observed and omitted all others. As T increases, this selection should

7A natural alternative is a hybrid of the second and third possibilities. That is, the chain P
could be parametrized instead of σ. The implied steady-state distribution can be calculated

as Q
(
P
(
θ̂
))
.
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not matter, but it may matter for finite sample properties. This selection is
made arbitrarily in the sense that alternative specifications can be used as well.
If σ̂(a|s) is a frequency estimator, then the CCP will be a standard Pear-

son statistic. As the number of observations increases, the CCP statistic ap-
proaches a chi-squared distribution with the appropriate degrees of freedom
provided state realizations are independent across different time periods within
each market. In Markovian games state realizations tend to be serially correlated
implying that the CCP will not approach the chi-squared distribution. In addi-
tion, deriving an asymptotic distribution that accounts for serial correlation is
not straightforward, since unless σ̂(a|s) is a frequency estimator estimated with
iid samples, the test statistic will be an intractable mixture of chi-squared distri-
butions as shown in Andrews (1988). Therefore, we use a parametric bootstrap
to calculate the critical region of the test statistic.
We bootstrap using the estimated choice probabilities σ̂. For every bootstrap

sample b, we takeM sample draws
{

(atj , stj)t=1,...,T
}
j∈M by simulating a state

path from σ̂ and G for every market j. We estimate σ̂b from this bootstrap
sample and calculate the associated test statistic CCP b. We define the critical
value as the 95th percentile in the distribution of CCP b.
Note that our test can allow for within-period correlation in the random

utility component across actions and across players. In the context of static
games with incomplete information, de Paula and Tang (2011) test conditional
independence between players’actions, σ̂(ai|s) · σ̂(aj |s) 6= σ̂(ai, aj |s), to check
if there are more than one equilibria in the data generating process. This test
relies on the assumption of independent-across-players private shocks. Our test
is more flexible and permits within-period correlation in players’shocks. The
permissible information structure and set of games our framework can deal with
is more general. Our tests explore the way that the game and states evolves
and requires repeated observations for each market.8

3.2 Testing the (unconditional) steady-state distribution

Our next test builds on the assumptions imposed on the Markov structure. It
examines the steady state distribution in individual markets and compares it
to the average (across markets) steady-state distribution. Under the null hy-
pothesis of identical steady-state distributions, the market specific and average
market distributions are close to each other.

8Tests of independence are used in various contexts to find evidence for unobserved vari-
ations in data that non-trivially affect agents’actions. For example, Chiappori and Salanié
(2000) test the conditional independence of the choice of better coverage and the occurrence
of an accident using data of automobile insurance, and attributes a violation of the con-
ditional independence to the existence of asymmetric information between customers and
insurance companies. de Paula and Tang (2011) assume independent private shocks in games
with incomplete information and regard additional variations (after controlling for observ-
able covariates) as coming from the equilibrium selection rule. On the other hand, Navarro
and Takahashi (2012) assume a non-degenerate selection rule and interpret a violation of the
conditional independence as a rejection of models of pure private shocks.
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The test statistic is more intuitive in the sense that it compares two steady-
state distributions directly. However, the test requires that the steady-state
distributions exist and that the Markov chain is in the steady state, see Lemma
1.
We consider two distinct test statistics of the hypothesis of identical steady-

state distributions across markets. The first is based on the Chi-Squared crite-
rion while the second uses the Kolmogorov statistic.

3.2.1 Chi-Squared test statistic

Let Q̂ be an estimator for the steady-state distribution Q. When H0 is true,
we let Q0 denote the true value of Q. We assume that under H0, Q̂ is a√
T−consistent estimator of Q0. The estimate Q̂ can use all available data, that

is all data for all markets. Let Q̃j =
(
Q̃js

)
s∈S

count the relative frequencies of

observing states in market j with element

Q̃js =
1

T

T∑
t=1

1
(
stj = s

)
for s ∈ S and j ∈M.

Our steady-state distribution chi-squared statistic is given by

SSC = T ·
∑
j∈M

∑
s∈S

[
Q̃js − Q̂s

]2
Q̂s

, (2)

which counts the squared distance between the predicted probability Q̂s and
the observed market-j frequency Q̃js across all states and markets. Any consis-

tent estimator Q̂ =
(
Q̂s

)
s∈S

can be used in the test statistic SSC. An intuitive

nonparametric estimator for the steady-state distribution is the frequency esti-
mators Q̃ counting the relative frequency of states in all markets with element,

Q̃s =
1

TM

T∑
t=1

∑
j∈M

1
(
stj = s

)
for s ∈ S.

Observe, that pooling both time periods and different markets is justified by
Lemma 2.
An alternative estimator of Q̂ can be based on suitable estimator of the

transition probability matrix P as briefly discussed before. Let p
(
s, s′; θ̂

)
be a

√
T consistent estimator for p (s, s′) , the probability that state s′ is reached when

the current state is given by s for some k-dimensional real-valued parameter

vector θ ∈ Rk. The estimate p
(
s, s′; θ̂

)
can use all available data, that is

all data for all markets. The estimator for the state transition matrix is P̂ =(
p
(
s, s′; θ̂

))
s∈S,s′∈S

. The induced estimator of the steady-state distribution

12



is Q(P̂) = [Qs(P̂)]s∈S which are the steady-state probabilities induced by the
choice probability estimator P̂.
For the same reason as the previous subsection, we use a parametric boot-

strap to calculate the critical region of the test statistic. We bootstrap using the
estimated transition probabilities P̂ (and not by using Q̂ directly). For every
bootstrap sample b, we takeM sample draws {(stj)t=1,...,T }j∈M by simulating a
state path from P̂ for every market j ∈M. We estimate Q̂b from this bootstrap
sample and calculate the associated chi-squared test statistic SSCb. We define
the critical value as the 95th percentile in the distribution of SSCb.

If the cardinality of the state space ms is large relative to the number of
observations, then the SSC statistic may be uninformative and perform poorly.
To see this, observe that when ms is large the probability Q̂s, which enters the
denominator in the SSC test statistic, may become small for some states. Even
small differences between Q̃js and Q̂s, when multiplied with a large number 1/Q̂s,
imply a large SSC test statistic. In such cases, the SSC test statistic may not
be informative. To overcome this diffi culty, we replace the predicted probability
in the denominator with constant probabilities for all states 1/ms and propose
the following SSC’statistic

SSC ′ = (T ·ms) ·
∑
j∈M

∑
s∈S

[
Q̃js − Q̂s

]2
, (3)

which sums the squared deviation between the predicted probability Q̂s and
the observed market-j frequency Q̃js across all states and markets. The critical
region of the SSC ′ test statistic is calculated by using a bootstrap as described
above.

3.2.2 Kolmogorov test statistic

The Kolmogorov statistics considers the maximal deviation of individual cells
from the market average. It is based on the sup norm. Note that there is some
arbitrariness in the way we label states and there is no unique way to label the
multinomial cdf. The following test applies to any arbitrarily chosen labelling.
Our steady-state distribution Kolmogorov test statistic is

SSK =
√
T max
s∈S,j∈M

∣∣∣F̃ js − F (s; Q̂)∣∣∣ , (4)

where F̃ js denotes the empirical cumulative frequency distribution of observing
state s in market j

F̃ js =
1

T

T∑
t=1

1(stj ≤ s) for s ∈ S; (5)

and F
(
s; Q̂

)
denotes the cdf of the multinomial distribution of observing state

s based on a
√
T consistent estimator of the steady state distribution Q̂ under

H0.
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The asymptotic null distribution of single-sample Kolmogorov’s tests for
parametric families of distributions in which parameters are estimated is given
by Pollard (1984) and Beran and Millar (1989). This result applies for the test

statistic
√
T maxs∈S

∣∣∣F̃ js − F (s; Q̂)∣∣∣ when a single sample from market j is used
in constructing the empirical cumulative distribution function F̃ j and when Q̂
is a
√
T consistent estimator possibly using data from all markets.

