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the tournament contract by a gap which de�nes the minimum distance by
which the best performing agent must beat the second best to receive the
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1 Introduction

Tournaments are frequently used by private corporations, e.g. in the form of

job-promotion tournaments or to decide on relative performance pay. The

tournament organizer �the principal �is interested in the optimal design of

the tournament, that is, in the prize structure that o¤ers the best compromise

between implemented e¤orts and corresponding labor costs.

Nalebu¤and Stiglitz (1983) introduced the idea of complementing a tour-

nament by a gap as a minimum distance by which the best performing agent

must beat the second best to become the tournament winner. Such a gap

is always feasible if the principal measures performance on a cardinal scale.

Nalebu¤ and Stiglitz consider a competitive market in which expected prof-

its are driven to zero. They base their analysis on the observation that the

�introduction of �gaps�can lower the probability that any prize will be paid

while maintaining the same level of marginal incentives�(p. 31). This argu-

ment, however, is applicable only if performance measures are veri�able. We

follow Prendergast and Topel (1996), among many others, and address the

case where the evaluation of agents may involve an element of subjectivity

so that performance measures are unveri�able. Such environment typically

holds for labor relationships.1 We analyze under which conditions the intro-

duction of a gap leads to a strict improvement of the standard tournament

that solely speci�es prizes.

In our paper, we combine contract theory with the theory of contests. We

consider a moral-hazard situation in which a risk neutral principal designs the

optimal tournament contract for two risk averse agents with either unlimited

or limited liability. The contract has three elements �a winner prize, a loser

prize and a gap. As emphasized by Malcomson (1984, 1986), Rosen (1988,

p. 85) and Milgrom and Roberts (1992, p. 369), restricting attention to the

class of tournament contracts in a situation with unveri�able performance

measure is justi�ed by the fact that individual incentive schemes like piece

1"Objective measures of employee performance are rarely available" (Prendergast and

Topel 1996, p. 958).
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rates or bonuses do not work: if the performance measure is unveri�able, a

rational principal will ex post always claim poor performance of the agents to

retain the incentive pay and, hence, to save labor costs. This opportunistic

behavior can be anticipated by the agents who consequently choose zero

e¤orts.

Tournament contracts, however, work without veri�able performance be-

cause the principal can credible commit to pay out a certain collective amount

of money as tournament prizes and this outpayment is veri�able by a third

party. Since the principal must distribute the tournament pay among the

agents, there is no reason for the principal to misrepresent the agents�per-

formance any longer, which thus restores agents�incentives.

Our results show that under unlimited liability the introduction of a pos-

itive gap leads to a better solution of the fundamental trade-o¤ between

incentives and insurance, which is inherent in any moral-hazard problem

with risk averse agents. This trade-o¤ already exists in the basic model with

one agent: The principal should use pay-for-performance and share the in-

come risk with the agent for incentive reasons, but the e¢ cient allocation

of risk would require perfect insurance of the risk averse agent by the risk

neutral principal. Since such perfect insurance would erase any incentives,

the optimal compensation must lead to a compromise between incentives and

insurance.

This fundamental logic also applies to tournament contracts. Using a gap

yields a partial insurance of the agents when combining it with an optimal

prize payment rule for the case that neither contestant has won by the gap.

Any random distribution rule (e.g., tossing a coin) cannot be optimal since

the agents are risk averse. Giving each agent the average of winner and loser

prizes, however, is optimal under risk aversion and unlimited liability. If

agents are risk averse and, hence, have a concave utility function, an agent�s

utility from receiving the average pay is larger than the expected utility from

receiving the winner and the loser prizes each with probability one half in a

symmetric tournament equilibrium.
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Such partial insurance of agents is bene�cal for the principal under unlim-

ited liability. As is known from the basic one-agent moral-hazard model, an

agent�s participation constraint is always binding given the optimal contract

and unlimited liability. The same rationale holds for two agents and the op-

timal tournament contract which makes the agents just indi¤erent between

their reservation value and participating in the tournament. An increase of

the agents�expected utility via partial insurance directly bene�ts the princi-

pal because he can save money by lowering the loser prize without violating

the agents�participation constraint. The principal�s optimization problem is

complicated by the fact that the use of a positive gap is not free of cost. We

can show that, for given tournament prizes, incentives are maximized by a

zero gap. Thus, introduction of a gap is detrimental from a pure incentive

perspective. However, our results point out that the principal can optimally

adapt his �exible tournament prizes so that partial insurance by the gap

leads to a �rst-order gain for the principal that dominates the second-order

incentive loss.

