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Abstract

We define path-dependency as the generic phenomenon according to which agents

take an action regardless of their private information. Path-dependency can be of two

types contingent on whether agents act with the crowd (herding) or against the crowd

(contrarianism). We consider a quote-driven market where traders can in some cases

observe whether their predecessors were informed, although they cannot observe their

private information, while in other cases they are left with the uncertainty that their

predecessors acted purely for liquidity motives. In this setting we recover herding and

contrarianism and we find that better-informed markets (i.e. where informed traders

receive high precision signals) can generate path-dependent behavior more easily than

poorly informed ones. Moreover, we illustrate how a market dominated by herding features

a price that is more informative of the asset value than the price of a market where traders

always follow their signal. We also discuss how contrarianism has the exact opposite effect

by decreasing price informativeness. (JEL D82, D83, G14)
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1 Introduction

We study the failure of information aggregation in financial markets where traders show up

sequentially in front of a competitive and risk neutral market maker to trade the only asset in

the economy. By acting upon the reception of private information about the value of the asset,

traders release this information to the public, allowing the market maker and, in general, the

economy to learn about its true value.

The types of failure of information aggregation we focus on are herd behavior, contrarianism

and informational cascades. We group herding and contrarianism under the label of path-

dependent behavior, and we describe this as the phenomenon by which an individual takes an

action independently of his private information. While engaging in herd behavior an individual

disregards his information to follow the crowd, whereas when engaging in contrarian behavior an

individual disregards his private information to go against the crowd. An informational cascade

takes place when everybody in the economy engages in path-dependent behavior, whether this

is herding or contrarianism. In the spirit of Chamley [3], we trace the difference between path-

dependency and informational cascades in the fact that the former occurs at an individual level,

while there is still the possibility that some agent’s private information induces him to take a

different action. This possibility is not realized, but the very fact that it is not realized yields

information that is incorporated in the social learning: learning slows down but does not stop

completely. On the other hand, in an informational cascade all the individuals in the economy

are engaging in path-dependency, for the public belief dominates the private belief of every

individual. As a consequence, actions do not disclose any new private information, beliefs do

not change and, if everything else remains the same, learning stops forever. It follows that, in

general, an informational cascade implies path-dependency, but the contrary does not need to

be true.

The seminal paper by Bikhchandani, Hirshleifer and Welch [2] (BHW henceforth) seems

to suggest that informational cascades are more likely to occur when each individual’s private

information is very accurate. However, in another seminal paper, Avery and Zemsky [1] (AZ

henceforth) study herding in financial markets and conclude that when the quality of the private
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information is poor enough one can build trading histories generating herd behavior. We would

like to cast some light on the role that the quality of private information plays in achieving

herding in financial markets, and on whether there is something special about financial markets

that overturns the early intuition found in BHW. We start by reviewing their results and by

illustrating some of the latest findings in the literature.

BHW challenges the effi ciency outcome of market equilibrium when individuals act sequen-

tially and the price for taking an action is fixed ex ante. In their model, the first person who

does not follow his signal to follow the crowd triggers something irreversible and learning stops

completely. Agents differ only by their private information, so once their actions become inde-

pendent of it, they become identical. It follows that whenever a particular individual takes an

action regardless of his private information, this would be the case for any other individual in

the economy: once someone herds, anybody else would herd in his place and an informational

cascade is generated.

The key feature of models with a fixed price of adoption is that, eventually, individual beliefs

reach some threshold above (below) which no private information can take the expected value of

adoption given those beliefs below (above) the price ever again. In financial markets, however,

prices respond to the trading activity. AZ recover the effi ciency result of asset markets with

sequential trading, where prices are set via a bid-ask mechanism. They show that informational

cascades can never occur as long as market prices are flexible and, in general, that herding

cannot occur unless asymmetric information of a particular kind, for instance in the form

of event uncertainty, is introduced. Under event uncertainty, not only there is uncertainty

about the value of the asset (which they call value uncertainty), but also the asset could have

changed its value in an one-off event (a shock) in the course of trading; traders are informed

on whether a shock has occurred, whereas the market maker can only learn this by observing

the trading behavior of the market participants. Event uncertainty makes traders respond to

the informational event faster than the market maker, who assigns too much of the trading to

the activity of noise traders. Hence, event uncertainty slows the price adjustment in the short

run, creating some form of inflexibility and allowing for herd behavior to occur. AZ find that,
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for a given trading history, herding occurs more easily in poorly informed markets.