There is no obvious way of exploiting the cross market deviation of the single
market statistic. Our SSK statistics in equation (4) is modified from the single
market expression by taking the maximum deviation across all markets j ∈ M
jointly. The aim is to detect at least one deviating market. We could also
modify equation (4) by taking average over market:

SSK ′ =
1

M

∑
j∈M

√
T max

s∈S

∣∣∣F̃ js − F (s; Q̂)∣∣∣ , (6)

where F̃ js and F
(
s; Q̂

)
are defined in the same way as (4). One potential

advantage of the SSK ′ statistic is that all markets are likely to contribute to
increasing the value of the test statistic under the alternative, which may not
be the case with SSK. We could imagine some situation in which the SSK test
performs poorly due to the fact that it exploits only the maximal difference
across cells and markets. On the other hand, we could also think of a situation
where the SSK test would have high power. For example, suppose that there
are two equilibria in the data generating process and that the first equilibrium

is played in 90% of all the markets. Then, while
√
T maxs∈S

∣∣∣F̃ js − F (s; Q̂)∣∣∣
tends to be small for markets in which the first equilibrium is played, it would
be large for markets with another equilibrium. The SSK test would reject the
null based on such large deviations even though the frequency of observing such
markets is low. This is a potential advantage of the SSK test compared to
the chi-squared tests as well as the SSK ′ test, all of which average out those
deviations and may have low power in this example.
Given that the data generating process is ex-ante unknown to the researcher

and that we aim at dealing with a variety of data generating processes, we select
the first SSK statistic in (4), as the advantage of the SSK ′ test may be similar
to that of our chi-squared tests. For the sake of comparisons, our Monte Carlo
study also examined the SSK ′ test.
The critical region of our test statistic in (4) is calculated using a bootstrap.

We bootstrap using the same procedure as above. For every bootstrap sample
b, we take M sample draws {(stj)t=1,...,T }j∈M by simulating a state path from
P̂ for every market j ∈ M. Importantly, the bootstrap is defined by using
the estimated choice probabilities P̂ and not by using Q(P̂) directly. We esti-
mate Q̂b from this bootstrap sample and calculate the associated chi-squared
test statistic SSKb. We define the critical value as the 95th percentile in the
distribution of SSKb.
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3.3 Conditional state distribution test

Next, we propose a test based on the conditional state distribution Qs(s′). The
conditional state distribution is defined as the frequency distribution of states
conditional on the initial state being s′. This test is more general than the
previous one in the sense that it does not require that all states communicate
nor does it require a unique steady-state distribution.
The conditional Kolmogorov test developed by Andrews (1997) is suitable

for this hypothesis. The test considers a parametric model that specifies the
conditional distribution of states given the initial state variable s′. For each
market, we observe the distribution of states that the game visits. Let Qjs(s

′)
denote the relative frequency that the game in market j visits state s when

the initial state equals s′. Let Zj =
({
Qjs(s

j′)
}
s∈S , s

j′
)
∈ Rms × S denote a

random variable for market j consisting of the pair of Qj(sj′) and the initial
state in the market sj′ ∈ S. Assume that

{
Zj
}
j∈M are iid with conditional

distribution function H(·|sj′) of Qj given sj′. Note that if the Markov chain
has a unique steady-state distribution, then the marginal distribution of sj′ is
simply Q.
We consider a parametric family of conditional distributions of the response

variables Qj given the covariate sj′. The parametric family of conditional dis-
tribution functions is denoted with

{F (Q|s,P) : P ∈ P}

where F (Q|s,P) is the distribution function of Q when the state transition
matrix equals P and the initial state is s.

The null hypothesis is

H0 : H (·|·) = F (·|·,P) for some P ∈ P.

The alternative hypothesis is the negation of H0.
Let P̂ be an estimator of P. When H0 is true, we let P0 denote the true

value of P. We assume that under H0, P̂ is a
√
M−consistent estimator of P0.

Define the conditional-state distribution Andrews test as

CSA = max
k∈M

∣∣∣∣∣∣ 1√
M

∑
j∈M

[
1
(
Qj ≤ Qk

)
− F

(
Qk|sj′, P̂

)]
1
(
sj′ ≤ sk′

)∣∣∣∣∣∣ (7)

The CSA statistic is based on the difference between the empirical df and the

semi-parametric/semi-empirical distribution function
∑
j∈M F

(
Qk|sj′, P̂

)
1
(
sj′ ≤ sk′

)
.

The reason for using the semi-parametric/semi-empirical distribution function
is that the parametric model does not specify the distribution function Zj . It
only specifies the conditional distribution function of Qj given the covariate sj′.
Also, observe that the CSA statistic is not defined by taking the supremum
over all points Z in Rms × S. Rather, the CSA statistic is defined by taking
the maximum over points Z in the sample

{
Zj
}
j∈M.
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The asymptotic null distribution of CSA depends on P0 as well as the dis-
tribution function of the covariate, and thus asymptotic critical values for CSA
cannot be tabulated. Instead, a parametric bootstrap can be used to obtain crit-
ical values and p values for the CSA statistic. Andrews (1997) demonstrates
that the following bootstrap is valid.
We simulate B bootstrap samples each of sizeM :

{
Zjb
}
j∈M for b = 1, ..., B,

where Zjb = (Qjb, sj′) for j ∈M. Note that for each bootstrap sample, we have
the same covariate

{
sj′
}
j∈M as the original sample. Given sj′, we simulate

Qjb using the parametric conditional density associated with the distribution

function F
(
Q|s, P̂

)
. This is repeated M times to give

{
Qjb

}
j∈M. We repeat

this procedure for b = 1, ..., B. Finally, we compute CSA for each of b bootstrap
sample, denoted CSAb. We use

{
CSAb

}
b=1,...,B

to calculate critical values and
p values.
Note that the above test could also condition on a set of covariates instead

of a scalar variable sj′. For example, if there are a finite number of time-
invariant market types (and if that is observable), the distribution of Qj will
be conditional on (sj′,mj), where mj denotes j’s market type that has a finite
support. The test statistic and procedure would remain the same. The Monte
Carlo section focuses on the case with a scalar conditioning covariate.

4 Monte Carlo

This section examines the practical aspects of the proposed tests in a Monte
Carlo study. We consider a simple and transparent dynamic oligopoly game
with multiple equilibria. The game was illustrated and analyzed in more detail
in Pesendorfer and Schmidt-Dengler (2008). It has the following features.
There are two players, binary actions {0, 1} and binary states {0, 1}. The

distribution of the profitability shocks F is the standard normal. The discount
factor is fixed at 0.9. The state transition law is given by st+1i = ati. Period
payoffs are symmetric and are parametrized as follows:

π (ai, aj , si) =



0 if ai = 0; si = 0
x if ai = 0; si = 1

π1 + c if ai = 1; aj = 0; si = 0
π2 + c if ai = 1; aj = 1; si = 0
π1 if ai = 1; aj = 0; si = 1
π2 if ai = 1; aj = 1; si = 1

where x = 0.1; c = −0.2; π1 = 1.2; and π2 = −1.2. The period payoffs can be
interpreted as stemming from a game with switching costs and/or as entry/exit
game. A player that selects action 1 receives monopoly profits π1 if she is the
only active player, and she receives duopoly profits π2 otherwise. Additionally,
a player that switches states from 0 to 1 incurs the entry cost c; while a player
that switches from 1 to 0 receives the exit value x.
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Multiplicity. The game illustrates the possibility of multiple equilibria which
is a feature inherent to games. The following analysis focuses on two asym-
metric equilibria of the three equilibria described in Pesendorfer and Schmidt-
Dengler (2008). In equilibrium (i), player two is more likely to choose action
0 than player one in all states. The ex ante probability vectors for both play-
ers are given by: σ(a1 = 0|s1, s2) = (0.27, 0.39, 0.20, 0.25)

′, σ(a2 = 0|s2, s1) =
(0.72, 0.78, 0.58, 0.71)

′ where the order of the elements in the probability vectors
corresponds to the state vector (s1, s2) = ((0, 0), (0, 1), (1, 0), (1, 1)).

