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Abstract

This paper studies a principal–agent relation in which the principal’s private in-
formation about the agent’s effort choice is more accurate than a noisy public perfor-
mance measure. For some contingencies the optimal contract has to specify ex post
inefficiencies in the form of inefficient termination (firing the agent) or third–party
payments (money burning). We show that money burning is the less efficient incen-
tive device: it is used at most in addition to firing and only if the loss from termination
is small. Under an optimal contract the agent’s wage may depend only on the princi-
pal’s report and not on the public signal. Nonetheless, public information is valuable
as it facilitates truthful subjective evaluation by the principal.
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1 Introduction

In the textbook moral hazard problem, the agent chooses some unobservable effort, and
the only information about his success is some noisy but objective performance measure
which is verifiable by outsiders. As Prendergast (1999) has pointed out, however, most
people do not work in jobs like these. Rather, many firms use subjective performance
evaluations.

This paper studies subjective performance evaluation in a contracting problem between
a risk-neutral principal and one risk-neutral agent with limited liability. The principal may
use a publicly verifiable but noisy objective performance signal to provide effort incen-
tives for the agent. But, he privately receives more accurate information about the output
produced by the agent. This information is not observable by outsiders and in this sense
‘subjective’. We show that the optimal contract always relies not only on the public per-
formance measure but also on subjective evaluation by the principal. Therefore, it has to
address two incentive problems. On the one hand, the agent must be given incentives to
exert effort. On the other hand, the principal has to be incentivized to report his infor-
mation truthfully: giving a bad performance evaluation must be costly for the principal if
the performance is in fact good; otherwise, the principal would be tempted to report bad
performance to save on wage costs. Thus some ex-post inefficiencies are unavoidable.

The literature has studied two different solutions to the incentive problem of truthful
subjective evaluation. First, Kahn and Huberman (1988) study up-or-out contracts in a
dynamic setting where in an initial period the agent should acquire some firm specific hu-
man capital. The agent chooses an effort to learn, and then the principal privately receives
information about the agent’s success. In the optimal contract, the principal commits ex
ante either to promote the agent and pay a high wage, or else to end the relationship by fir-
ing the agent. The principal is prevented from giving a bad performance evaluation when
the agent was successful by his commitment to fire upon a bad performance evaluation.
There is an ex post inefficiency, however, since the agent is fired after a bad evaluation,
even if it would be ex post optimal to keep him.

Second, MacLeod (2003) allows for payments to third parties (“money burning”).
Here the principal commits to pay out the same amount of money, irrespective of the
performance evaluation, but the agent receives only a part of this payment when the
evaluation is bad, while the remaining part is paid to a third party. The principal thus
has no incentive to give bad evaluations to safe costs. Again, this involves an ex post
inefficiency, which here takes the form of money burning.

While terminations of economic relationships are frequently observed in practice, ex-
amples for third–party payments are rather hard to come by.1 Our paper provides an eco-

1Besides the obvious examples of layoffs and dismissals, option contracts where one party keeps the
authority to terminate the relationship are a case in point. See Lerner and Malmendier (2010) on the use of
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nomic explanation of why firing is more frequently observed than money burning. One
might think that money burning and firing share essentially the same properties; indeed
MacLeod (2003) motivates money burning as a shortcut for protracted conflict within an
organization or the termination of a valuable work relationship. We argue, however, that
money burning and firing have subtly different implications for the incentives of the prin-
cipal: The principal’s cost of burning one dollar does not depend on the agent’s success
or failure, but the principal’s cost from firing the agent often depends on how successful
the agent was. This is the case for up-or-our contracts as in Kahn and Huberman (1988),
where a success of the agent means that the agent has acquired human capital valuable
for the firm. Similarly, Schmitz (2002) studies a buyer–seller relationship where the seller
(agent) produces a good, the quality of which depends on the seller’s effort, but only the
buyer (principal) knows his true willingness to pay for the good. Here ‘firing’ corresponds
to the buyer not buying the good after it has been produced, and the principal’s loss from
not buying the good depends on the realized quality of the good.2

To capture the dependence of the principal’s cost of firing on the agent’s success in
straightforward manner, we assume that upon firing the principal loses a fraction α of
the output produced by the agent. We show that, under this assumption, firing is the
more cost-effective instrument, and the principal will prefer firing over money burning.
Since the costs of firing are high when the agent was in fact successful, a commitment
to fire the agent after a bad performance evaluation gives the principal strong incentives
to report successes truthfully. Moreover, the costs of this commitment are relatively low,
since on the equilibrium path the principal will give a bad report only if the agent was,
after all, not successful, and hence firing him is not that costly for the principal.3 Only a
bounded amount of incentives, however, can be generated with firing. When α is small,
the principal cannot be given strong incentives for truthful revelation of his information,
since he will not lose much after firing the agent. Thus, money burning can occur under
the optimal contract, but only as a secondary instrument in addition to firing the agent.

We also provide several insights into the interaction between subjective and objective
performance evaluation. If the principal receives his private information before the less
informative public signal becomes available, the agent’s wage schedule is not uniquely

option contracts in biotechnology research. An example of third party payments is given by Fuchs (2007):
some baseball teams can fine their players, and the fines are not paid to the club, but rather to a charity.

2Bester and Krähmer (2012) consider a buyer–seller relation where the buyer observes the seller’s quality
choice, but his observation is not verifiable. They show that ‘exit option’ contracts, corresponding to the
option of ‘firing’ in the present context, can implement the first–best. Here and in Schmitz (2002) this is not
possible because the agent’s (the seller’s) effort is not directly observable.

3Obviously, firing might inflict a cost on the agent, and the threat of firing may be used in to motivate the
agent. The use of non-monetary fines to overcome limited liability has been studied in Chwe (1990) and
Sherstyuk (2000). To focus on the implications of firing versus money burning for the principal’s incentives,
we assume that firing imposes no costs at all on the agent.
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determined. It can be chosen in such a way that wages are contingent exclusively on
subjective evaluation and do not depend on the public performance measure. This does
not mean, however, that public information is useless. Wile it is not directly used to
incentivize the agent, it facilitates providing incentives for truthful subjective evaluation
by the principal. We show that for this reason the principal’s payoff is increasing in the
precision of public information.

In contrast, if the principal’s information arrives after the public signal, the agent’s
wage schedule is uniquely determined by the optimal contract and it necessarily depends
on both types of performance measures. This is so because the principal in this case faces
an ex post truthtelling constraint for each single realization of the public signal rather than
an ex ante constraint in expectation of the public signal. Perhaps surprisingly, however, it
turns out that for the principal’s payoff it does not matter whether he receives his private
information earlier or later than the realization of public information.

By the latter observation, the principal has no incentive to acquire information early
on. But, we also discuss a slight extension of our model where the fraction of output lost
due to project termination is increasing over time. Here the principal is strictly better off
by delaying his report. When the timing of subjective evaluation can be selected by the
principal, he will report when the fraction of output lost due to project termination is high
enough such that no payments to third parties are necessary to solve the incentive problem
of truthful subjective evaluation. This reinforces our argument that money burning is a
less attractive instrument than firing the agent in contracting problems with subjective
evaluations.