In a recent paper, Park and Sabourian [5] (PS henceforth) generalize AZ’s private informa-

tion structure. Within a state space of at least three elements, they investigate the impact of

different signal configurations on path-dependent behavior. In particular, they define U-shaped

signals as those signals moving probability mass from moderate to extreme states; correspond-

ingly, they call signals moving probability mass from extreme to moderate states hill-shaped.

PS show that with a state space of at least three elements, U-shaped signals with positive or

negative bias (i.e. giving more weight to the good or bad state, respectively) are necessary and

(almost) suffi cient to generate herd behavior, while biased hill-shaped signals are necessary and

(almost) suffi cient to generate contrarianism. For an intuition of their result, consider, as an

example, a trader who receives a U-shaped signal with a negative bias. This signal assigns more

weight to the extreme states and, due to the negative bias, it induces a trader who has observed

nothing but his signal to sell. Suppose that, before placing his order, the trader in question

observes a trading history that convinces him that the negative state is almost impossible. In

light of this new information, the negative bias has no bite and the signal transfers almost all

of the probability mass from the intermediate state to the positive one, inducing the trader to

buy following the crowd.

The financial market we consider is represented by a trading room populated by a countable

number of agents who are randomly selected one at the time to trade one unit of an asset with

a perfectly competitive and risk neutral market maker. Traders can be of two ‘types’: with

probability (1− λ) they are of type I, in which case they are informed with probability one;

or, with probability λ, they are type II traders, in which case they can either be informed with

probability (1− µ), or noise traders with probability µ. Informed traders receive informative

private signals conditional on which they update their beliefs before trading, whereas noise

traders do not receive any private information and buy and sell with equal probability. Traders

can observe each others’types, namely they can tell whether someone trading at some time t is

a type I or a lottery trader; however, in the case a trader is of type I, his private signal cannot

be observed, and in case he is a lottery trader it cannot be said whether he is informed or not,
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let alone, in case he is informed, his private information. The market maker cannot observe

either types or signals.

This set-up can be seen as capturing the concept of neighborhood such as, for instance,

the trading floor of a financial institution, where traders know the types but not the specific

information of their clients, and share this information and the corresponding order flow, but

not necessarily the identity of the clients, with the rest of the trading floor. The latter serves

the purpose of gathering together the order flow, with traders acting on behalf of their clients.

With the concept of the trading room, we are modelling the clients directly as traders who can

observe each others’types. The two types of clients we have in mind are hedge funds trading

primarily upon the reception of by private information, and investment funds whose trades can

be driven by private information, but also by the issuance and redemption of shares. The latter

reason for trading does not reveal any private information and it is completely unrelated to the

market’s trading history. A trader revealing that he has been executing the order of a type I

(hedge) fund can be in the interest of his client: by moving the market in the direction of his

trade, the client is more likely to profit from a capital gain.

The existence of herd and contrarian behavior is driven by the asymmetry of information

between the traders and the market maker, who sets prices via a bid-ask mechanism à la

Glosten and Milgrom [4] (GM henceforth). In particular, in face of a long enough realization

of type I buys, traders update their beliefs as if they had full information about the signal

realizations; on the other hand, the market maker has to consider the eventuality that the

trades he observes are generated by noise. This causes his pricing to be rigid enough for traders

to find it advantageous to buy regardless of their signal. Contrarianism is the consequence of

type II trading activity. The probability of noise conditional on observing a type II trader is

higher than the overall fraction of noise traders: this causes the price to react ‘too much’to

the trading activity and causes traders to ignore their private information to go against the

market.

We prove the existence of trading histories such that herd and contrarian behaviors occur

with positive probability. We find that, for any trading history, herding and contrarianism
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occur more easily in better-informed markets, i.e. markets with high-precision signals, than in

poorly-informed markets. This is because a very precise signal exacerbates the informational

asymmetry between the traders and the market maker. Once a trader acts regardless of his

signal, the rest of the traders do not update their beliefs anymore whereas the market maker is

learning that either herding or contrarianism is taking place. This continues until the market

maker realigns prices to reflect the information present in the market.