If agents are protected by limited liability and earn positive rents, the

principal will not be interested in partially insuring the agents against income

risks any longer as the agents�participation constraints are not binding in

the optimum. Since incentives are maximized by a zero gap, the principal

prefers to keep to the standard tournament without gap.

As our paper, Eden (2007) analyzes a tournament model that is based on

the seminal paper by Lazear and Rosen (1981). She shows that supplement-

ing a standard tournament by a gap will be optimal if the tournament prizes

are exogenously given and if prizes need not to be paid out in any case in

order to satisfy Malcomson�s (1984) self-commitment property. However, if

tournament prizes must always sum up to the same constant, the standard

tournament contract without gap will be optimal. This result corresponds to

our �nding under limited liability. Kono and Yagi (2008, p. 124) argue that,

in a related model, introducing a positive gap may increase agents�incentives.

In our model, introducing a gap decreases incentives, but we show that the
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loss is outweighed by the gain due to the insurance e¤ect if agents are risk

averse and have unlimited liability. Imhof and Kräkel (2013a) analyze how

a gap can be used to balance competition under biased performance evalu-

ation, whereas Imhof and Kräkel (2013b) show how a gap can be used to

reduce agents�rents. However, both papers assume agents to be risk neutral

so that insurance of agents cannot be an issue.

2 The Model

We consider a situation where a principal must hire two agents in order to

run a business.2 The principal is risk neutral whereas the two agents are

assumed to be risk averse. In particular, let agent i�s (i = 1; 2) utility from

earning income Ii and exerting e¤ort ei be given by

U (Ii; ei) = u (Ii)� c (ei) (1)

with u(Ii) being monotonically increasing and strictly concave with u(0) = 0,

and c satisfying c (0) = c0 (0) = 0 and c0 (ei) ; c00 (ei) > 0 for ei > 0. Hence,

we have U (0; 0) = 0. Let each agent�s reservation utility be �U = 0.

The principal wants to implement a certain e¤ort level at lowest possible

cost. For each agent i (i = 1; 2), she observes the unveri�able performance

signal xi (ei) = h (ei) + �i with h (0) = 0 and h0 (ei) > 0, h00 (ei) � 0. The

variables �1 and �2 denote agents�luck being i.i.d. with density f and cdf F .

We assume that
R1
�1 f

2 (�) d� <1 to guarantee that �1��2 has a continuous
density g with corresponding cdf G. The principal can neither observe ei (or

h (ei)) nor �i so that we have a typical moral-hazard problem.

To induce incentives, the principal uses a tournament that speci�es a

winner prize wH , a loser prize wL < wH and a gap 
 � 0 by which the better
performing agent must outperform his opponent to get the winner prize. In

other words, agent i will only receive wH if xi (ei) > xj (ej)+
. In that case,

agent j obtains the loser prize wL. In case of a tie, i.e., jx1 (e1)� x2 (e2)j � 
,
2Most of the assumptions follow Lazear and Rosen (1981).
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each agent will get (wH + wL) =2.3 We consider two scenarios: if the agents

are not protected by limited liability, there will be no further restriction on

the choice of wH and wL; if agents are protected by limited liability, we

assume that wH ; wL � 0 must hold.

3 Solution to the Game

First, we solve the tournament game between the two agents. Then we answer

the question how the principal should design wH , wL and 
 to implement a

certain e¤ort level at lowest cost.

Agent 1 maximizes

EU1 (e1) = u (wH) � [1�G (h (e2)� h (e1) + 
)] + u (wL) �G (h (e2)� h (e1)� 
)

+u

�
wH + wL

2

�
� [G (h (e2)� h (e1) + 
)�G (h (e2)� h (e1)� 
)]� c (e1)

We assume that an equilibrium in pure strategies exists and is characterized

by the �rst-order conditions.4 For agent 1 we obtain

u (wH) � g (h (e2)� h (e1) + 
)� u (wL) � g (h (e2)� h (e1)� 
)

+u

�
wH + wL

2

�
� [g (h (e2)� h (e1)� 
)� g (h (e2)� h (e1) + 
)] =

c0 (e1)

h0 (e1)
:

Following Nalebu¤ and Stiglitz (1983) by restricting the analysis to symmet-

ric Nash equilibria with e1 = e2 = e yields

[u (wH)� u (wL)] � g (
) =
c0 (e)

h0 (e)
(2)

with g(
) = g(�
) due to symmetry of the convolution.
3See also Nalebu¤ and Stiglitz (1983), pp. 30-32, on this equal-sharing rule.
4The problem that the existence of pure-strategy equilibria cannot be guaranteed in

general is well-known; see, e.g., Lazear and Rosen (1981), p. 845, Nalebu¤ and Stiglitz

(1983), p. 29. See Schöttner (2008) and Gürtler (2011) for su¢ cient conditions that

guarantee existence.
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At the �rst stage of the game, the principal chooses wH , wL and 
 to in-

duce a certain e¤ort level at lowest implementation cost wH+wL, given the in-

centive constraint (2), the participation constraint EUi (ei) � 0, and �in case
of limited liability �the additional limited-liability constraint wH ; wL � 0.