Related Literature

As described above, our paper contributes to the literature on optimal contracting with
subjective evaluation by comparing the use of project termination with payments to third
parties. From this literature, Schmitz (2002) and Khalil, Lawaree and Scott (2012) are
most closely related to our paper. Schmitz (2001) allows the use of both project termi-
nation and money burning and assumes, as is natural in his buyer–seller setting, that the
complete output produced by the agent (seller) is lost when the principal (buyer) termi-
nates the relation. In his setting, the optimal contract never involves any money burning.
Khalil, Lawaree and Scott (2012) study a related issue in an adverse selection model.
In their model, the agent knows the productivity of his effort, and the principal receives
some subjective information about the agent’s type. If the principal receives his infor-
mation before the agent chooses his effort, the optimal contract specifies an effort that
depends on the agent’s report about his type and on the principal’s report. In particular,
there is a rescaling of the project to a lower level of effort and wage if the agent reports
a low productivity but the principal’s signal indicates a high productivity. Khalil, Lawaree
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and Scott (2012) find that this rescaling is superior to money burning. There are several
differences between their result and our comparison of firing versus money burning. First,
rescaling as in Khalil, Lawaree and Scott (2012) presupposes that the principal receives
his private information before the agent chooses his effort. Therefore the principal strictly
prefers to receive his information early. In our moral hazard setting, the principal’s private
information is a signal about the effort chosen by the agent, and thus necessarily becomes
available only after the effort has been chosen. Moreover, in our setting the principal has
no incentive to acquire information early; in contrast, he will strictly prefer to acquire
information late if the fraction of output lost upon firing is increasing over time. Second,
rescaling works in Khalil, Lawaree and Scott (2012) since different types of the agent
trade off producing output and receiving wages at different rates. In contrast, firing works
in our model since the principal’s expected cost from firing depends on his private signal.
This has implications concerning the set of implementable contracts. In Khalil, Lawaree
and Scott (2012) the principal’s incentive constraints jointly imply that they hold with
equality in every possible state, such that the principal will always be indifferent between
his reports. As in MacLeod (2003), this indifference of the principal is an implication of
the principal’s incentive constraints. In contrast, in our setting the principal’s incentive
constraints can all be fulfilled without the principal ever being indifferent between send-
ing different reports. As in a standard adverse selection model, in the optimal contract
the principal’s incentive constraint after having received bad news is slack, while the prin-
cipal’s incentive constraint after having received favorable information is binding. The
latter, however, is an implication of optimality of the contract, and not of implementability
alone.

Two recent contributions on optimal contracting with subjective evaluation include
Lang (2013) and Sonne and Sebald (2012). In Lang (2013) the principal can justify
subjective evaluation by sending a costly message. Sonne and Sebald (2012) consider a
behavioral economics model in which unfair subjective evaluation by the principal induces
a costly conflict with the agent. Similarly to money burning this may help the principal to
truthfully commit to a higher wage.

Subjective evaluations have also been studied in models of repeated interactions,
where intertemporal incentives for truthful revelation play a key role (e.g. Levin (2003)
and Fuchs (2007)). Baker, Gibbons and Murphy (1994) and Pearce and Stacchetti
(1998) study the combination of subjective and objective performance measures in in-
finitely repeated interactions; the focus of these papers differ from ours since thy impose
exogenous assumptions on the set of admissible contracts that imply that, in the stage
game, the private information of the principal cannot be used. While their focus is on
the provision of intertemporal incentives to solve the principal’s incentive constraints, we
study the optimal contract in a one-shot relation without any exogenous restrictions on
the set of admissible contracts.
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The paper is organized as follows. Section 2 introduces the model. Section 3 uses the
revelation principle to formulate the contract design problem. As a benchmark, we show
in Section 4 that under unlimited liability, the principal can implement the first–best effort
and extract the full surplus. Section 5 introduces limited liability of the agent and contains
the core results of the paper, which are illustrated by an example in Section 6. Whereas
the main part of the paper assumes that the principal reports his information before the
public signal is realized, in Section 7 we show that the principal realizes the same payoff if
he reports ex post, which implies that the principal has no incentive to acquire information
early. Moreover, Section 7 also contains the extension of the model where the fraction of
output lost upon firing is growing over time. Under this assumption, the principal will
always report late enough such that no money burning is needed in the optimal contract.
We summarize our results and discuss extensions in Section 8. Formal proofs are collected
in an appendix.

2 The Model

There is one principal and one agent, who are both are risk–neutral. At some initial
date the principal offers the agent an employment contract for a joint project. The agent’s
outside option payoff at the contracting stage is normalized to zero. After being employed,
the agent chooses some effort e ∈ E ≡ [0, 1]. From this effort choice the principal receives
at some future date the (expected) output or benefit x = xH with probability e and x =
x L with probability 1 − e, where 0 < x L < xH . The agent’s monetary equivalent of his
disutility of effort is c (e) . His choice of effort is not observable, neither to outsiders nor
to the principal. The principal pays the agent the (expected) wage w at the end of their
contractual relationship.

After the agent has chosen e, the principal privately observes whether the output will
be x L or xH . The principal’s information and the realization of output are not publicly
observable. The output or benefit received by the principal may, for example, represent
the quality of a good or service whose private value is difficult to determine.4 The output
may also represent the cash–flow from a project, which may not be be verifiable. For
instance, if the principal operates in several businesses it may be impossible to ascribe
money–streams to a particular project.5 But we assume that there is a imprecise public
signal s ∈

�

sL, sH
	

, which is observable by outsiders and therefore verifiable. The public
signal is correct with probability σ ∈ (1/2, 1): if the output is x i the public signal is si

with probability σ > 1/2 and s j 6= si with probability 1−σ < 1/2. In the limit σ→ 1 our

4Cf. MacLeod (2003) and Schmitz (2002).
5Indeed, it is common in the literature to assume that cash–flow is non–observable (see e.g. Baker

(1992), Bolton and Scharfstein (1996), or Lewis and Sappington (1997)).
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setup becomes equivalent to the standard principal–agent setting, where output is publicly
observed and not only by the principal.6

The principal can terminate cooperation with the agent after observing the expected
output. If he dismisses the agent before the project is completed, he loses a fraction
α ∈ (0,1] of output. The parameter α indicates the extent to which the project is already
completed at this stage. In a buyer–seller relation, for example, where the principal refuses
to trade after the agent has finished production of a good, α = 1 as in Schmitz (2002).
The agent’s gross payoff from being dismissed is equal to zero. The termination decision
is observable and contractible. We allow for stochastic contracts and denote by θ ∈ [0, 1]
the probability that the agent is fired.

The inefficiency of premature project termination may be used to provide incentives
for information revelation and effort choice (cf. Kahn and Huberman (1988)). A similar
incentive device are fines paid to a third party (cf. MacLeod (2003)). Indeed, we permit
non–negative payments to a third party as part of the contract and refer to such payments
as ‘money-burning’, because they reduce the available surplus. Without loss of generality,
we assume that only the principal makes payments to a third party and denote by b ≥ 0
the amount of ‘money-burning’.7

The agent’s effort cost c(·) satisfies c (0) = 0 and c′ (e) > 0, c′′ (e) > 0 for all e > 0.
Further

c′ (0) = 0, c′ (1)> xH − x L. (1)

Assumption (1) is sufficient to eliminate corner solutions for the agent’s effort when the
agent’s enumeration is not restricted to be non–negative. For the analysis of the limited
liability case, in which wages have to be non–negative, we assume in addition that

c′′′ (e)≥ 0, c′′ (0)<
σ

1−σ
�

xH − x L
�

. (2)

These conditions avoid corner solutions with zero effort under limited liability. In addition,
the first condition in (2) guarantees that the second–order conditions for the principal’s
optimization problem are satisfied.8

The agent’s utility is w − c (e), and the principal’s utility is x (1−αθ)− w − b. If the
agent’s effort were contractible and in the absence of limited liability restrictions, it would
be chosen to maximize the expected joint surplus

S(e)≡ e xH + (1− e) x L − c (e) , (3)

6See e.g. Holmstrom (1979), Grossmann and Hart (1983), and Sappington (1983).
7Whether the principal or the agent pays b plays no role because the wage payment can be adjusted

accordingly.
8Note that (1) and (2) hold for the specification c(e) = kea/2 with k > xH − xL for all a > 2. If a = 2, the

public signal has to be sufficiently precise so that σ(xH − xL)/(1−σ)> k.
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t = 0

Contract
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Agent chooses
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and reports x̂

t = 3
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realizes

Figure 1: THE SEQUENCE OF EVENTS

which is obtained by setting θ = b = 0. The first order condition

xH − x L = c′ (ẽ) , (4)

thus determines the first–best effort level ẽ, and the first–best surplus is S(ẽ).