The analysis suggests that allowing traders to observe each other’s types when the share of

type I traders is high is beneficial to the informativeness of the price: herd behavior causes the

price to realign with the valuation of the fully informed type I traders and it suppresses the

opinion of the (mistaken) minority. Correspondingly, allowing traders to observe each other’s

types when the fraction of type II traders is high generates contrarianism. Type II trades

introduce too much noise in the eyes of the traders, and they do so in a non-neutral way but

in the direction of the correct state of the world. For instance, when V = 1 traders attribute

too many of the buy orders to noise originating contrarian selling to the detriment of price

informativeness.

We also reconcile our results with AZ. Indeed, our information structure is similar to the

one in AZ’s event uncertainty in that it is formed by three levels: a first level is the public

information that is common knowledge among the traders and the market maker and it is

represented by the trading history; a second level can be thought of as public information

among traders, which is common knowledge only among traders and consists, on top of the

trading history, of the types of the traders associated with past trades; as a third level there

is the traders’private information. The difference in the information structure between this

model and AZ’s is that, in the latter, an exogenous shock is needed to create this intermediate

level of information, whereas in the present paper this is obtained by allowing traders to know

something more about each other. As in AZ, this intermediate level of information creates price

rigidity and allows for herd behavior to occur. As the information structure is equivalent to

the one in AZ, similar notions of herding and contrarianism are used.

Changing the nature of the intermediate level in the information structure is not just a way
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of re-interpreting the source of uncertainty and informational asymmetry. In fact, this has an

important implication, namely a gain in tractability which allows for a smaller state space and

that enables us to state the conditions for herding and contrarianism in terms of exogenous

variables only. This has deep consequences for our comparative statics. In fact, we find that

herding and contrarianism occurs with positive probability after some trading history when

the signal precision is above some threshold. AZ, though, construct trading histories such that

herd behavior occurs at a certain time t if the signal’s precision is below some threshold. This

apparent contradiction disappears if we notice that the threshold below which AZ’s market

herds depends on the market participants’posterior beliefs prior to herding, whereas our cut-

off level is only a function of exogenous variables, namely the level of noise trading, and of the

type-composition of the market.

AZ do not link the formation of the posterior beliefs to the quality of information. They

simply state that, once those beliefs come into place, it is easier to herd for low values of the

precision. To fix ideas, consider the case of herd buying; herd buying occurs when a trader

buys regardless of his signal, in particular with a low signal. For this to happen, after observing

the trading history, the traders’valuation of the asset prior receiving a low signal must be high

enough, and the market maker valuation prior receiving a buy order must be low enough, in

relative terms, so that even after the reception of a low signal and of a buy order, respectively,

the gap between the updated valuation and the ask price is preserved. As long as the traders’

valuation of the asset is higher than the market maker’s valuation, there exists a threshold

below which herding occurs: the lower the signal precision the less sensitive the decrease in

valuation upon the reception of a low signal by the traders, and the smaller the increase in

the ask price by the market maker. Hence, once the asymmetry of information has generated

some gap in valuations, a lower signal works better in order to preserve this gap. Our result

does not contradict all this as, in addition, it has something to say about how the gap in the

posterior beliefs was formed in the first place in relation to the quality of information. We find

conditions on the signal precision and on the level of noise under which the gap in valuations

can be built through the trading history starting from t = 0 and such that herd buying occurs.
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We face a trade-off: if on the one hand it is still true that once a gap in beliefs is in place a lower

signal precision works better to preserve it, on the other hand, the higher the signal precision

the stronger the asymmetry of information between traders and market maker, the faster their

valuations diverge. The trade-off is resolved in favor of a high signal precision, for any level of

noise and type-composition of the market. From the perspective of a single period’s trading,

assuming that the valuations have already accumulated a gap in the ‘right’direction, there is

no discordance between AZ’s result and ours, although ours identifies conditions such that the

‘right’gap is built through the trading history.

Finally, we can interpret our result within PS’s general signal structure: for instance, the

signal configurations that generate herd buying (selling) more easily are those that are the

fastest in moving probability mass towards the good (bad) state.