In equilibrium (ii), player two is more likely to choose action 0 than player
one in all states with the exception of state (1, 0). The probability vectors
are given by σ(a1 = 0|s1, s2) = (0.38, 0.69, 0.17, 0.39)

′, σ(a2 = 0|s2, s1) =
(0.47, 0.70, 0.16, 0.42)

′.
Design. The Monte Carlo study considers the conditional choice probabilities

test, the steady-state distribution chi-squared test and Kolmogorov test and
the conditional state distribution Andrews test as described in section 3. The
simulated data are generated by randomly drawing a time series of actions from
the calculated equilibrium choice probabilities described above for each of the
equilibria (i)-(ii) respectively. The initial state is taken as (0, 0) and we start
the sampling process after 100 periods. The number of markets and the length
of the time series is varied in the experiment with the aim at staying close to
typical industry applications. We chose M = 20, 40, ..., 320 and T = 4, 8, ..., 32.
The parameter λ denotes the fraction of markets that adopt equilibrium (i)
while 1− λ denotes the fraction of markets that adopt equilibrium (ii).

Implementation. The choice probabilities for each market are estimated by
a frequency estimator

σ̃ja|s =

{ ∑T
t=1 1(a

jt=a)·1(sjt=s)∑T
t=1 1(s

jt=s)
for

∑T
t=1 1(s

jt
= s) > 0;

0 otherwise;

and σ̃ (a|s) is calculated as

σ̃ (a|s) =

{ ∑
j∈M

∑T
t=1 1(a

jt=a)·1(sjt=s)∑
j∈M

∑T
t=1 1(s

jt=s)
for

∑
j∈M

∑T
t=1 1(s

jt
= s) > 0;

0 otherwise

Observe that the estimators σ̃, σ̃j are the maximum likelihood estimators.
They are consistent under H0 as T → ∞ and σ̂ is additionally consistent as
M → ∞. In this example at = st+1 and the state transition probabilities
equal the conditional choice probabilities σ (a|s) = p(s′, s). Hence, P̂, P̂j are
consistently estimated under H0 as well. The steady-state probabilities Q(P̂) =

[Qs(P̂)]s∈S are induced by the choice probability estimator P̂. The induced
steady state distribution is calculated by approximating the limit distribution
as Q(P̂) ≈ P̂200 ·

(
I· 14
)
which is accurate up to about 10 decimals.9

Our CCP and SSC tests are implemented using equations (1) and (2) re-
spectively. As explained in section 3 for a multinomial distribution there is

9With R = 50 already a very good approximation to about 6 decimals is achieved.
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no unique way in which the Kolmogorov test is implemented. Our SSK test
statistic is implemented based on equation (4) as

SSK =
√
T max
s∈S,j∈M

∣∣∣F̃ js − F (s; Q̃)∣∣∣
where we use a frequency estimator Q̃ to calculate the cdf of the multinomial
distribution of observing state s and F̃ js is calculated based on equation (5).

We base the CSA test on the random variable defined as

Yj =

(∑
t

1
(
sjt = (0, 0)

)
,
∑
t

1
(
sjt = (0, 1)

)
,
∑
t

1
(
sjt = (1, 0)

))
,

which counts how often the game visits state one, two, and three.10 Our CSA
test statistic is implemented based on equation (7) as

CKM = max
k∈M

∣∣∣∣∣∣ 1√
M

∑
j∈M

[
1
(
Yj ≤ Yk

)
− F

(
Yk|sj′, P̂

)]
· 1
(
sj′ ≤ sk′

)∣∣∣∣∣∣
where F

(
Yk|sj′, P̂

)
is the cumulative distribution function for the random

variable Yk conditional on the initial state sj′ and with transition probabilities
P̂.
The critical regions of the described test statistics are calculated using a

bootstrap procedure. The bootstrap sample for the conditional choice proba-
bilities test and steady state distribution test are identical. For every bootstrap
b, M sample draws {sjb}j∈M are obtained by simulating a choice/state path
from σ̂ for every market j. As in the data generating process, the initial state
is taken as (0, 0) and we start the sampling process after 100 periods. For every
bootstrap sample b the associated test statistic is calculated using the above
given formula, respectively described in section 3. The critical value is defined
as the 95th percentile in the distribution of bootstrapped test statistics. The
bootstrap sample for the conditional state distribution test is generated in al-
most the same way, except that for each market j we use the same initial state
as the original sample and draw a subsequent state path from the that initial
state.
Results. Tables 1-4 report the results of the experiments. The Tables report

the percentage of rejections of our tests for every value of M,T, λ. The exper-
iment is based on 299 repetitions for the bootstrap sample and 1, 000 Monte
Carlo repetitions. CCP denotes the conditional choice probabilities test, SSC
denotes the steady-state distribution chi-squared test, SSC’is its variant given

10There are only four states and Yj fully captures an outcome of the game. There
are other ways to form the response variable Yj . For example, we could define Yj =(∑

t s
jt
1 ,
∑
t s
jt
2 ,
∑
t

(
sjt1 · s

jt
2

))
, which counts how often individual players have state

equalling 1 and how often both players jointly have state equalling 1 in market j.
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in equation (3), SSK denotes the steady-state distribution Kolmogorov test,
and CSA denotes the conditional state distribution Andrews test as described
in section 3.
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Table 1. Monte Carlo Results: λ = 0.5

M T CCP SSC SSC’ SSK CSA
20
20
20
20
20
20
20
20

4
8
12
16
20
24
28
32

10.8
5.8
11.9
19.9
29.9
43.9
54.3
65.4

1.7
12.5
27.8
43.6
61.6
74.6
84.0
90.7

2.4
11.7
29.9
45.8
63.4
77.4
86.3
90.4

2.8
8.8
10.3
14.6
14.6
16.9
22.3
25.9

2.9
3.1
3.7
4.2
4.6
3.8
3.5
4.8

40
40
40
40
40
40
40
40

4
8
12
16
20
24
28
32

5.6
4.1
14.7
30.6
52.6
69.3
78.4
90.4

2.3
21.6
48.8
70.5
86.4
94.7
97.5
99.2

3.3
20.6
50.6
73.9
88.9
95.9
98.3
99.4

2.4
10.5
12.8
16.2
19.1
20.9
24.0
28.3

2.9
3.7
3.6
5.2
5.4
6.0
7.3
7.8

80
80
80
80
80
80
80
80

4
8
12
16
20
24
28
32

1.5
3.9
21.5
52.1
77.1
92.4
98.1
99.6

5.4
40.9
75.3
92.8
98.9
99.5
100.0
100.0

4.8
41.0
78.1
93.8
99.2
99.9
100.0
100.0

3.3
8.8
14.6
17.1
22.1
26.3
26.8
32.9

3.0
4.4
5.7
7.4
11.4
11.4
15.8
21.4

160
160
160
160
160
160
160
160

4
8
12
16
20
24
28
32

1.9
5.4
35.6
80.7
96.8
99.9
100.0
100.0

9.9
68.0
96.4
99.8
100.0
100.0
100.0
100.0

10.9
68.9
97.2
99.9
100.0
100.0
100.0
100.0

4.1
4.1
14.0
20.5
24.7
27.1
32.1
33.8

3.0
5.4
8.2
16.7
25.0
34.1
44.6
57.7

320
320
320
320
320
320
320
320

4
8
12
16
20
24
28
32

1.4
5.1
57.5
98.0
99.9
100.0
100.0
100.0

23.6
93.3
100.0
100.0
100.0
100.0
100.0
100.0

24.7
93.9
100.0
100.0
100.0
100.0
100.0
100.0

5.1
1.1
15.1
21.3
26.5
30.4
35.7
42.8

3.0
5.9
15.7
36.6
58.1
80.7
89.4
96.2

CCP is the conditional choice probabilities test, SSC and SSC’ are the
steady-state distribution chi-squared tests, SSK is the steady-state distribution
Kolmogorov test and CSA is the conditional state distribution Andrews test.
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Table 2. Monte Carlo Results: λ = 0.9