3 Contract Design

Whenever contracting parties observe new information during the course of their relation,
optimal contract design stipulates that they publicly report their information (see Myerson
(1986)). Therefore, we consider contracts that require the principal to choose some

verifiable message after observing the realization of output. By the Revelation Principle
(Myerson (1979)), it is sufficient to consider messages that enable the principal to report
simply some output x̂ ∈ { x̂ L, x̂H}. Since the terms of the contract can be conditioned on
the report, the principal’s subjective evaluation of performance complements the objective
performance measure provided by the public signal.

We first consider the case where the principal observes output and chooses a report
before the public signal realizes. We discuss an alternative timing in Section 7. In Sections
4–6 the sequence of events is as follows: After a contract has been signed in stage t = 0,
the agent chooses his effort e in stage t = 1. Then in stage t = 2 the principal observes the
realization of output x ∈

�

x L, xH
	

and reports x̂ ∈
�

x̂ L, x̂H
	

. In stage t = 3 the contract is
executed after the public signal s is observed. Figure 1 summarizes the sequence of events.

A contract specifies the wage, the probability of firing the agent before project comple-
tion, and the amount of money-burning contingent on the public signal s and the princi-
pal’s report x̂ . Let θ i j denote the probability of firing when the public signal is si and the
principal’s report is x̂ j. Similarly, wi j is the wage and bi j represents money burning if the
public signal is si and the report is x̂ j. Let

w =
�

wHH , wH L, wLH , wLL
�

, θ =
�

θHH ,θH L,θ LH ,θ LL
�

, (5)

and b =
�

bHH , bH L, bLH , bLL
�

.
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A contract γ= (w,θ , b) then has to satisfy γ ∈ Γ≡
�

(w,θ , b) ∈ IR12| b ≥ 0, θ ∈ [0, 1]4
	

.

If the principal observes the output x L and reports x̂ j in stage 2, he receives the ex-
pected payoff

VL(γ, x̂ j) ≡ σ
�

(1−αθ L j)x L −wL j − bL j

�

(6)

+ (1−σ)
�

(1−αθH j)x L −wH j − bH j

�

,

because the public signal in stage 3 is sL with probability σ and sH with probability 1−σ.
Analogously, if the output realization is xH , the principal’s payoff is equal to

VH(γ, x̂ j) ≡ σ
�

(1−αθH j)xH −wH j − bH j

�

(7)

+ (1−σ)
�

(1−αθ L j)xH −wL j − bL j

�

when he reports x̂ j.

By the Revelation Principle, we can restrict ourselves to contracts that satisfy the in-
centive compatibility constraints

VL(γ, x̂ L)≥ VL(γ, x̂H), VH(γ, x̂H)≥ VH(γ, x̂ L). (8)

These constraints ensure that reporting truthfully is optimal for the principal. In what
follows, we refer to the principal’s incentive compatibility constraints in (8) as the ICP
constraints. Since the principal reports truthfully in stage 2, his ex ante expected payoff
at the contracting stage is

V (γ, e)≡ e VH(γ, x̂H) + (1− e)VL(γ, x̂ L). (9)

Truthful reporting by the principal also implies that the agent’s expected wage is

UL(γ)≡ σwLL + (1−σ)wH L (10)

if the principal observes x L, and

UH(γ)≡ σwHH + (1−σ)wLH (11)

otherwise. Therefore, the agent’s ex ante payoff is

U(γ, e)≡ e UH(γ) + (1− e)UL(γ)− c(e) (12)

at the contracting stage.

Since effort is not observable, the agent chooses e in stage 1 to maximize his expected
payoff in (12). This implies that e is determined by the first order condition9

UH(γ)− UL(γ) = c′(e). (13)

9Our assumptions (1) and (2) ensure that 0< e < 1.
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This condition ensures that e maximizes U(γ, e) because U(γ, e) is strictly concave in e.
In what follows, we refer to the incentive compatibility condition for the agent’s effort in
(13) as the ICA constraint.

At the contracting stage, the principal proposes a contract γ that the agent can either
accept or reject. As the agent’s outside option payoff is zero, he accepts the contract if it
satisfies his individual rationality constraint

U(γ, e)≥ 0. (14)

In the following we refer to (14) as the IRA constraint.

4 Unlimited Liability Contracts

In this section, we briefly consider as a benchmark the optimal contract in the absence of
non–negativity restrictions on the wage schedule w. Thus the agent is not protected by
limited liability and he may face a penalty wi j < 0 for some realization (si, x j) of the public
signal and output. In this situation the principal’s problem is

max
(γ,e)∈Γ×E

V (γ, e) subject to (8), (13), and (14) (15)

because he has to satisfy the ICP, ICA, and IRA constraints.

As is well–known (see e.g. Harris and Raviv (1979)), with a risk-neutral agent and
without limited liability restrictions the principal is able to appropriate the first–best sur-
plus by making the agent the residual claimant in the relationship. This can be done by
ignoring the principal’s information and conditioning the agent’s wage exclusively on the
public signal s. This explains the following observation:

Proposition 1 Let (γ, e) solve problem (15). Then θ = b = 0 and the wages can be chosen
such that γ ignores the principal’s information:

wHH = wH L, wLL = wLH .

Moreover, e is equal to the first–best effort ẽ and the principal’s payoff V (γ, ẽ) is equal to the
first–best surplus S(ẽ).

Under unlimited liability, subjective evaluation by the principal plays no role, inde-
pendently of the precision of the public signal.10 Therefore, the principal actually has no

10There are contracts that achieve the first–best, where payments depend on the principal’s report, but
reporting is not truthful. Formally all four wage parameters could be different, but only two different wages
will be paid with positive probability.
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incentive to supervise the agent to acquire information about the future realization of out-
put. It is important for this result that negative wage payments are feasible, because the
wage wLL = wLH in Proposition 1 is negative. Indeed, it tends to minus infinity in the limit
σ→ 1/2 where the public signal becomes uninformative.11

5 Limited Liability Contracts

We now turn to the more interesting case where the agent is protected by limited liability.
Thus the principal has to obey the additional constraint that the agent’s wage cannot be
negative and so his problem becomes

max
(γ,e)∈Γ×E

V (γ, e) subject to (8), (13), (14) and w ≥ 0. (16)

In what follows, we analyze how the principal’s subjective information affects the terms
of the contract γ and the agent’s effort e. Since the principal’s information is more accurate
than the public signal, the Informativeness Principle of Holmstrom (1979) suggests that
his information should be used in determining the agent’s pay. This principle, however,
is not directly applicable in the present context because the principal’s observation of
performance is not publicly verifiable. Nonetheless, even though subjective evaluation is
constrained by the ICP conditions, we will show that it will always be used in an optimal
contract.

We begin with several lemmas that identify the binding constraints in problem (16).

Lemma 1 Let (γ, e) solve problem (16). Then

(a) the IRA constraint (14) is not binding;

(b) γ satisfies

wH L = wLL = 0 and θHH = bHH = θ LH = bLH = bLL = 0; (17)

(c) bH L > 0 implies θH L = 1, and θ LL > 0 implies θH L = 1;

(d) in the ICP constraints (8), only the inequality VH
�

γ, x̂H
�

≥ VH
�

γ, x̂ L
�

is binding;

(e)
�

γ, e
�

satisfies
σ
�

αθH L xH + bH L
�

+ (1−σ)αθ LL xH = c′(e). (18)

11This follows from equation (33) in the proof of Proposition 1 in the Appendix.
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Part (a) of Lemma 1 shows that agent’s individual rationality constraint (14) is auto-
matically satisfied. Because the agent could choose zero effort at zero cost and wages are
non–negative by limited liability, his utility cannot become negative.