The paper is organized as follows: Section 2 presents the structure of the model and ad-

dresses the problem of the market maker’s pricing rule in presence of herd behavior; Section

3 studies the case where the possibility of herd and contrarian behavior occurs for the first

time in the trading history and establishes its existence; Section 4 reconciles our results with

those in AZ and Section 5 concludes by discussing the informational properties of the price in

a market where herding and contrarianism take place compared to a market where everybody

always follows his private information.

2 The Model

There is a finite set of risk neutral players N = {1, 2, ...} who show up randomly and anony-

mously at the post of a perfectly competitive and risk neutral market maker in order to trade

one unit of the only asset available in the economy, asset that can take value V ∈ {0, 1}. Trading

happens sequentially, i.e. only one trader at the time can show up in front of the market maker;

moreover, agents can only trade once in their lifetime. Time is discrete, t ∈ {1, 2, ..., T}, where

T is the time when the asset is liquidated and the capital gain (loss) is realized. At each point

in time, the market maker posts a bid Bt and an ask At price at which he commits to trade.
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Agents, if called to trade, decide whether to buy, sell or not trade at all given those prices. We

indicate a generic action/trade at t with at ∈ {buy, sell, no trade}, while the realized price at

time t is denoted by V m
t .

Agents can be of two types: they are either type I traders with probability (1− λ), or

they are type II traders. Type I traders are informed with probability one and receive an

informative signal σ about the value of the asset, while type II traders are either informed

with probability (1− µ) or noise traders with probability µ. Both types’draws and the draws

determining whether a type II trader is informed or not are independent and independent from

each other. Noise traders trade for liquidity reasons and they are assumed to buy and sell with

equal probability1.

Signals can be either high (H) or low (L) and, conditional on V , they are independent.

The probability that a signal reveals the true state is p > 1
2
, i.e. Pr {σ = H | V = 1} =

Pr {σ = L | V = 0} = p, where the initial common prior is π0 = Pr {V = 1} = 1
2
. We take

the convention according to which informed traders receive their signal only at the moment

in which they are called to trade. This is without loss of generality and it is going to make

the exposition simpler, as it implies that, before being called to trade, traders share the same

valuation for the asset.

Each period the selected trader is assigned a type which can be observed by the other

traders but not by the market maker. It follows that if a trader is observed to be of type I, he

is automatically recognized to be informed, although his signal cannot be observed by anybody

else but himself. If the selected trader is observed to be of type II, his fellow traders cannot

distinguish whether he is informed or a noise trader. The market maker does not know either

the type or the signal of the trader: he just receives the trading order and executes it, while the

other traders observe the realized price. Therefore, traders not only can observe the trading

history that has unfolded up to the point when they are called to trade, but they are also given

a little bit more information compared to the market maker, namely they know the type of the

trader active at each point in time.

1The case where noise traders do not trade is omitted, as by its own definition a noise trader needs to trade
to be such.
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The different possible transactions in every period together with all the possible bid and ask

prices form the space Ω = {buy, sell, no trade}×[0, 1]2, which is identical for all t ∈ {1, 2, ..., T},

so that the space of all possible trading sequences is H =
∏T

t=1 Ωt, where Ωt = Ω. Call F the

algebra on H, and {Ft} the corresponding filtration.

Each trader’s information is composed of three parts: the trading history, a vector of types

of those who traded before him, and his private signal. Formally, indicate with τ t a random

variable that takes value 1 if the trader at t is of type I and 0 if the trader at t is of type II.

Call N = ΠT
t=1 {1, 0}t the history of types and {Tt} the corresponding filtration. Then, each

trader’s information structure at time t is represented by the filtration

{
I it
}

=
{
Ft, Tt, σi

}
,

where agent i’s private information consists in his private signal σi.

We use the convention of indicating with πt−1 the generic posterior probability generated

by trading at t−1 and that is carried over to period t as a prior, so we use the phrase ‘posterior

at t− 1’and ‘prior at t’interchangeably to mean πt−1.