M T CCP SSC SSC’ SSK CSA
20
20
20
20
20
20
20
20

4
8
12
16
20
24
28
32

11.3
5.4
6.7
9.0
9.8
13.7
14.5
18.3

2.4
10.7
21.2
28.9
37.9
45.9
55.8
59.8

2.0
5.8
15.1
22.4
29.3
40.1
47.2
52.6

4.5
10.0
14.7
16.8
20.5
26.5
32.8
35.5

3.4
6.0
5.8
6.2
6.3
5.6
6.3
5.3

40
40
40
40
40
40
40
40

4
8
12
16
20
24
28
32

5.8
3.9
5.9
8.5
11.1
17.3
19.8
26.6

2.2
15.1
30.0
46.8
58.3
68.1
75.2
82.8

1.8
10.7
22.8
36.3
46.2
58.3
65.6
73.0

4.1
12.9
19.8
26.2
31.1
36.2
40.4
44.4

3.1
5.1
4.7
5.7
6.1
5.5
5.8
6.6

80
80
80
80
80
80
80
80

4
8
12
16
20
24
28
32

3.3
2.5
7.3
11.0
17.6
27.1
34.8
42.9

4.0
24.0
50.5
66.5
81.2
89.4
94.1
97.3

2.8
15.2
35.4
54.9
70.8
81.0
88.6
93.7

5.1
21.0
24.8
32.8
38.3
47.4
53.7
59.7

3.2
4.6
6.3
6.5
7.4
7.8
9.2
9.1

160
160
160
160
160
160
160
160

4
8
12
16
20
24
28
32

2.4
3.5
12.0
20.3
29.9
43.1
56.5
68.1

7.4
46.1
73.6
89.5
96.9
98.9
99.7
99.9

4.7
30.2
57.7
80.5
91.9
97.0
99.0
99.7

4.6
19.7
34.4
45.4
51.1
61.6
67.0
73.0

4.1
5.8
5.4
9.6
8.9
12.2
13.0
14.8

320
320
320
320
320
320
320
320

4
8
12
16
20
24
28
32

2, 0
2.1
13.3
30.8
47.1
65.5
80.9
91.0

15.2
68.6
93.5
99.4
99.9
100.0
100.0
100.0

8.2
51.1
84.0
97.1
99.9
100.0
100.0
100.0

4.5
26.1
42.6
58.2
65.3
73.1
80.0
85.7

2.6
4.5
8.1
11.1
15.7
20.3
28.7
34.0

CCP is the conditional choice probabilities test, SSC and SSC’ are the
steady-state distribution chi-squared tests, SSK is the steady-state distribution
Kolmogorov test and CSA is the conditional state distribution Andrews test.
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Table 3. Monte Carlo Results: λ = 1

M T CCP SSC SSC’ SSK CSA
20
20
20
20
20
20
20
20

4
8
12
16
20
24
28
32

13.0
6.1
5.8
5.0
3.6
4.0
3.0
3.9

2.1
2.4
3.9
3.3
3.0
3.9
4.0
3.9

1.4
2.5
3.4
3.9
3.1
4.2
4.0
4.6

2.3
3.0
4.3
4.3
4.3
4.9
4.0
4.0

3.3
5.0
4.2
4.5
5.3
4.1
5.6
4.7

40
40
40
40
40
40
40
40

4
8
12
16
20
24
28
32

6.7
4.4
3.9
3.1
3.4
4.7
3.1
5.2

1.2
1.8
3.3
3.8
2.8
3.0
3.6
4.4

0.6
1.8
3.2
3.3
2.9
3.6
4.1
5.9

3.5
4.1
4.8
4.2
4.5
4.4
5.0
4.1

3.7
4.9
5.6
4.7
4.4
4.7
4.0
5.1

80
80
80
80
80
80
80
80

4
8
12
16
20
24
28
32

4.3
3.5
4.1
3.6
5.0
4.0
3.9
4.4

1.4
1.7
2.9
2.8
2.8
4.1
3.5
4.0

1.1
2.0
2.3
4.5
3.0
4.4
3.6
4.4

4.7
3.9
5.4
5.1
4.4
5.2
5.1
4.4

2.7
4.1
4.6
5.2
4.8
6.0
5.3
4.6

160
160
160
160
160
160
160
160

4
8
12
16
20
24
28
32

4.6
3.9
4.6
3.9
4.0
3.3
3.3
4.2

1.2
2.9
4.1
3.0
4.3
4.2
4.3
4.0

1.3
2.8
3.0
3.2
4.5
3.9
4.4
4.3

4.3
5.7
6.6
5.0
3.9
6.6
5.4
4.3

3.8
5.2
4.0
4.2
4.4
4.9
5.7
4.2

320
320
320
320
320
320
320
320

4
8
12
16
20
24
28
32

4.0
2.4
3.6
4.2
4.8
4.5
3.6
5.2

0.9
2.6
2.5
2.6
4.1
3.4
4.2
4.3

1.1
2.3
2.4
2.7
3.6
2.8
4.3
4.2

4.6
3.9
6.0
4.6
4.9
5.8
4.2
4.2

3.5
4.0
4.8
4.1
5.0
4.8
5.1
4.3

CCP is the conditional choice probabilities test, SSC and SSC’are the steady-
state distribution chi-squared tests, SSK is the steady-state distribution Kol-
mogorov test and CSA is the conditional state distribution Andrews test.
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Table 4. Monte Carlo Results: λ = 0

M T CCP SSC SSC’ SSK CSA
20
20
20
20
20
20
20
20

4
8
12
16
20
24
28
32

13.5
7.4
6.4
4.5
4.7
4.6
4.4
2.9

1.0
2.1
1.9
3.3
3.8
3.7
4.1
4.2

0.6
2.2
2.1
3.2
3.2
3.9
3.8
4.1

1.8
3.5
3.9
4.5
4.3
5.2
5.5
5.2

2.6
3.9
5.4
5.3
5.5
4.1
4.7
5.6

40
40
40
40
40
40
40
40

4
8
12
16
20
24
28
32

8.4
5.0
4.4
4.7
4.0
4.2
4.1
3.5

0.5
2.0
3.0
3.8
3.9
3.0
3.3
4.2

0.3
2.0
2.3
3.3
3.8
2.6
3.4
3.6

2.6
2.9
4.3
4.3
4.4
4.1
4.8
4.7

3.2
3.8
4.1
5.3
4.5
5.8
4.1
4.0

80
80
80
80
80
80
80
80

4
8
12
16
20
24
28
32

3.8
5.1
4.5
4.4
5.0
3.5
4.4
4.3

0.3
2.9
3.9
3.0
4.2
3.6
3.4
4.3

0.1
2.6
3.4
3.1
4.2
3.5
3.1
4.7

2.3
1.6
4.3
4.0
4.7
4.8
5.3
5.5

2.9
5.7
5.0
4.4
5.8
5.1
5.1
4.3

160
160
160
160
160
160
160
160

4
8
12
16
20
24
28
32

3.8
4.9
4.7
4.6
4.2
4.5
4.6
4.6

0.5
3.1
2.9
3.3
3.0
3.2
3.0
3.8

0.5
2.6
2.5
2.9
3.0
3.1
2.8
3.6

2.7
2.0
2.1
3.4
4.7
4.7
5.1
5.5

3.9
4.5
4.4
4.7
5.8
4.7
5.0
4.5

320
320
320
320
320
320
320
320

4
8
12
16
20
24
28
32

5.3
6.0
4.5
4.0
4.0
4.6
4.4
4.1

0.3
2.4
3.1
3.3
3.8
2.7
2.3
3.4

0.3
1.9
3.0
2.8
3.9
3.0
2.5
3.5

4.3
4.0
0.9
4.6
5.4
5.9
4.8
3.7

3.6
5.1
4.7
4.4
4.9
5.4
4.6
4.9

CCP is the conditional choice probabilities test, SSC and SSC’are the steady-
state distribution chi-squared tests, SSK is the steady-state distribution Kol-
mogorov test and CSA is the conditional state distribution Andrews test.