By part (b), the agent’s wage payment can be positive only if the principal reports
that output is high. The reason is that, if wH L or wLL were positive, the principal could
decrease these payments while increasing bH L or bLL by the same amount. Thereby the
agent’s incentive constraint could be relaxed while all other constraints remain unaffected.
Moreover, part (b) also implies that firing and money burning can occur only if output
is low. This result is driven by the observation under part (d): the relevant principal’s
incentive constraint in (8) is that he should have no incentive to underreport output, i.e.
to claim that output is low while it is in fact high. Lowering any of θHH , bHH , θ LH or
bLH makes underreporting less tempting for the principal, leaves the agent’s incentive
constraint unaffected, and increases the principal’s payoff; therefore all these variables
must be zero.

The argument for why bLL must be zero is a bit more involved since a positive bLL

could in principle be used to deter the principal from underreporting. However, if bLL

were positive, one could decrease it while simultaneously increasing bH L and thereby
increase the principal’s payoff. To see why, note that the effect of bLL on the principal’s
incentive to underreport is proportional to 1−σ, i.e. the probability that the public signal
is low, given that the true output is high. In contrast, the effect of bH L is proportional to
the probability that the public signal is high, given that the true output is high, which is
σ > 1 − σ. Therefore, bH L has a stronger deterrence effect for the principal than bLL.
Moreover, bH L affects the principal’s payoff less adversely than bLL, since bH L has to be
paid only when output is low but the public signal is high (which occurs with probability
(1− e) (1−σ)), whereas bLL has to be paid in the more likely event that output is low
and the public signal is low as well (which occurs with probability (1− e)σ).

The second statement in part (c), follows from a similar comparison of the effects of
θ LL and θH L, the only additional complication being that, since θH L is a probability, it
cannot be greater than one. Roughly speaking, the result means that one should first use
θH L before using θ LL.

The first statement in part (c) concerns the case where the principal reports low output,
but the public signal is high: there will be money burning only if the agent is also fired with
probability one. Compared with firing, burning money is a less attractive way to deter the
principal from underreporting. The reason is that, while burning one dollar always costs
one dollar, firing is more costly if output is high. Using θH L to deter underreporting has
the advantage that firing occurs only when it is less costly since output is low, but the
principal is deterred from underreporting in case of high output.

As in standard adverse selection problems, statement (d) shows that only the down-
ward incentive constraint is binding for truthful reporting. Finally, by part (e) of Lemma
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1 the agent’s effort choice is related to the principal’s cost of firing and money burning.
Indeed, the principal can incentivise the agent by a positive wage for high output only
if he is committed not to underreport. Therefore, it must be costly for him to claim low
output. The following lemma gives more details on the structure of wages.

Lemma 2 Let (γ, e) solve problem (16). Then the wages wHH ≥ 0 and wLH ≥ 0 are (not
uniquely) determined by

σwHH + (1−σ)wLH = c′(e) (19)

The lemma allows the principal to set wHH = wLH = c′(e) in an optimal contract. Since
wH L = wLL by (17), this means that the agent’s enumeration w can be chosen such that it
depends only on the principal’s report and not at all on the public signal.

Lemmas 1 and 2 substantially simplify the principal’s problem. Only four of the princi-
pal’s choice variables remain to be determined: effort e, firing probabilities θH L and θ LL,
and money burning bH L. Moreover, to give the principal incentives to reveal information
truthfully, the instrument θH L should be used first, and only if it is exhausted in the sense
that θH L = 1, the instruments θ LL or bH L should be used. Lemmas 1 and 2 do not, how-
ever, help to compare the latter two instruments. As we show in our next Lemma, their
relative attractiveness turns out to depend on the precision of the public signal. Define the
critical value

σ̄ ≡
p

xH
p

xH +
p

x L
. (20)

Note that 1/2< σ̄ < 1.

Lemma 3 Let
�

γ, e
�

solve problem (16). Then

(a) θ LL = 0 if σ > σ̄;

(b) if σ < σ̄, bH L > 0 implies θ LL = 1.

Lemma 3 further simplifies our analysis of problem (16). By part (a), there will be
no project termination if both output and the public signal are low and the public signal
is sufficiently informative: θ LL is zero. It is then cheaper to deter the principal from
underreporting by making him burn money, that is, by using the instrument bH L. In fact,
if the public signal is sufficiently informative, using bH L is attractive for two reasons. First,
there is only a small chance that the public signal is high when output is low; therefore
also the likelihood that the principal actually has to pay bH L is low. Second, bH L is quite
effective in deterring the principal from underreporting if the public signal is sufficiently
informative: given that output is high, the public signal is likely to be high as well; thus if
the principal underreports, he has to pay bH L with high probability. As long asσ > σ̄, these
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considerations outweigh the countervailing consideration (related to those mentioned in
the discussion of Lemma 1) that burning money is less effective than firing since the
deterrence effect of firing is proportional to xH while the actual costs are proportional
to x L.

If σ < σ̄, however, these countervailing considerations make θ LL a more attractive
instrument than bH L. Therefore, by part (b) of Lemma 3, if the public signal is not very
informative, there is no money burning unless the agent is fired with probability one if the
public signal correctly indicates low output.

Together with our previous findings, the following proposition characterizes the opti-
mal contract for the case where the public signal is sufficiently precise.

Proposition 2 Let (γ, e) solve problem (16). Suppose that σ > σ̄. Then there exists a critical
ᾱ ∈ (0,1) such that

(a) bH L > 0 and θH L = 1 if α < ᾱ;

(b) and bH L = 0 and θH L ∈ (0, 1) if α≥ ᾱ.

In combination with Lemmas 1 and 2, Proposition 2 shows that as long as the public
signal is sufficiently accurate, project termination and money burning occur if and only if
the public signal conflicts with the principal’s report that output is low. When this happens,
the public signal of high output is actually incorrect because the principal always reports
truthfully. But, to credibly overrule the public signal, the principal has to be committed to
some action that reduces his payoff.

Proposition 2 also shows that project termination and money burning are clearly
ranked as incentive devices for truthful reporting: Money burning occurs only as a sec-
ondary instrument when the probability of firing the agent cannot be further increased
because it is already equal to one. Indeed, money burning is not used at all in an optimal
contract if α≥ ᾱ, which means that the loss from terminating the project is relatively high.

Our next result shows that the properties of the optimal contract are similar, albeit
slightly more complicated, in the case where the public signal is rather imprecise:

Proposition 3 Let (γ, e) solve problem (16). Suppose that σ < σ̄. There exists critical ᾱ1

and ᾱ2, with 0< ᾱ1 < ᾱ2 < 1, such that

(a) bH L > 0 and θH L = θ LL = 1 if α < ᾱ1;

(b) bH L = 0,θ LL ∈ (0,1) and θH L = 1 if α ∈
�

ᾱ1, ᾱ2

�

;

(c) and bH L = θ LL = 0 and θH L ∈ (0, 1) if α > ᾱ2.

13



The main difference with Proposition 2 is that now the principal may have to fire the
agent even if the public signal corroborates his report of low output. The reason is that
the principal must be given additional incentives not to underreport if the public signal is
relatively imprecise. But note that money burning never occurs if the public signal agrees
with the principal’s report of low output, because bLL = 0 by Lemma 1.

Again, the incentive devices for truthful evaluation are hierarchically ordered. After
the principal states low output, money burning is optimal only if at the same time the
project is terminated with certainty. This is the case if the loss of output from firing the
agent is rather low as α < ᾱ1. For higher values of α the loss from project termination is
sufficient to keep the principal from underreporting and so money burning is suboptimal.
But also the termination probabilities θ LL and θH L are ranked as θ LL can be positive only
if θH L = 1. Indeed, this happens for intermediate values of α in the interval

�

ᾱ1, ᾱ2

�

. In
contrast, if α > ᾱ2 the principal has to fire the agent with positive probability only if the
public signal s = sH provides no support for his evaluation x̂ = x̂ L.

Our final result in this section shows that the principal benefits from increases in the
parameters σ and α.