Call πit the posterior probability that, at time t, agent i assigns to the event that the true

value of the asset is 1, where σi = ∅ if i is not trading a t:

πit = Pr
(
V = 1 | at, I it

)
(1)

=
Pr (at | V = 1,Ft, Tt, σi) πit−1

Pr (at | V = 1,Ft, Tt, σi) πit−1 + Pr (at | V = 0,Ft, Tt, σi)
(
1− πit−1

) ,
Correspondingly, the traders’valuation of the asset is

V i
t = E

[
V | at, I it

]
= E

[
V | I it+1

]
= 1× πit + 0×

(
1− πit

)
= πit

It is understood that the optimal decision for an informed trader i called to trade at time t
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is

buy if V i
t > At, (2)

sell if V i
t < Bt. (3)

The market maker is Bayesian and updates his beliefs given the trading history. Call πmt

the probability that, at time t, the market maker assigns to the event that V = 1 given the

trading history:

πmt = Pr (V = 1 | at,Ft)

=
Pr (at | Ft, V = 1)πmt−1

Pr (at | Ft, V = 1)πmt−1 + Pr (at | Ft, V = 0)
(
1− πmt−1

) . (4)

Correspondingly, the market maker’s valuation of the asset is:

V m
t = E [V | at,Ft] = E [V | Ft+1] (5)

= Pr [V = 1 | Ft+1] = πmt .

In setting the price at the beginning of time t, the market maker does not know whether he

will be facing a buy or a sell order. Conditional on a buy or a sell, he will post an ask and a

bid price respectively so that the zero profit condition is satisfied:

At = E [V | Ft, at = buy] = E
[
V | Ft, V i

t > At
]

(6)

Bt = E [V | Ft, at = sell] = E
[
V | Ft, V i

t < Bt

]
. (7)

If at time t the trading order is a buy (sell), then we will refer to At (Bt) as the realized

price and we will indicate it with V m
t , the valuation of the asset by the market maker at the

beginning of time t+ 1.

Definition 1 (Equilibrium). An equilibrium consists of a system of individual trading strate-

gies as in (2) and (3), and a system of prices satisfying (6) and (7).
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Typically, in models where generic agents or traders are the only actors in the economy

(e.g. [2]), the public information is common knowledge and the private signal constitutes the

only private information. In an economy where traders are not alone because of the presence

of a market maker, the distinction between private and public information is not that stark. In

the model presented here there are three levels of knowledge: the public information Ft, which

is common knowledge among the traders and the market maker; the information contained in

(Ft, Tt), which is common knowledge only among traders; finally, the private signal σi, which

we will refer to as private information. As pointed out in the introduction, this information

structure parallels AZ’s one under event uncertainty. For this reason, we adopt the same

definition of herding. Roughly, an agent is herding if he disregards his private signal to trade

in the direction of the market. Furthermore, an agent engages in contrarian behavior if he

disregards his private signal to trade against the market. The definitions are given abstracting

from bid and ask prices.

Definition 2 (Herding - Contrarianism). A trader with signal σi engages in herd behavior

at time t if he buys when V i
0 (σi) < V m

0 < V m
t or if he sells when V i

0 (σi) > V m
0 > V m

t ; and

buying (or selling) is strictly preferred to other actions.

A trader with signal σi engages in contrarian behavior if he buys when V i
0 (σi) < V m

0 and

V m
t < V m

0 , and if he sells when V
i
0 (σi) > V m

0 and V m
t > V m

0 ; and buying buying (or selling) is

strictly preferred to other actions.

As AZ point out, for herd buying to occur three things need to happen: without observing

any trading history, the trader sells at t = 0; the history of trades must be positive and, despite

of the increase in price the trader must be willing to buy after having observed the trading

history. Herding can be interpreted as a situation where the price has not moved as much as

the trader’s valuation after observing a positive trading history. Correspondingly, for contrarian

buying to occur, the trader needs to be wanting to sell at t = 0, and to buy after observing a

trading history that leads to a decrease in the price. Contrarianism is the consequence of the

price reacting too much to the trading history compared to the traders’valuation. In general,
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path-dependent behavior. is triggered when traders who would have followed their signal at

t = 0 observe the unfolding of specific trading history paths and change in their behavior.

2.1 Traders’Updating and Market Maker’s Pricing Rule

Traders’Updating As we use the convention according to which informed traders receive

a signal only when called to trade, before their turn comes all of the traders have the same

valuation of the asset at each point in time, for there is no informational asymmetry among

them. In particular, they all agree on whether the conditions for a path-dependent behavior

have arised. Consider the case of herding (the same reasoning holds for the case of contrarian

behavior). Since traders differ only by their signal, once one of them herds, all of them would

be herding. It follows that a type I trader who is observed herding at t does not release any

information to the other traders, so that V i
t = V i

t−1 for every i. Similarly, if the conditions

for herding are in place and a type II trader is observed, his actions are uninformative as well

because he is either a herding informed trader or a noise trader.