We will show that under mild conditions on g and u, any feasible tournament

with zero gap can be strictly improved by choosing a tournament with 
 > 0,

provided agents have unlimited liability. By a feasible tournament we mean a

tournament for which the participation constraint is satis�ed. The following

result covers all strictly concave utility functions u if the convolution g sat-

is�es a smoothness condition. If g is not smooth, we assume agents exhibit

hyperbolic absolute risk aversion (HARA) (e.g., Pratt and Zeckhauser 1987),

so that, for some �; �, utility function u : (���;1)! R satis�es

�u
00(I)

u0(I)
=

1

�+ I
�

for all I > ���: (3)

Proposition 1 (a) Let agents have unlimited liability. If g0(0) exists, then,

given any feasible tournament with 
 = 0, the principal can implement the

same e¤ort at a strictly lower cost by choosing a tournament with 
 > 0. The

same conclusion holds if g has merely a right derivative at 0 with g0+(0) �
�g2(0), provided u is a HARA utility function with � 2 (0;1) and � 2
[1;1].
(b) If agents are protected by limited liability, the principal optimally

chooses 
 = 0.

Given unlimited liability, the introduction of a gap leads to a strict im-

provement of the standard tournament. In particular, if the convolution g

is di¤erentiable at zero (e.g., if density f is normal5), the optimal gap 
 is

always positive. Intuitively, the higher the gap the better the agents are

insured against income risk: in the symmetric equilibrium under a zero gap,

each agent gets the high utility u (wH) with probability 1=2 and the low

utility u (wL) with the same probability. If the principal imposes a positive

5More generally, g0(0) exists whenever f has a bounded derivative.
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gap, part of the probability mass is shifted to the event that both agents re-

ceive the intermediate utility u ((wH + wL) =2), which is higher than expected

utility [u (wH) + u (wL)] =2 for a zero gap, due to the concavity of the utility

function. In contrast to a standard tournament with zero gap, a tournament

with positive gap partially insures the agents against income risk. Such a

partial insurance is bene�cial for the principal if agents are risk averse, be-

cause under unlimited liability, the insurance reduces the risk premium the

principal has to pay due to the binding participation constraint.

If g is not di¤erentiable at zero, switching from a zero gap to a positive one

is accompanied by a more pronounced incentive loss. However, if insurance

advantages dominate incentive disadvantages (i.e., if g0+(0) � �g2(0)), the
principal will nevertheless prefer a strictly positive gap,6 provided u is a

HARA utility function as speci�ed above.

If agents are protected by limited liability, the result on the optimal gap

completely di¤ers.7 Given that the agents earn positive rents, the principal

no longer cares about the participation constraint and the risk premium as

the latter one only reduces the agents�rents. Instead, the principal chooses

the gap that leads to highest possible incentives to minimize implementation

costs for a given e¤ort level. Since each convolution g has its global maximum

at zero, the best a principal can do is choosing a zero gap and, hence, sticking

to the standard tournament, which only speci�es tournament prizes.

The proof of the proposition shows the technical intuition of our main

result on unlimited liability. Introducing a positive gap partially insures

the agents but lowers overall incentives because g is maximized at zero. To

implement the same e¤ort level as before, the principal can either increase the

winner prize or reduce the loser prize. Since the principal wants to implement

a certain e¤ort level at lowest cost, he strictly prefers to reduce the loser prize

(see equation (5)). This measure is feasible since the agents�utility gain from

partial insurance guarantees that the participation constraint still holds.

6For instance, if luck �i is uniformly distributed on some interval or if �i = j�ij, where
�i is normally distributed with mean 0, then g0(0) does not exist, but g0+(0) = �g2(0).