Proposition 4 Let (γ, e) solve problem (16). Then the principal’s payoff V (γ, e) is strictly
increasing in σ. Moreover, ∂ V (γ, e)/∂ α > 0 over the range where θH L = 1 in Propositions 2
and 3, and ∂ V (γ, e)/∂ α= 0 if θH L < 1.

The direct effect of a more precise public signal is not that it allows providing stronger
incentives for the agent’s effort choice. Indeed, our conclusion from Lemma 2 shows that
under an optimal contract the agent’s enumeration can be chosen to be independent of the
public signal. The reason that the principal gains from an increase in σ is that it relaxes
his ICP constraints for truthful subjective evaluation. If the public signal becomes more
accurate, it becomes easier to punish the principal for underreporting. As a consequence,
the expected loss from money burning or project termination is reduced. For example, if
σ > σ̄ such losses occur by Proposition 2 only if the public signal sH is incorrect because
the true output is x L. As σ increases, the likelihood of an incorrect signal decreases and
therefore expected losses are reduced. In fact, in the limit σ→ 1 the expected loss from
money burning or project termination tends to zero.

At first sight it may look paradoxical that the principal gains if firing the agent gener-
ates a higher loss of output. But again the intuition is that this relaxes the ICP conditions.
Whenever θH L = 1, an increase in αmakes the principal better off because this allows him
to reduce the less effective incentive instruments bH L or θ LL. This argument no longer
holds if for high values of α it becomes optimal to set θH L < 1 and bH L = θ LL = 0. Then
the principal simply keeps αθH L constant and so the expected loss from firing the agent
does not depend on α.

14



6 An Example

In this section we illustrate the solution of the principal’s problem (16) under limited
liability by a numerical example for the case σ > σ̄. Let

c(e) = 5e2/2, x L = 6, xH = 10, σ = 3/4. (21)

Notice that σ > σ̄ because σ̄ ≈ 0.5645. Further, the first–best effort is ẽ = 4/5.

By Lemma 1 we can ignore the IRA constraint (14) and the first of the two ICP con-
straints in (8). Since the optimal contract γ satisfies (17) and θ LL = 0 by Lemma 3 (a),
the principal’s ex ante payoff V (γ, e) simplifies for the specification in (21) to

6+ 4 e−
e

4

�

3wHH +wLH
�

−
1− e

4

�

6αθH L + bH L
�

. (22)

Similarly, the second ICP constraint in (8) becomes

30αθH L + 3bH L ≥ 3wHH +wLH , (23)

and the ICA constraint (13) reduces to

3wHH +wLH = 20e. (24)

The principal’s problem is therefore to choose e and (wHH , wLH ,θH L, bH L)≥ 0 to maximize
his payoff in (22) subject to (23), (24), and θH L ≤ 1.12

It is a bit tedious but straightforward to derive the solution of this optimization problem
from the Kuhn–Tucker conditions: The critical value ᾱ mentioned Proposition 2 is given
by ᾱ= 7/33, and the solution for (e,θH L, bH L) is

e =
7− 3α

20
, θH L = 1, bH L =

7− 33α

3
, if α≤ ᾱ, (25)

and

e =min
�

3α

2
,
3

8

�

, θH L =min
�

1,
1

4α

�

, bH L = 0, if α≥ ᾱ. (26)

The wages wHH ≥ 0 and wLH ≥ 0 are determined by (24) together with the solution for
the agent’s effort e in (25) and (26), respectively.

As Figure 2 illustrates, the solution variables (e,θH L, bH L) are continuous functions of
the parameter α. But these functions may have a kink at α = ᾱ and at α = 1/4 > ᾱ. The
kinks can occur at those values of α where the constraints bH L ≥ 0 and θH L ≤ 1 become
binding. Indeed, for α ∈ (ᾱ, 1/4) these constraints are both binding so that bH L and θH L

remain constant within this interval. For α < ᾱ only the constraint θH L ≤ 1 is binding and

12The constraint 0≤ e ≤ 1 can be ignored because it is not binding.
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Figure 2: SOLUTION VARIABLES (e,θH L, bH L)

bH L is strictly decreasing in α. Similarly, θH L is strictly decreasing when for α > 1/4 only
the constraint bH L ≥ 0 is binding .

Interestingly, the agent’s effort e is not a monotone function of α. It is decreasing over
the interval [0, ᾱ), increasing over the interval [ᾱ, 1/4), and constant for α ≥ 1/4. This is
so because, as stated in Lemma 1 (e), the agent’s effort incentive is positively related to
the principal’s willingness to incur an efficiency loss after reporting low output. As long as
bH L > 0, an increase in the cost of project termination makes it optimal for the principal
to reduce the amount of money burning at a rate that requires also reducing the agent’s
effort. In contrast, over the range where we have a corner solution with bH L = 0 and
θH L = 1, the principal’s cost of reporting low output necessarily increases with α and so
he can provide stronger incentives for the agent. Finally, if θH L < 1, the principal optimally
adjusts to a higher value of the parameter α by keeping αθH L constant. Thus the expected
cost of project termination and, therefore, also the agent’s effort are not changed.

7 The Timing of Evaluation

We now consider the alternative timing of events where the principal becomes informed
about the output realization after the public signal is observed. This means the sequence
of events in Figure 1 is reversed in stages t = 2 and t = 3. Whereas this does not af-
fect the ICA and IRA constraints for the agent, the principal’s ICP constraints have to be
reformulated because at the reporting stage he already knows the public signal.

If the principal observes the output x L and reports x̂ j in stage 3, his payoff depends on
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whether in stage 2 the public signal has been sL or sH according to

VL(γ, x̂ j|sL) ≡ (1−αθ L j)x L −wL j − bL j, (27)

VL(γ, x̂ j|sH) ≡ (1−αθH j)x L −wH j − bH j.

Similarly, his payoffs after observing xH depend on the public signal and are equal to

VH(γ, x̂ j|sH) ≡ (1−αθH j)xH −wH j − bH j, (28)

VH(γ, x̂ j|sL) ≡ (1−αθ L j)xH −wL j − bL j.

The ICP constraints for truthful reporting in the four possible (x , s)–constellations there-
fore are

VL(γ, x̂ L|sL)≥ VL(γ, x̂H |sL), VL(γ, x̂ L|sH)≥ VL(γ, x̂H |sH), (29)

VH(γ, x̂H |sH)≥ VH(γ, x̂ L|sH), VH(γ, x̂H |sL)≥ VH(γ, x̂ L|sL).

Obviously, in comparison with the previous ICP conditions in (8) these constraints are
more restrictive: The principal now has to report truthfully ex post for each realization of
the public signal, while under (8) this is required only ex ante in expectation. Therefore,
whenever γ satisfies the ICP conditions in (29) it also satisfies these conditions in (8).

When the principal observes output after the realization of the public signal, his con-
tracting problem becomes

max
(γ,e)∈Γ×E

V (γ, e) subject to (29), (13), (14) and w ≥ 0. (30)

The only difference between this problem and problem (16) in Section 5 is that the ex
ante ICP constraints (8) are replaced by the ex post constraints (29).

It is easy to see that in the case of unlimited liability contracts, which we studied in
Section 4, it does not matter for the principal whether he reports his evaluation before
or after the realization of the public signal. This is so because by Proposition 1 he can
appropriate the first–best surplus by setting b = θ = 0 and using a wage schedule that
is independent of his evaluation. The same contract thus trivially satisfies also the ICP
constraints for ex post reporting.13 Perhaps more surprising is the following observation
that also with limited liability the time at which the principal observes and reports output
is irrelevant for his payoff.

Proposition 5 Let (γ, e) solve problem (16). Then γ satisfies the ICP constraints in (29),
and therefore (γ, e) also solves problem (30), if and only if wLH = αθ LL xH in (19). Thus for
the principal’s payoff it does not matter whether he observes the realization of output before
or after the public signal.