23



Table 1 considers the case when λ = 0.5. It shows that as the number of time
periods T and/or markets M increases, the tests reject the null with increasing
frequency. The two chi-squared test statistics, CCP and SSC, perform better
than the two Kolmogorov tests, SSK and CSA, for moderate values of T and/or
M . A possible reason may be that the chi-squared tests use the information in
all cells and not only the maximal difference across cells. Comparing the two
chi-squared tests, we find that the SSC test performs better than the CCP test.
A possible reason is that the SSC test uses fewer cells than the CCP test. The
SSC test is based on ms cells while the CCP test is based on ms · ma cells.
The table also illustrates that for a typical industry application with about 40
markets and 32 time periods the SSC test may perform reasonably.
To further investigate power properties of these tests, Table 2 considers the

case when λ = 0.9. That is, the first equilibrium is played in 90% ofM markets.
While CCP, SSC, and CSA all have lower power than the case of Table 1, the
SSK test has higher power. Overall, the SSK test performs now better than the
CCP test. The SSC has still the best performance among all four tests. This
result is consistent with our argument in section 3.2.2.11

Tables 3 and 4 consider the cases when λ = 1 and when λ = 0, respectively.
All tests perform reassuringly well leading to a five percent rejection frequency
as T and/or M increase.
In all four tables, we also include the SSC’test. The SSC and SSC’tests

both perform equally well; the SSC’ performs slightly better when λ = 0.5,
while the SSC has higher power when λ = 0.9. The finding appears natural
since the potential problem of the SSC test discussed in the previous section is
more relevant when the size of the state space is large. To see this, we construct
an additional Monte Carlo example with two distinct Markov chains where the
number of states is 16, instead of 4.12 We perform the same simulation exercise
as described above. Table 5 summarizes the power of the SSC and SSC’tests
for the cases of λ = 0.5 and λ = 0.9.We observe that the SSC’test substantially
outperforms the SSC test in almost all pairs of M and T , and both in the cases
of λ = 0.5 and λ = 0.9. The table confirms our earlier discussion in the previous
section. To be complete, Table 6 reports the simulation results for λ = 1 and
λ = 0 (when the null hypothesis is true). Again, the SSC’is preferred in the
sense that the SSC rejects the null too often when it is not supposed to do so
for T small.
11To further support our argument, we also use the SSK′ statistc defined in (6) both when

λ = 0.5 and λ = 0.9. As we expected, when λ = 0.5, the SSK′ test performs better than the
SSK test and its power is about as high as that of the CCP statistic. On the other hand,
when λ = 0.9, the SSK′ test underperforms both the SSK test and the CCP test in almost
all pairs of M and T .
12The row vector of the first transition matrix is (0.03, 0.04, 0.05, 0.06, 0.07, 0.25, 0.095,

0.085, 0.075, 0.065, 0.055, 0.045, 0.035, 0.025, 0.015, 0.005) for every row. That is, regardless
of the current state, the game transits to the first state with probability of 0.03, to the second
state with probability of 0.04, and so on. The row vector of the second transition matrix is
(0.005, 0.015, 0.025, 0.035, 0.045, 0.055, 0.065, 0.075, 0.085, 0.095, 0.25, 0.07, 0.06, 0.05, 0.04,
0.03) for every row. The transition matrix is chosen arbitrarily and is not based on a specific
game theoretic model. The transition matrix is aimed at illustrating the performance of tests
with 16 states instead of 4.
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Table 5. Monte Carlo Results: No. state 16

λ = 0.5 λ = 0.9

M T SSC SSC’ SSC SSC’
20
20
20
20
20
20
20
20

4
8
12
16
20
24
28
32

19.2
21.8
34.1
60.0
78.9
90.1
96.6
99.1

5.3
25.4
61.9
89.0
97.2
99.3
100.0
100.0

18.7
13.1
17.5
25.9
33.6
41.6
53.0
61.8

3.2
8.8
16.5
28.5
39.4
50.4
63.3
73.1

40
40
40
40
40
40
40
40

4
8
12
16
20
24
28
32

13.8
26.7
58.4
87.7
97.3
99.5
99.9
100.0

9.7
52.7
90.9
99.4
100.0
100.0
100.0
100.0

13.6
12.8
21.1
36.7
51.3
65.6
75.9
85.3

3.5
12.0
26.6
47.1
65.0
79.0
87.5
94.3

80
80
80
80
80
80
80
80

4
8
12
16
20
24
28
32

8.2
48.7
88.8
99.2
100.0
100.0
100.0
100.0

18.3
83.8
99.8
100.0
100.0
100.0
100.0
100.0

10.0
18.7
34.2
60.4
76.9
88.9
94.1
98.5

4.3
23.0
48.1
74.6
88.7
95.9
98.3
99.3

160
160
160
160
160
160
160
160

4
8
12
16
20
24
28
32

16.4
77.6
99.4
100.0
100.0
100.0
100.0
100.0

39.8
99.3
100.0
100.0
100.0
100.0
100.0
100.0

8.6
29.8
59.7
84.2
94.7
99.3
99.7
100.0

8.7
39.2
76.2
94.9
98.8
100.0
100.0
100.0

320
320
320
320
320
320
320
320

4
8
12
16
20
24
28
32

32.0
97.4
100.0
100.0
100.0
100.0
100.0
100.0

70.5
100.0
100.0
100.0
100.0
100.0
100.0
100.0

11.5
48.6
85.8
98.7
100.0
100.0
100.0
100.0

16.0
68.2
95.4
99.9
100.0
100.0
100.0
100.0
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Table 6. Monte Carlo Results: No. State 16

λ = 1 λ = 0

M T SSC SSC’ SSC SSC’
20
20
20
20
20
20
20
20

4
8
12
16
20
24
28
32

16.6
6.4
5.1
4.9
4.1
4.2
4.8
4.0

3.4
3.5
3.5
4.2
4.0
3.6
3.7
4.0

7.3
3.5
3.1
4.3
2.8
4.0
6.1
4.8

1.5
1.7
1.6
3.2
2.9
2.7
4.3
4.0

40
40
40
40
40
40
40
40

4
8
12
16
20
24
28
32

11.8
5.2
4.9
4.8
3.0
3.9
4.2
4.7

2.5
2.5
3.3
5.1
2.3
3.6
4.0
4.8

7.7
3.9
3.6
5.1
3.6
4.6
5.9
4.1

1.4
2.5
2.4
4.5
3.0
4.0
4.2
4.3

80
80
80
80
80
80
80
80

4
8
12
16
20
24
28
32

10.4
4.6
4.6
3.7
3.0
4.4
5.5
4.5

1.4
2.4
4.0
4.5
3.8
3.8
4.9
3.8

7.0
3.3
4.5
4.0
4.3
4.9
4.7
4.5

1.1
3.5
3.9
4.8
3.3
5.3
4.0
4.4

160
160
160
160
160
160
160
160

4
8
12
16
20
24
28
32

6.6
4.0
3.4
4.0
4.3
5.0
5.5
4.6

1.8
3.0
2.5
5.4
4.3
3.8
5.3
4.6

5.0
3.3
3.4
4.0
5.7
4.4
5.0
5.1

1.8
3.9
3.9
3.4
4.8
5.0
3.2
4.3

320
320
320
320
320
320
320
320

4
8
12
16
20
24
28
32

2.3
3.8
3.7
3.8
3.7
4.9
5.0
4.6

1.8
3.0
3.7
4.3
3.3
4.5
5.3
5.5

2.5
3.4
3.8
4.1
4.3
4.3
3.5
5.1

1.9
3.6
3.5
3.9
3.9
4.6
3.8
4.9

Our Monte Carlo illustrates that our steady-state distribution chi-squared
test SSC performs well for moderate sample sizes. It seems well suited for
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typical industry applications. The next section applies the test in an empirical
application.

5 Empirical Application

Recently, a number of empirical papers apply a dynamic game to data and
estimate parameters of the game using two step methods. These papers include
Ryan (2012), Collard-Wexler (2010), Sweeting (2011), Beresteanu, Ellickson,
and Misra (2010), and the empirical section of Aguirregabiria and Mira (2007),
among others. Panel data frequently contain a large number of markets over a
relatively short time period. Researchers tend to pool different markets together
to estimate policy functions in the first stage. To do this pooling, an important
assumption is that a single equilibrium is played in every market. This section
tests this single equilibrium assumption using the data of Ryan (2012). We chose
Ryan (2012) because it is one of a few papers already published and because the
number of state variables is relatively small so that it fits well our illustrative
purpose.
To evaluate the welfare costs of the 1990 Amendments to the Clean Air Act

on the Portland cement industry in the U.S., Ryan (2012) develops a dynamic
oligopoly model based on Ericson and Pakes (1995) and estimates the model
using a two-step method developed by Bajari, Benkard, and Levin (2007). In
his application, there are 23 geographically separated markets. To estimate
firms’policy functions in the first stage, Ryan (2012) assumes that the data are
generated by a single Markov Perfect Equilibrium. We apply our test to check
this assumption. One caveat is that we use a discrete state space framework,
while Ryan (2012) uses a continuous state space. Thus, we have to discretize the
state variables in Ryan (2012)’s application to perform the test. For a fine grid,
however, little differences between the two frameworks are expected in practice.
We first summarize Ryan (2012)’s model. Then, we explain the procedure

of our test in this context.