7See similarly Eden (2007).
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Appendix

Proof of Proposition 1:

The proof uses the following auxiliary result:8

Lemma 1 Let � 2 (0;1) and � 2 [1;1]. Let u : (���;1) ! R be a

HARA utility function satisfying (3). Then for all x; y > ��� with x 6= y,

�1
2
[u(x)�u(y)][u0(x)�u0(y))] <

�
2u

�
x+ y

2

�
� u(x)� u(y)

�
[u0(x)+u0(y)]:

By inserting the symmetry condition e1 = e2 = e in the agents�objective

functions, each agent�s participation constraint reads as

Q(wH ; wL; 
) � c(e); (4)

where

Q(wH ; wL; 
) := [u (wH) + u (wL)] �G (�
) + u
�
wH + wL

2

�
� [1� 2G (�
)] :

To prove (a) suppose agents have unlimited liability. Fix any feasible tour-

nament contract with (wH ; wL; 
) = (w0H ; w
0
L; 0). Let e0 denote the agents�

common e¤ort level for this tournament. Thus, (2) and (4) are satis�ed for

wH = w
0
H , wL = w

0
L, 
 = 0 and e = e0.

Consider �rst the case where g is di¤erentiable at 0. De�ne a function

�(
) for 
 � 0 su¢ ciently small by

[u(w0H)� u(�(
))]g(
) =
c0(e0)

h0(e0)
: (5)

This yields a class of contracts (w0H ; �(
); 
) that implement the same ef-

fort e0, provided the participation constraint is satis�ed. If 
 > 0, then

g(
) < g(0) and �(
) < �(0) = w0L. That is, if a contract from the class

with a strictly positive gap satis�es the participation constraint, the cor-

responding cost of implementing e¤ort e0 is strictly lower than under the

8For the proof of Lemma 1 see the online appendix.
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given zero-gap contract. It remains to show that the constraint is satis�ed

for some 
 > 0. Let q(
) := Q(w0H ; �(
); 
). Computing in (5) the right

derivative with respect to 
 at 
 = 0 and using that g0(0) = 0, we obtain

�u0�(w0L)� 0+(0)g(0) = 0. The concavity of u ensures that u has a left deriva-
tive u0�. Since g(0) > 0, �u0�(w0L)� 0+(0) = 0, and it follows that

q0+(0) =
1

2
u0�(w

0
L)�

0
+(0)� [u(w0H) + u(w0L)]g(0) + 2u

�
w0H + w

0
L

2

�
g(0) > 0:

Thus, the participation constraint is indeed satis�ed for some positive 
.

Suppose next that g has a right derivative at 0 with g0+(0) � �g2(0) and
that u is a HARA utility function satisfying (3) for some � 2 (0;1) and
� 2 [1;1]. Suppose also that (w0H ; w0L; 0) is a zero-gap contract for which
the participation constraint (4) binds, the claim being trivial otherwise. Set

R(wH ; wL; 
; s) := [u(wH)� u(wL)][g(0) + s
]

for wH > wL > ��� and 
; s 2 R. By the implicit function theorem,

there exist continuously di¤erentiable functions �(
; s); �(
; s), de�ned in a

neighborhood V of (0; g0+(0)), such that for all (
; s) 2 V ,

Q(�(
; s); �(
; s); 
) = c(e0); R(�(
; s); �(
; s); 
; s) =
c0(e0)

h0(e0)
;

�(0; s) = w0H ; �(0; s) = w0L:

The use of the theorem is justi�ed because9

det

 
Q1(w

0
H ; w

0
L; 0) Q2(w

0
H ; w

0
L; 0)

R1(w
0
H ; w

0
L; 0; g

0
+(0)) R2(w

0
H ; w

0
L; 0; g

0
+(0))

!
= �u0(w0H)u0(w0L)g(0) 6= 0:

Thus, if (
; s) 2 V , 
 � 0 and s is so chosen that g(0) + s
 = g(
), then the
9In the following, subscripts of Q, R, �, and � denote partial derivatives.
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contract (�(
; s); �(
; s); 
) implements e¤ort e0. Moreover,

�1(0; g
0
+(0)) + �1(0; g

0
+(0))

=
g0+(0)[u(w

0
H)� u(w0L)][u0(w0H)� u0(w0L)]
2g(0)u0(w0H)u

0(w0L)

�
g(0)

�
2u
�
1
2
(w0H + w

0
L)
�
� u(w0H)� u(w0L)

�
[u0(w0H) + u

0(w0L)]

u0(w0H)u
0(w0L)

<0;

where the inequality follows from the assumption that g0+(0) � �g2(0) and
Lemma 1 above. It follows that �1 + �1 is positive on some neighborhood of

(0; g0+(0)). Consequently, for 
 > 0 su¢ ciently small and s = [g(
)�g(0)]=
,

�(
; s) + �(
; s) < �(0; s) + �(0; s) = w0H + w
0
L:

That is, for these 
 and s, the contract (�(
; s); �(
; s); 
) implements e¤ort

e0 at a strictly lower cost than the given zero-gap contract.