13Indeed, if the principal reports after having observed the public signal, any contract that solves the
unlimited liability problem must ignore the principal’s information. This immediately follows from (29)
because b = θ = 0.
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As Lemma 2 shows, the agent’s enumeration is not uniquely determined by the solution
of problem (16). This degree of freedom turns out to be sufficient for meeting also the
more restrictive requirements for ex post truthful reporting. By (18) and (19), Proposition
5 implies that the agent’s wages in the solution of problem (30) satisfy

wHH = αθH L xH + bH L, wLH = αθ LL xH . (31)

The payments wH L and wLL are zero by (17). Thus the agent is never rewarded by a
positive wage if the principal submits an unfavorable evaluation x̂ L. If, however, he reports
x̂H the public signal becomes decisive because wHH > wLH by Propositions 2 and 3. In
contrast with our findings for ex ante reporting, the agent’s wage schedule now necessarily
depends not only on the principal’s report but also on the public signal.

In our analysis the timing of subjective evaluation by the principal is exogenous. But
from Proposition 5 we can draw some immediate conclusions for environments in which
the principal can decide at which stage he evaluates the agent. Since the timing is irrele-
vant for his payoff, the principal has no incentive to acquire information at an early stage.
Indeed, a slight modification of our model leads to the conclusion that delaying his report
can even increase his payoff. Suppose that the parameter α, which presents the degree of
project completion, increases over time. Then we can conclude from Propositions 2–4 that
the principal gains from postponing the agent’s evaluation as long as α lies in the range
where θH L = 1. The optimal time of reporting occurs when α is sufficiently large so that
θH L < 1. Interestingly, then money burning is no longer needed to prevent underreport-
ing by the principal. Thus, if the timing of evaluation can be freely selected, reporting low
output requires the principal to terminate the project and dismiss the agent with a positive
probability, but he is not forced to burn money in addition.

8 Conclusions

We have studied a principal–agent relation where the principal possesses more accurate
information about the outcome of the agent’s effort than a publicly verifiable performance
measure. Despite being noisier than the principal’s information, public information is
helpful to reduce the ex post inefficiencies that are unavoidably associated with subjec-
tive evaluation. As long as the public performance measure is not too imprecise, such
inefficiencies occur only if the principal’s subjective evaluation is contradictory to the pub-
lic signal. In general, the presence of public information relaxes the principal’s incentive
compatibility constraints for truthful subjective evaluation.

Our analysis further shows that there is a clear pecking–order of the instruments that
can be used to support truthful subjective evaluation. We show that ‘firing’ the agent,
thereby destroying some part of the output, is more efficient than ‘burning money’ in the
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form of payments to a passive third party. When the efficiency loss from firing is large
enough, an optimal contract makes no use of money burning. Also, money burning is not
optimal as long as there is a positive probability that the agent is not fired.

The problem of subjective performance evaluation consists of creating effort incentives
for the agent and, at the same time, incentives for truthful reporting by the principal.
This double incentive problem can be extended to a setting with more than one agent
where the principal’s private information is about some aggregate measure such as the
sum or the mean of the efforts. As is standard in the literature on subjective evaluation, in
our model the principal does not have to invest in information acquisition. An additional
moral hazard problem occurs, however, if the principal’s information acquisition is costly
and not observable. How this problem interacts with the other two incentive problems of
subjective evaluation may be an interesting subject of further research.

19



9 Appendix

Proof of Proposition 1 Suppose that θ = b = 0, wHH = wH L, and wLH = wLL. Then the
principal’s incentive constraints (8) are obviously satisfied. Let the difference of the wages
satisfy

wHH −wLL =
c′ (ẽ)

2σ− 1
. (32)

Then by (13) the agent will choose the first–best effort ẽ. In addition, by unlimited liability
one can choose the wage wLL such that the agent’s individual rationality constraint holds
with equality:

wLL = c (ẽ)−
�

1−σ
2σ− 1

+ ẽ
�

c′ (ẽ) . (33)

This contract implements the first–best effort ẽ. Moreover, the principal’s payoff is equal to
the first–best surplus S (ẽ) because the agent receives his outside option payoff. Obviously,
the payoff of the principal cannot be higher; thus the contract considered here is optimal.
Moreover, any optimal contract must implement the first–best effort ẽ, for otherwise the
principal’s payoff must be lower than the first–best surplus S (ẽ) .

It remains to show that θ = b = 0 in any optimal contract. By assumption (1), ẽ ∈
(0,1) . Since σ < 1, this implies that all four possible combinations of output and the
public signal occur with positive possibility. Therefore, whenever θ 6= 0 or b 6= 0, total
surplus is below the first–best surplus S (ẽ) , and hence the principal’s payoff is below S (ẽ)
as well. Q.E.D.

Proof of Lemma 1 (a) The agent’s utility is

U
�

γ, e
�

=max
e′

U
�

γ, e′
�

≥ U
�

γ, 0
�

. (34)

Since w ≥ 0 and c (0) = 0, U
�

γ, 0
�

≥ 0. Thus (14) is automatically satisfied.

(b) If
�

γ, e
�

solves problem (16), then obviously γ must maximize V (γ, e) subject to
the constraints in (16) when e is treated as a fixed parameter. The latter is a linear opti-
mization problem since V

�

γ, e
�

and all constraints are linear in γ, and the Kuhn-Tucker
conditions are both necessary and sufficient for a maximum.

Following a standard method, we temporarily ignore that γ has to satisfy the inequality
VL
�

γ, x̂ L
�

≥ VL
�

γ, x̂H
�

in (8), and show later that this constraint is automatically satisfied
in the proof of part (d) below. Consider the Lagrangian

L ≡ V (γ, e) +λ
�

VH(γ, x̂H)− VH(γ, x̂ L)
�

+µ
�

UH(γ)− UL(γ)− c′(e)
�

(35)

with λ≥ 0. Note that µ > 0 as the agent’s incentive constraint must be binding.

Straightforward differentiation shows that wH L = 0 because

∂ L

∂ wH L
=− (1− e) (1−σ) +λσ−µ (1−σ)<

∂ L

∂ bH L
=− (1− e) (1−σ) +λσ. (36)
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Similarly, wLL = 0 because

∂ L

∂ wLL
=− (1− e)σ+λ (1−σ)−µσ <

∂ L

∂ bLL
=− (1− e)σ+λ (1−σ) . (37)

Moreover, θHH = bHH = θ LH = bLH = 0 because

∂ L

∂ θHH
= αxH

∂ L

∂ bHH
=−ασxH (e+λ)< 0, (38)

∂ L

∂ θ LH
= αxH

∂ L

∂ bLH
=−α (1−σ) xH (e+λ)< 0. (39)

Finally, bLL = 0 because σ > 1/2 implies that

∂ L

∂ bLL
=− (1− e)σ+λ (1−σ)<

∂ L

∂ bH L
=− (1− e) (1−σ) +λσ. (40)

(c) If bH L > 0 then
∂ L

∂ bH L
=− (1− e) (1−σ) +λσ = 0, (41)

and thus λ= (1− e) (1−σ)/σ. This implies

∂ L

∂ θH L
= − (1− e) (1−σ)αx L +λσαxH (42)

= (1− e) (1−σ)α
�

xH − x L
�

> 0. (43)

Therefore bH L > 0 implies θH L = 1.

Finally, if θ LL > 0 then

∂ L

∂ θ LL
=− (1− e)σαx L +λ (1−σ)αxH ≥ 0, (44)

and thus λ≥
�

(1− e)σx L
�

/
�

(1−σ) xH
�

. By (42) this implies

∂ L

∂ θH L
≥ − (1− e) (1−σ)αx L +

(1− e)σx L

(1−σ) xH
σαxH (45)

= (1− e)αx L

2σ− 1

1−σ
> 0. (46)

Therefore θ LL > 0 implies θH L = 1.
(d) By part (b), the principal’s incentive constraint VH(γ, x̂H)≥ VH(γ, x̂ L) in (8) simpli-

fies to
σwHH + (1−σ)wLH ≤ σ

�

θH LαxH + bH L
�

+ (1−σ)θ LLαxH . (47)

Suppose this constraint is not binding. Then θH L must be strictly positive, since by limited
liability the left hand side of (47) is non-negative, and by part (c) the right hand side can
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be positive only if θH L > 0. Thus one must have ∂ L/∂ θH L ≥ 0, and by (42) this implies
λ > 0. This proves that the constraint (47) must be binding and VH(γ, x̂H) ≥ VH(γ, x̂ L)
must hold with equality.