Whenever the traders observe a type I trade and there is no possibility for herd behavior,

then it is as if they could observe each other’s signals. In case they receive a high signal as well

as if they observe a type I buy in absence of herding, traders update their valuation according

to:

V i
t = E

[
V | Ft, Tt, σi = H

]
=

pV i
t

pV i
t + (1− p) (1− V i

t )
. (8)

We can conclude that what matters for the traders’valuation is the number of non-path-

dependent buys and sells. Indicate with ht and lt the numbers of high and low signals implicitly

‘observed’(through the trades of type I traders) up to time t, and with bit and s
i
t the number

of type II buys and sells observed up to time t. Then, for every i,

V i
t =

pht−lt
[
µ
2

+ (1− µ) p
]bit−sit

pht−lt
[
µ
2

+ (1− µ) p
]bit−sit + (1− p)ht−lt

[
µ
2

+ (1− µ) (1− p)
]bit−sit . (9)

Market Maker’s Pricing Rule We have already established that the market maker fixes

bid and ask prices given the history of trades and the eventuality he will face a sell or a buy
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order respectively, as formalized by (4). In general, the market maker sets the prices conditional

on the traders’strategies. Without the possibility of path dependent behavior, the strategy of

an informed trader is to buy upon the reception of a high signal and to sell upon the reception of

a low signal. If there are the conditions for herding, though, an informed trader buys regardless

of his signal.

We say that the market maker is ‘naive’if he sets bid and ask prices assuming that every

informed trader follows his signal even when the conditions for path-dependent behavior are

in place. Correspondingly, we will indicate the bid and ask prices of a naive market maker at

time t with Bnaive
t and Anaivet respectively. These prices satisfy:

Anaivet = E
[
V | Ft, V i

t

(
Ft, Tt, σi = H

)
> Anaivet

]
,

Bnaive
t = E

[
V | Ft, V i

t

(
Ft, Tt, σi = L

)
> Bnaive

t

]
.

On the other hand, a sophisticated market maker is aware of the possibility of herding or

contrarianism. He first checks whether by fixing Bt = Bnaive
t and At = Anaivet traders are going

to engage in path-dependent behavior at those prices and, if this is not the case, those are the

prices he actually posts. However, if he finds that at those prices there is room for herding or

contrarianism, he revises them to take into account this eventuality. In equilibrium, the ask

and the bid price of a sophisticated market maker satisfy

At = E [V | Ft, at = buy] = E
[
V | Ft, V i

t

(
Ft, Tt, σi

)
> At

]
,

Bt = E [V | Ft, at = sell] = E
[
V | Ft, V i

t

(
Ft, Tt, σi

)
< Bt

]
,

where the first equality follows from the assumption of perfect competition and the second

equality from the assumption of rational expectations.

In what follows we are going to focus on the ask price: we will first compute the price posted

by the market maker under the assumption of perfect competition, and then we will check that

this is in fact a rational expectation price.
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Example 1. To fix ideas, consider the very simple case where t = 2 andF3 = {(B, V m
1 ) , (B, V m

2 )}.

Suppose that up until t = 3 no possibility of path-dependency arised so that the prices of a

naive and sophisticated market maker coincide, namely, their valuation is equal to

V m
2 = E [V | F3] =

[
λµ
2

+ (1− λµ) p
]2[

λµ
2

+ (1− λµ) p
]2

+
[
λµ
2

+ (1− λµ) (1− p)
]2 .

The trading history F3 is compatible with four type-signal histories,
{
Gj3
}4
j=1
:

F3︷ ︸︸ ︷
(B,B)

→



((τ = 1, B) , (τ = 1, B))

((τ = 1, B) , (τ = 0, B))

((τ = 0, B) , (τ = 1, B))

((τ = 0, B) , (τ = 0, B))︸ ︷︷ ︸

← G13
← G23
← G33
← G43{

Gj3
}4
j=1

Indicate with E
[
V | Gj3

]
the evaluation of a trader who has observed Gj3. Then,

E
[
V | G13

]
=

p2[
p2 + (1− p)2

] = V i
2 ,

E
[
V | G23

]
= E

[
V | G33

]
=

p
[
µ
2

+ (1− µ) p
]

p
[
µ
2

+ (1− µ) p
]

+ (1− p)
[
µ
2

+ (1− µ) (1− p)
] ,

E
[
V | G43

]
=

[
µ
2

+ (1− µ) p
]2[

µ
2

+ (1− µ) p
]2

+
[
µ
2

+ (1− µ) (1− p)
]2 .