5.1 Ryan (2012)’s Model

Ryan (2012) assumes that N firms play a dynamic oligopoly game in each
regional cement market. Firms make decisions to maximize the discounted
sum of expected profits. The timing of the decisions is as follows. At the
beginning of each period, incumbent firms draw a private scrap value and decides
whether to exit the market or not. Then, potential entrants receive a private
draw of entry costs and investment costs. At the same time, incumbent firms
who have not decided to exit the market draw private costs of investment and
divestment. Then, all entry and investment decisions are made simultaneously.
Firms compete in the product market and profits realize. Finally, firms enter and
exit, and their capacity levels change according to the investment/divestment
decisions in this period.
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Let s = (s1, ..., sN ) ∈ S be the set of capacity levels of N firms and let εi
be a vector of all private shocks to firm i. Assuming that εi is iid over time
and focusing on Markovian strategies, firm i’s strategy is a mapping from states
and private shocks to actions; σ̃i : S × E → A, where E is a domain of εi. By
integrating over εi, we have a mapping from states to the probability distribution
over the action space; σi : S → ∆A. Let Vi (s;σ) denote the value of firm i
if the current state is s and firms follow strategy σ = (σ1, ..., σN ) now and in
the future. The profile σ∗ = (σ∗1, ..., σ

∗
N ) is a MPE if for all i, Vi

(
s;σ∗i ,σ

∗
−i
)
≥

Vi(s;σ
′

i,σ
∗
−i) for all σ

′ and s ∈ S. The existence of pure strategy equilibria in
a class of dynamic games is provided in Doraszelski and Satterthwaite (2010).
The model of Ryan (2012) also falls in this class. Furthermore, multiplicity of
equilibria is prevalent.
Ryan (2012) follows the two-step method developed by Bajari, Benkard, and

Levin (2007). In the first stage, Ryan (2012) estimates the entry, exit, and in-
vestment policies as a function of states. Because of the issue of multiplicity,
different equilibria may be played in different markets. However, since Ryan
(2012) has only 19 years of time series compared to a large state space, estimat-
ing policy functions market by market is not practical. Thus, he imposes the
following assumption:

Assumption 1 The same equilibrium is played in all markets.

Based on this assumption Ryan pools all markets when estimating policy
functions. Our aim is to test the validity of this assumption.
In addition to assumption 1, Ryan (2012) assumes flexible functional forms

for the policy functions. First, the probability of entry is modeled as a probit
regression,

Pr (firm i enters in period t| si = 0, s) (8)

= Φ
(
ψ1 + ψ2

(∑
j 6=i

stj

)
+ ψ31 (t > 1990)

)
,

where Φ(·) is the cdf of the standard normal. The dummy 1 (t > 1990) is intro-
duced to account for the change in firms’behavior after the introduction of the
1990 Amendments.
Second, the exit probability is also modeled as probit,

Pr (firm i exits in period t| ; si > 0, s) (9)

= Φ
(
ψ4 + ψ5s

t
i + ψ6

(∑
j 6=i

stj

)
+ ψ71 (t > 1990)

)
.

Finally, the investment policy is modeled using the empirical model of the
(S,s) rule by Attanasio (2000). Specifically, firms adjust the current capacity
level to a target level of capacity when current capacity exceeds one of the bands
around the target level. The target level s∗ti is given by

ln s∗ti = λ′1 · b1
(
sti
)

+ λ′2 · b2
(∑

j 6=i
stj

)
+ u∗ti , (10)
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where u∗ti is iid normal with zero mean and a homoscedastic variance, the func-
tions b1 (.) and b2 (.) denote cubic b-spline, which is to capture flexible functional
forms in the variables sti and

∑
j 6=i

stj . The lower and upper bands are given

by

sti = s∗ti − exp
(
λ′3b1

(
sti
)

+ λ′4b2

(∑
j 6=i

stj

)
+ ubti

)
(11)

and
sti = s∗ti + exp

(
λ′3b1

(
sti
)

+ λ′4b2

(∑
j 6=i

stj

)
+ ubti

)
, (12)

where ubti and u
bt
i are assumed iid normal with zero mean and equal variance. It

is assumed that the upper and lower bands are symmetric functions of the target
capacity. To estimate (10), Ryan (2012) simply replaces ln s∗ti with ln st+1i and
runs OLS using the sample with sti 6= st+1i . To estimate parameters in (11) and
(12), Ryan (2012) regresses ln |st+1i − sti| on b1 and b2 using the sample with
sti 6= st+1i . The implicit assumption here is that the level of capacity observed
before the change (i.e., sti) is equal to either the lower or the upper bands
depending on whether the investment is positive or negative.13 To estimate the
variances of u∗ti , u

bt
i , and u

bt
i , Ryan (2012) calculates the sum of the squared

residuals at the estimated parameters and divide it by (n− kλ), where n is the
sample size used in least squares and kλ is the number of parameters in λ for
each equation.
Once all these reduced form parameters are estimated, the value functions

can be computed by forward simulation. If Assumption 1 holds and the func-
tional forms are flexible enough, the first stage delivers consistent estimates of
choice probabilities associated with the equilibrium that is played in the data.
However, if there are more than one equilibria in the data, estimates of choice
probabilities are not consistent, and estimates of structural parameters in the
second stage are not consistent either.

5.2 Data

We download the data from the Econometrica webpage. The dataset contains
information on all the Portland cement plants in the United States from 1981 to
1999. Following Ryan (2012), we assume that every plant is owned by different
firms. For each plant, we observe the name of company that owns the plant and
the location of the plant. A plant consists of several kilns. For each kiln, we
observe the fuel type, process type, and the year when the kiln was installed.
We organize the data in the following way. The capacity of a plant is simply
defined as the sum of capacity of all kilns that are installed in the plant. Plants
sometimes change their company name. One reason is that plants are sold to
a different company. Another possibility is that two or more firms merge and
names change accordingly. In such cases, it appears as if the old plant exits the
market and a new firm (plant) enters the market at the same time. To deal with
such spurious entry/exit, we check information of kilns (fuel type, process type,

13For an interpretation and justification of this implicit assumption, see Attanasio (2000).
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year of installation) installed in the plant that changed the company name, and
if those information have not changed at all, we assume that the plant stays in
the market (we assume that no entry and exit took place associated with this
name change).
As a result, we obtained the same plant-level data as Ryan (2012). Table 7

shows its summary statistics.

Table 7. Summary Statistics of Plant-Level Data

Min Mean Max Std. Dev.
Sample
size

Quantity 177 699 2348 335 2233
Capacity 196 797 2678 386 2233
Investment -728 2.19 1140 77.60 2077

We estimate (8) and (9) by a probit regression. Table 8 compares our es-
timates of these policy functions with those of Ryan (2012). Our entry and
exit probit regressions give very close estimates as those of Ryan (2012). Small
differences in those estimates may have come from either differences in the opti-
mization routine or the market definition that may slightly differ between Ryan
(2012) and our data.14 We believe that these differences are suffi ciently small
so they would not distort the test result.

14Ryan (2012)’s Java code available at the Econometrica website generates only 22 markets,
while his probit estimation appears to be using 23 markets (23 markets times 18 years equals
414 observations). One natural way to increase the number of markets is to disaggregate one
large market into two. In California, we can observe two clusters of plants; one in Northern
California around the San Francisco area and another in Southern California around the Los
Angeles area. These two clusters are remote by more than 350 miles. Thus, we believe that
Northern and Southern California can be considered two separate markets.
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Table 8. Entry and Exit Policies

Entry Policy Entry Policy Exit Policy Exit Policy
Ryan (2012) Reproduce Ryan (2012) Reproduce

Own capacity − − −1.5661 −1.5179
− − (0.268) (0.262)

Competitors’
capacity

0.0448 0.0595 0.0456 0.0633

(0.0365) (0.0421) (0.0173) (0.0190)
After 1990 −608.9773 −561.1106 −595.2687 −568.6195

(263.9545) (296.7534) (161.6594) (171.0794)
Constant −1714.599 −1764.259 −1000.619 −1129.785

(215.2315) (263.2785) (171.2286) (180.5120)

Log-likelihood −70.01 −76.27 −227.21 −226.49
Prob > χ2 0.0177 0.0215

Sample size 414 414 2233 2233

Note: Standard errors are in parentheses. Both coeffi cients and standard errors
are scaled up by 1,000.