Using part (b) the inequality VL(γ, x̂ L)≥ VL(γ, x̂H) in (8) reduces to

(1−σ)
�

θH Lαx L + bH L
�

+σθ LLαx L ≤ σwLH + (1−σ)wHH . (48)

Since (47) is binding,

σwLH + (1−σ)wHH =
2σ− 1

σ
wLH +

1−σ
σ

�

σ
�

αθH L xH + bH L
�

+ (1−σ)αθ LL xH
�

≥ (1−σ)
�

αθH L xH + bH L
�

+
(1−σ)2

σ
αθ LL xH (49)

where the inequality follows from wLH ≥ 0. Subtracting the left hand side of (48) shows
that

σwLH + (1−σ)wHH −
�

(1−σ)
�

θH Lαx L + bH L
�

+σθ LLαx L
�

(50)

≥ (1−σ)αθH L
�

xH − x L
�

+
�

(1−σ)2 xH/σ−σx L

�

αθ LL.

If θ LL = 0, this implies that (48) is satisfied. Similarly, if (1−σ)2 xH/σ ≥ σx L, (48) is
satisfied.

To complete the argument, we show that one cannot have that (1−σ)2 xH/σ < σx L

and θ LL > 0. Indeed, θ LL > 0 implies by (44) that

λ≥
(1− e)σx L

(1−σ) xH
. (51)

By the first equality in (41) this implies

∂ L

∂ bH L
≥ (1− e)

�

− (1−σ) +
σx L

(1−σ) xH
σ

�

> 0, (52)

where the second inequality holds if (1−σ)2 xH/σ < σx L. Since this would imply bH L =
∞, we have shown that θ LL = 0 if (1−σ)2 xH/σ < σx L.

(e) By part (b), the agent’s incentive constraint (13) reduces to

σwHH + (1−σ)wLH = c′ (e) . (53)

Combining this with (47), which holds with equality as shown above, completes the proof.
Q.E.D.

Proof of Lemma 2 Let
�

γ, e
�

solve (16). By Lemma 1 part (b), the agent’s incentive
constraint (13) reduces to (19). Changing wHH and wLH such that equation (19) continues
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to hold leaves the the principal’s payoff constant and does not interfere with any of the
constraints. Therefore, the optimal wages wHH and wLH are not unique. Q.E.D.

Proof of Lemma 3 (a) As shown in the last part of the proof of Lemma 1 (d), θ LL = 0 if
(1−σ)2 xH/σ < σx L. As this inequality is equivalent to σ > σ̄, this proves part (a).

(b) Let bH L > 0 and σ < σ̄. Then ∂ L/∂ bH L = 0 and so by the second equality in (36)

λ=
(1− e) (1−σ)

σ
. (54)

By the equality in (44) this implies

∂ L

∂ θ LL
= − (1− e)σαx L +

(1− e) (1−σ)
σ

(1−σ)αxH (55)

= (1− e)α
�

−σx L +
(1−σ)
σ

(1−σ) xH

�

> 0, (56)

where the last inequality holds because σ < σ̄. Therefore, θ LL = 1. Q.E.D.

Proof of Proposition 2 We substitute out all choice variable except e from the principal’s
problem, and then optimize with respect to e. By Lemma 1 (b) and equation (19), the
principal’s profit V

�

e,γ
�

equals

exH + (1− e) x L − ec′ (e)− (1− e)
�

(1−σ)
�

αθH L x L + bH L
�

+σθ LLαx L
�

. (57)

By Lemma 3, θ LL = 0 and hence by Lemma 1 (e),

σ
�

αθH L xH + bH L
�

= c′(e). (58)

There are two possible cases. First, suppose that σαxH ≥ c′ (e) . This is equivalent to
e ≤ ê, where ê ≡ c′−1 �σαxH

�

. In this case, (58) and Lemma 1 (c) imply that bH L = 0 and
θH L = c′ (e)/

�

σαxH
�

. Profit equals

φ1 (e)≡ exH + (1− e) x L −
�

ec′ (e) + (1− e) (1−σ)
c′(e)x L

σxH

�

. (59)

Second, suppose that σαxH < c′ (e) , or, equivalently, e > ê. Then θH L = 1 and so by (58)
bH L = c′(e)/σ−αxH > 0. In this case, the principal’s payoff is

φ2 (e)≡ exH + (1− e) x L − ec′ (e)− (1− e) (1−σ)
�

c′(e)
σ
−α

�

xH − x L
�

�

. (60)

Note that φ1 (e) ≤ φ2 (e) if and only if c′ (e) ≤ σαxH . Therefore, the principal’s payoff as
a function of e can be written as

Ṽ (e)≡min
�

φ1 (e) ,φ2 (e)
	

. (61)
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The functions φ1 and φ2 are strictly concave in e.14 The minimum of two strictly concave
functions is strictly concave, hence Ṽ is strictly concave.

Differentiating φ2 yields

φ′2 (e) = xH−x L−
2σ− 1

σ
c′ (e)−

�

e+ (1− e)
(1−σ)
σ

�

c′′ (e)−α (1−σ)
�

xH − x L
�

. (62)

Define e∗2 implicitly by φ′2
�

e∗2
�

= 0. Since φ2 is strictly concave, e∗2 is unique. Since
c′′′(e)≥ 0 and c′(0) = 0, ec′′(e)≥ c′(e) for all e. By (1) therefore c′′(1)≥ c′(1)> xH − x L.
This implies φ′2 (1)< 0 and so e∗2 < 1.

If e∗2 > ê, then e∗2 maximizes the principal’s payoff Ṽ (e). Moreover, if the optimal
contract involves bH L > 0, then e∗2 > ê. We use the intermediate value theorem to show
that e∗2 > ê if and only if α is strictly smaller than a critical value ᾱ ∈ (0,1) . The argument
proceeds in three steps:

1. At α = 0, φ′2 (0) > 0 by assumptions (1) and (2). Moreover, if α = 0, the critical
value ê equals zero. Therefore, if α= 0, then e∗2 > ê.

2. The critical value ê is continuous and strictly increasing in α. Moreover, e∗2 is contin-
uous and strictly decreasing in α:

de∗2
dα
=−

∂ φ′2

�

e∗2
�

/∂ α

φ′′2

�

e∗2
� =

(1−σ)
�

xH − x L
�

φ′′2

�

e∗2
� < 0. (63)

3. If α= 1, e∗2 solves

2σ− 1

σ
c′
�

e∗2
�

+
�

e∗2+
�

1− e∗2
� (1−σ)

σ

�

c′′
�

e∗2
�

= σ
�

xH − x L
�

. (64)

Since c′′′ (e)≥ 0= c′ (0), we have ec′′ (e)≥ c′ (e) and thus
�

2σ− 1

σ
+ 1
�

c′
�

e∗2
�

< σ
�

xH − x L
�

. (65)

By σ > 1/2, it follows that c′
�

e∗2
�

< σxH . We conclude that, if α = 1, c′
�

e∗2
�

<

σαxH and thus e∗2 < ê.

From steps 1–3, it follows that there exists a critical value ᾱ ∈ (0,1) such that e∗ > ê
holds if and only if α < ᾱ. As argued above, this implies that bH L > 0 if and only if α < ᾱ.
Q.E.D.