To prove (b) suppose agents have limited liability. Since the agents have

zero reservation utilities and U (0; 0) = 0, they will accept any contract

with non-negative payments as they can guarantee themselves non-negative

expected utilities by choosing zero e¤ort. Hence, the principal does not

have to care about the participation constraint when solving for the optimal

tournament contract. The optimal loser prize is zero since any positive wL
would decrease incentives and increase implementation costs. The optimal

gap therefore maximizes the left-hand side of (2), yielding 
 = 0, since g has

its global maximum at zero.10 �
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Online Appendix

Proof of Lemma 1:

The claimed inequality is equivalent to 	(x; y) > 0, where

	(x; y) := 4u

�
x+ y

2

�
[u0(x) + u0(y)]� u(x)u0(x)� u(y)u0(y)

� 3u(x)u0(y)� 3u0(x)u(y):

Suppose �rst � 2 (1;1). Then u(x) = A+B(�+x=�)1�� for some constants
A 2 R, B 2 (�1; 0). Given x; y > ��� with x 6= y, set x := � + x=�,

y := � + y=�. Suppose without loss of generality that x < y. De�ne for all

t 2 R,

�(t) := y1�2t + 3(x+ y)(xy)�t + x1�2t � 4

x

�
x+ y

2
x

�1�t
� 4
y

�
x+ y

2
y

�1�t
:

Then 	(x; y) = B2(� � 1)�(�)=�. To show that �(�) > 0 note �rst that �
can have at most 4 zeros counting multiplicities (see, e.g., Pólya, G., Szegö,

G., 1976. Problems and theorems in analysis II, fourth ed. Springer, Berlin,

pp. 46-47). Moreover,

�(�1) = �(0) = �(1) = 0; lim
t!1

x2t�(t) = x > 0

and

�0(1) =

Z y

x

1

t2y

Z y

t

(y � s)2
s(s+ y)

ds dt > 0:

Thus, if �(�) � 0, � would have at least 2 zeros in (1;1), so that � would
have 5 zeros altogether, which is impossible. Hence �(�) > 0.

Suppose next � = 1. Then u(x) = A + B log(� + x) for some constants

A 2 R, B 2 (0;1). One may verify that

	(y; y) = 0;
@

@x
	(x; y)

����
x=y

= 0;

@2

@x2
[(x+ �)	(x; y)] =

B2(x� y)2
(2�+ x+ y)(�+ x)2(�+ y)

:
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Thus, for any �xed y, (x+�)	(x; y) is a strictly convex function of x, which

attains its minimum 0 at x = y. Hence, 	(x; y) > 0 if x 6= y.
Suppose �nally � = 1. Then u(x) = A + Be�x=� for some constants

A 2 R, B 2 (�1; 0). For any �xed y, 	(x; y) is an exponential polynomial
in x of degree 4 and so has at most 4 zeros counting multiplicities. We have

	(y; y) = 0;
@k

@xk
	(x; y)

����
x=y

= 0 for k = 1; 2; 3;

@4

@x4
	(x; y)

����
x=y

=
3B2e�2y=�

2�5
> 0:

It follows that 	(x; y) > 0 if x 6= y. �

Global Maximum of g (see Imhof, L., Kräkel, M., 2013. Optimal Bonus

Pools. Mimeo.):

Recall that �1 and �2 are i.i.d. with density f . In view of the assumption

that �1� �2 has a continuous density g, g(
) =
R1
�1 f(�)f(��
) d� for every


 2 R, see, e.g., Mood, A.M., Graybill, F.A., Boes, D.C., 1974. Introduction
to the theory of statistics, third ed. McGraw-Hill, Auckland, pp. 185-186,

for the convolution formula. Applying the Cauchy-Schwarz inequality leads

to11

g (
) =

Z 1

�1
f (�) f (� � 
) d� �

sZ 1

�1
[f (�)]2 d�

sZ 1

�1
[f (� � 
)]2 d�

=

Z 1

�1
[f (�)]2 d� = g (0) for all 
;

so that 
 = 0 is a maximum of g. To prove uniqueness suppose that g(
) =

g(0) for some 
 > 0. Then there must hold equality in the Cauchy-Schwarz

inequality, which implies that there is a constant C > 0 such that f(�) =

Cf(��
) for almost all �. As
R
f(�) d� = 1 =

R
f(��
) d�, C = 1. It follows

that for every a 2 R,
R a
a�
 f =

R a+

a

f , which implies that
R1
�1 f 2 f0;1g.

This is impossible, and it follows that 
 = 0 is the unique maximum of g. �

11The step from line 1 to line 2 uses the fact that
R �x
x
y (x� �) dx =

R �x��
x�� y (x) dx.
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