Replicating Ryan (2012)’s investment policy functions is less straightforward.
Using OLS for only the sample with sti 6= st+1i would generate inconsistent
estimates of parameters. In particular, the variances of ubti and ubti would be
inconsistently estimated as the sample are selected based on the realization of
the errors. Our test-statistics require consistent estimates. A possible solution
to obtain consistent estimates of the parameters would be to adopt a different
inference method, based on maximizing the joint likelihood function including
the sample with sti = st+1i as well. However, this inference method did not work
well in practice as the data are not rich enough to identify all the parameters
of interest repeatedly in the Monte Carlo. Instead of doing so, we decided to
modify the specification

ln s∗ti =

{
β′xti + u∗ti if γ′xti + ubti > 0

ln sti otherwise
(13)

where

xti =

(
1, sti,

(
sti
)2
,
∑

j 6=i
stj ,
(∑

j 6=i
stj

)2
, sti

(∑
j 6=i

stj

))
.

We assume that u∗ti ∼ N
(
0, σ∗2

)
and ubti ∼ N (0, 1) and estimate

(
β, γ, σ∗2

)
by

the maximum likelihood. To account for a possible structural change in 1990,
instead of using a dummy variable, we allow β and γ to differ between the period
before 1990 and the period after 1990.
This simple specification has three advantages. First, the maximization

of the likelihood of this specification behaves well numerically, so it suits the
case where one needs to repeat the same estimation procedure many times.

31



While the model described in (10)-(12) is theoretically identified, it is sometimes
challenging numerically to obtain the parameters.15 Second, our specification
includes the interaction term between own capacity and competitors’capacity,
which may be important in the policy function. We could add the third b-
spline for such interaction term in Ryan (2012)’s specification, but with the
cost of having many more additional parameters. Third, our specification still
captures the fact that the plant does not adjust its capacity level frequently.
Table 9 shows the estimate results for the investment function in (13).

Table 9. Investment Policy

β, γ, σ∗2
Target Equ.
Before 1990

Target Equ.
After 1990

Adj. Prob.
Before 1990

Adj. Prob.
After 1990

Own capacity 223.7894 214.2676 -6.8058 -95.4399
(7.2386) (0.0001) (39.3968) (55.5917)

Own capacity -0.0499 -0.0459 0.0036 0.0404
squared (0.0026) (0.0050) (0.0160) (0.0247)

Competitors’capacity 1.5962 2.7825 10.7577 -20.0321
(1.3729) (3.5565) (6.9503) (11.4533)

Competitors’capacity 0.0000 -0.0001 -0.0005 0.0010
squared (0.0001) (0.0004) (0.0005) (0.0011)

Own capacity times -0.0018 -0.0024 -0.0053 0.0093
Competitors’capacity (0.0008) (0.0015) (0.0040) (0.0064)

Constant 518983.5 520433.3 -53911.7 53316.4
(4375.9) (6673.1) (23565.5) (31891.9)

Band σ∗2 0.02562 -
(0.00057) -

Note: Standard errors are in parentheses. Both coeffi cients and standard errors for β and γ are
scaled up by 100,000.

5.3 Testing the Assumption of Unique Equilibrium

Ryan (2012)’s panel data contains states and actions over 19 years for 23 dif-
ferent markets. Since our Monte Carlo study indicates that the steady-state
distribution chi-square test performs much better than the conditional choice
probability test or conditional state distribution test when the number of mar-
kets is small, we apply the steady-state distribution chi-square test (and its
variants robust to a large state space) to Ryan (2012)’s data.

15Attanasio (2000) places several restrictions on the model to make his estimation manage-
able. Even with these restrictions, one still needs numerical integration, which is costly. We
provide further detail for the diffi culty of estimating the full model in the current application
upon request.
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5.3.1 Baseline Result

Our test proceeds as follows. First, we estimate policy functions (8), (9), and
(13). Entry and exit regressions have 3 and 4 parameters, respectively. For the
investment equation, we have 25 parameters as shown in Table 9. Thus, we have
32 parameters in total. Let P(θ̂) be the Markov chain implied by the estimated
parameter vector θ̂.
Second, we approximate the steady-state distribution Q(P(θ̂)) by forward

simulation. Since Ryan (2012) assumes that the equilibrium played before 1990
is different from the one played after 1990. By Lemma 3, the steady-state
distributions are also different between the periods before and after 1990. Thus,
we separately simulate the game before and after 1990, each of which is done

10,000 times. LetQbefore(P(θ̂
before

)) andQafter(P(θ̂
after

)) denote the steady-
state distributions before and after 1990, respectively. To simulate them, as
initial conditions, we set the number of plants (firms) around its sample average
(6 for the period before 1990 and 5 for the period after 1990) and set the initial
capacity level for each plant at its sample average (775 thousand tons for the
before-1990 distribution and 831 thousand tons for the after-1990 distribution).
We forward simulate the game for 400 years.
One diffi culty of simulating a game is that one has to rely on interpolation

and extrapolation of choice probabilities, when the game visits a state that is
never observed in the data. This is prevalent especially when the state space is
large relative to the sample size. Since there is no obvious way of dealing with
this problem, we take a conservative route. First, we define

sti = max
i

{
sti
}

sti = min
i

{
sti
}
,

and whenever the equation (13) implies a larger (smaller) value of the target
capacity than sti (s

t
i), we replace s

∗t
i with sti (s

t
i). Second, we use the same

procedure for the entry and exit probabilities. Third, we impose an upper
bound on the number of plants in one market. In the standard Ericson-Pakes
model, the researcher bounds the state space from above, based on primitives
of the model and data. In this paper, as a baseline specification, we use the
maximum number of plants observed in the data (20 plants in 1980 in Texas)
as an upper bound and do not allow any entry if the market already has 20
plants.16

Let s∗n denote the total capacity (sum of incumbents’capacity) at t = 400

for the n-th simulation. We obtain {s∗n}
10,000
n=1 for each of Q(P(θ̂

before
)) and

Q(P(θ̂
after

)) and discretize the support of these distributions into 75 bins with
equal intervals of 500 thousand tons (0-500 thousand tons, 500-1,000 thousand
tons, and so on).
Figure 1 depicts the discretized steady-state distributions before and after

1990, respectively.
16Later on, we change this number to see the test result is sensitive to this choice.
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Third, letting Qs(P(θ̂
before

)) and Qs(P(θ̂
after

)) denote the s-th element of

Q(P(θ̂
before

)) and Q(P(θ̂
after

)), respectively and

Q̃j,befores =
1

10

1990∑
t=1981

1
(
stj = s

)
for s ∈ {1, ..., 75} and j = 1, ..., 23

Q̃j,afters =
1

9

1999∑
t=1991

1
(
stj = s

)
for s ∈ {1, ..., 75} and j = 1, ..., 23,

we calculate several test statistics. We calculate the SSC test-statistic, as it
performs best in the Monte Carlo study:

SSC = (19) ·
23∑
j=1

∑
s∈{1,...,75}

∑
l∈{before,after}

[
Q̃j,ls −Qs(P(θ̂

l
))
]2

Qs(P(θ̂
l
))

. (14)

To deal with the problem that this statistic behaves poorly when the size of
the state space is large compared to the sample size (see Section 3), we also
calculate the modified SSC ′ statistic which omits the predicted probability from
the denominator:

SSC ′ = (19 · 75) ·
23∑
j=1

∑
s∈{1,...,75}

∑
l∈{before,after}

[
Q̃j,ls −Qs(P(θ̂

l
))
]2

For comparison purposes we also report the SSK statistic:

SSK =
√

19 max
j∈M,s∈{1,...,75},l∈{before,after}

∣∣∣F̃ j,ls − F (s;Qs(P(θ̂
l
))
)∣∣∣ , (15)

where F is the cumulative distribution of state. The CSA is not suitable in the
current context, as the number of market is small.
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Finally, we use a bootstrap to calculate the critical region of the test sta-
tistic in the following way. For each bootstrap sample b, we simulate the game
for 19 years and 23 markets. To neutralize the effect of arbitrary initial con-
ditions, we run the game for 400 time periods before storing data (that is, we
store the data from the 401th to 419th period for each market). For the simu-
lated b-th bootstrap sample, we estimate policy functions using equations (8),

(9), and (13). Let θ̂
b
be the set of parameters from b-th bootstrap sample.