14This can be shown by differentiating them twice and using xH > xL , σ > 1/2, and c′′′ (e)≥ 0.
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Proof of Proposition 3 There are three cases corresponding to statements (a), (b) and
(c). First, suppose that c′ (e) ≤ σαxH , or equivalently, e ≤ ê = c′−1 �ασxH

�

. Then, by
Lemma 1 (c) and (e), θH L = c′ (e)/

�

σαxH
�

and θ LL = bH L = 0. Profit equals φ1 (e) , as
defined in the proof of Proposition 2. Second, suppose that σαxH < c′ (e) ≤ αxH . This is
equivalent to e ∈ (ê, ē] , where ē := c′−1 �αxH

�

. In this case θH L = 1, and bH L = 0, and
θ LL =

�

c′(e)−σαxH
�

/
�

(1−σ)αxH
�

. Using (57), the principal’s profit is

φ3 (e)≡ exH + (1− e) x L − ec′ (e)− (1− e)
�

σx L

(1−σ) xH
c′(e)−αx L

2σ− 1

1−σ

�

. (66)

Third, suppose that c′ (e) > αxH , or, equivalently, e > ē. Then θ LL = θH L = 1 and bH L =
�

c′(e)−αxH
�

/σ, and profit equals

φ4 (e)≡ exH + (1− e) x L − ec′ (e)− (1− e)

�

αx L +
(1−σ)

�

c′(e)−αxH
�

σ

�

. (67)

Note that φ1 (e)≤ φ3 (e) if and only if c′(e)≤ σαxH . Moreover φ3 (e)≤ φ4 (e) if and only
if c′(e) ≤ αxH . Thus c′ (e) ≤ ασxH if and only if φ1 (e) = min

�

φ1 (e) ,φ3 (e) ,φ4 (e)
	

.
Moreover, σαxH < c′ (e) ≤ σxH if and only if φ3 (e) < φ1 (e) and φ3 (e) ≤ φ4 (e) . There-
fore, the principal’s payoff can be written

Ṽ (e) =min
�

φ1 (e) ,φ3 (e) ,φ4 (e)
	

. (68)

The functions φ1, φ3, and φ4 are strictly concave in e.15 Therefore, Ṽ is strictly concave
in e.

Define e∗4 implicitly by φ′4
�

e∗4
�

= 0. Since φ4 is strictly concave, e∗4 is unique. By
assumption (1), e∗4 < 1. If e∗4 > ē, then e∗4 maximizes Ṽ (e). Moreover, if the optimal
contract involves bH L > 0, then e∗4 > ē.

We use the intermediate value theorem to show that e∗4 > ē if and only if α is strictly
smaller than a critical value ᾱ1 ∈ (0, 1) . The argument proceeds in three steps:

1. If α= 0, φ′4 (0)> 0= ē. Thus if α= 0, e∗4 > ē.

2. e∗4 is continuous and strictly decreasing in α. Moreover, ē = c′−1 �αxH
�

is continuous
and strictly increasing in α.

3. At α= 1, e∗4 solves

xH = c′
�

e∗4
�

+
�

e∗4σ+
�

1− e∗4
�

(1−σ)
�

c′′
�

e∗4
� σ

2σ− 1
. (69)

Therefore, at α= 1, αxH > c′
�

e∗4
�

and so e∗4 < ē.

15This can be shown by differentiating them twice and using 1/2< σ < σ̄ < xH/(xH+ xL), c′′ (e)> 0 and
c′′′ (e)≥ 0.
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Thus there exists an ᾱ1 ∈ (0,1) such that if α = ᾱ1, e∗4 = ē. For all α < ᾱ1, the optimal
effort is e∗4 > ē; moreover bH L > 0 and θH L = θ LL = 1. On the other hand, for all α ≥ ᾱ1,
bH L = 0.

It remains to show that there exists ᾱ2 ∈
�

ᾱ1, 1
�

such that θ LL > 0 if and only if α < ᾱ2.
Note that θ LL > 0 if and only φ′3 (ê) > 0. To see this, first suppose that φ′3 (ê) ≤ 0. Then
Ṽ (e) < Ṽ (ê) for all e > ê since Ṽ (·) is strictly concave. Hence the optimal effort is no
larger than ê and θ LL = 0. Second, if φ′3 (ê) > 0, then the optimal effort is strictly bigger
than ê and θ LL > 0.

We use the intermediate value theorem to show that there exists ᾱ2 ∈
�

ᾱ1, 1
�

such that
φ′3 (ê)> 0 if and only if α < ᾱ2. The argument proceeds in three steps:

1. By definition of ᾱ1, if α= ᾱ1, then φ′4
�

e∗4
�

= φ′4 (ē) = 0. Since φ3 and Ṽ are strictly
concave, and ē > ê, it follows that φ′4 (ē) ≤ φ

′
3 (ē) < φ

′
3 (ê) . Therefore, if α = ᾱ1,

then φ′3 (ê)> 0.

2. φ′3 (ê) is continuous and strictly decreasing in α :

d

dα
φ′3 (ê) =

�

∂

∂ α
φ′3 (e)

�

e=ê
+φ′′3 (ê)

dê

dα
< 0 (70)

3. Suppose α= 1. Since ec′′ (e)≥ c′ (e) ,

φ′3 (ê) = xH − x L − x L

2σ− 1

1−σ
−
�

1−
σx L

(1−σ) xH

�

c′ (ê) (71)

−
�

ê+ (1− ê)
σx L

(1−σ) xH

�

c′′ (ê) (72)

< xH − x L − x L

2σ− 1

1−σ
−
�

2−
σx L

(1−σ) xH

�

σxH (73)

= xH − 2σxH −σx L < 0. (74)

Hence if α= 1, then φ′3 (ê)< 0.

Q.E.D.

Proof of Proposition 4 The principal’s expected payoff Ṽ (e) defined in (61) and (68) is
strictly increasing in σ because the functions φ1,φ2,φ3 and φ4 are strictly increasing in
σ. If θH L < 1, then Ṽ (e) = φ1(e), as defined in (59), and therefore ∂ Ṽ (e)/∂ α = 0. If
θH L = 1, then Ṽ (e) = φ2(e) in the case of Proposition 2 and ∂ Ṽ (e)/∂ α > 0 because φ2

is strictly increasing in α. In the case of Proposition 3, Ṽ (e) = min
�

φ3(e),φ4(e)
	

. As
σ < σ̄, φ3 and φ4 are strictly increasing in α and so ∂ Ṽ (e)/∂ α > 0. Q.E.D.
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Proof of Proposition 5 Since (γ, e) solves problem (16), γ satisfies (17). This reduces the
constraints in (29) to

VL(γ, x̂ L|sL)− VL(γ, x̂H |sL) = wLH −αθ LL x L ≥ 0, (75)

VL(γ, x̂ L|sH)− VL(γ, x̂H |sH) = wHH −αθH L x L − bH L ≥ 0, (76)

VH(γ, x̂H |sH)− VH(γ, x̂ L|sH) = αθH L xH + bH L −wHH ≥ 0, (77)

VH(γ, x̂H |sL)− VH(γ, x̂ L|sL) = αθ LL xH −wLH ≥ 0. (78)

Further, (18) and (19) imply

σwHH + (1−σ)wLH = σ(αθH L xH + bH L) + (1−σ)αθ LL xH . (79)

By (78) wLH ≤ αθ LL xH . Suppose that this inequality is strict, i.e. wLH < αθ LL xH . Then
(79) implies that wHH > αθH L xH + bH L, a contradiction to (77). This proves that the
constraints in (29) cannot be satisfied if wLH 6= αθ LL xH .

Now let wLH = αθ LL xH . Then (75) and (78) hold because x L < xH . As wLH = αθ LL xH ,
(79) implies

wHH = αθH L xH + bH L. (80)

Thus the equality holds in (77), and the strict inequality holds in (76) because x L < xH .
This proves that (75)–(78) are satisfied if (γ, e) solves problem (16) with wLH = αθ LL xH

and wHH = αθH L xH + bH L. Q.E.D.
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