Then, we follow the same procedure as above to approximate the steady-state

distributions Q(P(θ̂
b,before

)) and Q(P(θ̂
b,after

)). Finally, we compute SSCb,

SSC ′b, and SSKb using (14)-(15) with Q̃j,b,befores , Q̃j,b,afters , Q(P(θ̂
b,before

)),

and Q(P(θ̂
b,after

)). We repeat this bootstrap procedure 199 times.

Table 10. Baseline Results

SSC SSC ′ SSK
Test statistics 6,404.458 26.225 4.345
5% Critical value 77,481.761 23.339 4.356
p value 0.739 0.015 0.704

Note: We have not multiplied the normalizing constants
for SSC and SSC’statistics to ease comparisons.

Table 10 summarizes the test results. SSC ′ implies that we reject the hy-
pothesis that the equilibrium played in the data is unique at the 1.5% signifi-
cance level.
To investigate where the rejection comes from, Figures 2 and 3 compare the

observed distribution with the steady-state distribution for the sample before
1990 and after 1990, respectively. As we can easily see, the steady-state distri-
bution and the observed distribution significantly differ from each other for the
period before 1990. On the other hand, Figures 4 and 5 show the observed and
steady-state distributions of one typical bootstrap sample, which is generated
under the null hypothesis of unique equilibrium. Since the observed distribution
is plotted using 414 observations (23 markets over 19 time periods), while the
steady-state distribution is plotted using 10,000 simulations, it is natural that
these two distributions do not match exactly even under the null hypothesis.
However, these figures already deliver a hint about the source of the multiplicity.
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5.3.2 Other Specifications

Before investigating the baseline test result further, we perform several robust-
ness checks.
First, Ryan (2012) assumes that firms had not anticipated the change in the

environment before 1990. Thus, when the 1990 Amendments to the Clean Air
Act was introduced, the game jumped to the new equilibrium. As can be seen
in Figure 1, the steady-state distributions before and after 1990 are significantly
different. Thus, it is likely that right after 1990, the game stayed in transient
states for awhile. This may distort our test result. To see if this possibly
produces the rejection of the null hypothesis, we implement the test using the
distribution before 1990 only.
Next, we investigate if the test result is sensitive to discretization. Since the

state space is continuous in Ryan (2012)’s model, a crude discretization of the
steady state distribution may cause a problem. Differences in the distributions
between the continuous state space and discrete state space tend to vanish as
the grids become finer. Thus, we expect that differences in the test outcome
stemming from discretization would also vanish. As a robustness check, we
discretize the support of the steady state distributions into 375 bins with equal
intervals of 100 thousand tons (0-100 thousand tons, 100-200 thousand tons,
and so on) and implement the test by simulating the game 50,000 times to
approximate the steady-state distribution.
Finally, we exclude seemingly outlier markets and apply the test. Figure 6

reports the average (over 19 time periods) total capacity, 1
T

∑T
t=1

(∑N
i=1 s

jt
i

)
,

by market.
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As we can see in the figure, market 5 (Southern California), market 21 (Penn-
sylvania), and market 23 (Texas) appear to be outliers. As a third robustness
check we perform the same test for the subsample without using data from these
three markets.

Table 11. Robustness Checks (SSC ′)

Before 1990 Fine Grid Subsample
Test statistics 13.903 15.740 22.440
5% Critical value 10.028 10.382 26.958
p value 0.015 0.015 0.126

Note: We have not multiplied the normalizing constants
for the SSC’statistic to ease comparisons.

Table 11 summarizes the results of robustness checks. We focus on the test-
statistic SSC ′. The first two robustness checks suggest that we still reject the
hypothesis of a unique equilibrium.17 It is interesting that our test delivers a
different result once we exclude outlier markets. The p-value is 0.126. Thus, we
cannot reject the hypothesis that data is generated by a single equilibrium.18

To investigate possible reasons for the difference in test results, in Figure 7
we plot the steady-state distributions from the full sample and subsample for the
period before 1990, along with the observed distribution from the full sample.
The steady state distribution from the subsample (with the mode around 5,500
thousand tons) is located on the left side of the full-sample distribution (with
the mode around 10,500 thousand tons). This reflects the fact that we excluded
three outliers (Southern California, Pennsylvania, and Texas) from the sample.

17As an additional check, we set the maximum number of plants in a market at 25 and
perform the test. The p-value of the test statistic is 0.025, implying that the hypothesis of a
unique equilibrium is rejected.
18We also perform the test using the subsample and the distribution before 1990 only. The

Chi-squared statistic SSC′ is (19 · 75) · 11.962, while the 95th percentile of the bootstrap
distribution is (19 · 75) · 15.482. The p-value is 0.080, and hence we cannot reject the null
hypothesis with the conventional test size of 5%.
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Obviously, the steady-state distribution calculated from the subsample has a
much larger overlap with the observed distribution.
The result from the period after 1990 shown in Figure 8 has a similar pattern

as the one in Figure 7, although the difference in the steady-state distributions
between the full sample and subsample is more subtle. It is worth noting that the
steady-state distribution simulated with the subsample has a tiny spike around
20,000 thousand tons. This implies that with a small probability the total
market size diverges, although it stops around 20,000 thousand tons because of
the limit we placed on the total number of plants in a market. This may be
due to the smaller sample size in the subsample, so the estimates of the policy
functions are imprecise.

Thus, the evidence suggests that, although it is not conclusive, the equilib-
rium played in large markets is different from the equilibrium played in other
average-sized markets.
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6 Conclusion

This paper proposes several statistical tests for finite state Markov games to ex-
amine the null hypothesis that the data are generated by a single equilibrium.
The tests are the conditional choice probabilities test, the steady-state distri-
bution test, and the conditional state distribution test. We perform a Monte
Carlo study and find that the steady-state distribution test works well and has
high power even with a small number of markets and time periods. We apply
the steady-state distribution test to the empirical application of Ryan (2012)
and reject the null hypothesis of single equilibrium in the data.
Three caveats need to be emphasized. First, multiplicity of equilibria and

the existence of unobservable market level heterogeneity are observationally
equivalent in our framework. Our tests detect both, multiple equilibria and
unobservable heterogeneity. However, in case of a rejection, a researcher is left
agnostic about causes of the rejection. Our framework gives no guidance for the
researcher on a next step. In principle, unobservable heterogeneity and multi-
plicity of equilibria are different in that the former is payoff-relevant, while the
latter is not. We could separate these two sources of mixing at the cost of fully
specifying the payoff structure of the game19 . This is left for future work.
Second, in addition to unobservable heterogeneity, a rejection of the null

hypothesis could also point to a misspecification of policy functions. If the policy
function is parametric, a rejection of the null could suggest that a more flexible
functional form is required. Thus, our tests can also serve as a specification
test. On one hand, given that researchers check the goodness of fit of their
models in somewhat ad-hoc ways in the literature, it is another contribution
of our paper to provide a formal specification test that researchers could use,
even in a context where multiple equilibria do not cause problems in estimation
(e.g., analysis based on one long time series). On the other hand, there are
several specification tests available in the econometrics literature, and it is not
clear if our tests work better than these available tests. Formally developing
a specification test that best exploits properties of MPE is still left for future
work.
Third, our test statistics are proposed within the finite state discrete time

Markov class. The theory of finite state Markov chains is well developed and
allows us to borrow well known results from the probability theory literature.
To extend the tests to a richer state space, we would need to borrow results from
a more involved statistical literature making the tests perhaps less accessible to
researchers. However, we believe that our tests cover a wide class of dynamic
games that are used in the empirical IO literature. With a bounded state space,
as is typical the case in IO applications, the observable difference between games
with finite state and games with a continuous state space seem superficial and

19 In a broader context, while leaving the details of the game unspecified makes our frame-
work general, a researcher could be better off by exploiting some theoretical restriction implied
by a specific model, and thereby having higher power. There is a trade-off between generality
of the framework and power of the test. How much a researcher wants to specify her model
for testing purposes depends on the application in question.
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not essential as in practice the data are finite. Researchers may use a finer grid
when the data become richer.
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