Suppose that p, λ and µ are such that, if G13 is realized and the market maker sets A3 =

Anaive3 , an informed agent selected to trade at t = 3 is going to herd, i.e. a trader with a low

signal is going to buy. Then, in face of a buy at t = 3, a sophisticated market maker needs to
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consider the following scenarios:

(B,B,B)→



G13

↗

→

↘

L

H

noise

G23 ,G33 ,G43
↗

↘

H

noise

For every type-signal path compatible with F3, not only the market maker needs to account

for the possibility that the buy order comes from an informed trader with a high signal or a

noise trader, but also he needs to take into consideration that on G13 an informed trader with a

low signal is going to buy as well. �

We are now going to generalize what illustrated in the previous example to the case where

path-dependent behavior occurs for the first time at a generic t. Set

Σ = {(τ = 0, B) , (τ = 0, S) , (τ = 1, B) , (τ = 1, S)}

to be the type-signal space and ΣT =
∏T

t=1 Σt, where Σt = Σ for every t, the set of all possible

T -dimensional vectors of type-signal sequences. Call G the algebra on ΣT and {Gt} its generic

filtration.

At time t, without the possibility of path-dependent behavior, the trading history Ft is com-

patible with 2t type-signal histories
{
Gjt
}2t
j=1

as shown below, where we indicate with E
[
V | Gjt

]
the valuation of a trader who ‘saw’Gjt at time t.

Ft →



G1t
G2t
...

G2tt

→ E [V | G1t ]

→ E [V | G2t ]
...

→ E
[
V | G2tt

]
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The traders’valuations along the Gjt paths depend on the number and the type of buys and

sells in absence of herd behavior as specified in (9). In particular, the higher the number of

high signals implicitly observed or the number of type II sells, the bigger the gap E
[
V | Gjt

]
−

E [V | Ft] and the easier for path-dependent buying to occur. For any trading history, in

absence of past herding or contrarian possibilities, there is a unique Gj
∗

t such that E
[
V | Gj

∗

t

]
=

maxj E
[
V | Gjt

]
, which is associated with the path where all buys are type I buys and all sells

are type II sells. If path-dependent buying occurs for the first time at t, it will happen on the

path Gj
∗

t : if bt > st we observe herd buying, while if bt < st we observe contrarian buying. It

follows that, in deriving the ask price for the case of first time path-dependent buying, we only

need to consider one possible type-signal path leading to it and the associated value for the

traders ‘on’that path, value that we indicate with V B
t−1 = E

[
V | Gj

∗

t

]
.

Define the measure ηt :
{
Gjt
}
j
→ [0, 1] to be the probability of the type-signal history that

leads to the type-signal set Gjt , given that we reached Ft. The probability of a single type-

signal history vector it is simply the probability of r successes in t Bernoulli trials, where r is

the number of Type I trades in the vector:

Pr
(
Gjt | Ft

)
=

(
t

r

)
[Pr (τ = 0)]t−r [Pr (τ = 1)]r .

Define, at each time t, the probability of the type-signal history corresponding to the maximal

valuation V B
t−1 as

ηBt = Pr
(
Gj

∗

t | Ft
)

=

(
t

bt

)
[Pr (τ = 0)]t−bt [Pr (τ = 1)]bt ,

where [Pr (τ = 0)] = λ and [Pr (τ = 1)] = 1− λ.

Proposition 1 Consider a trading history Ft such that, given p, λ and µ, no path-dependent

behavior could have occurred until time t. Moreover, suppose that, on the maximal type-signal

history Gj
∗

t compatible with Ft, an informed trader buys regardless of his signal. Then, market
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maker’s expected value of the asset given a buy order at t is given by:

E [V | Ft, at = buy] (10)

=

[
λµ
2

+ (1− λµ) p
]
V m
t−1 + ηBt (1− λµ) (1− p)V B

t−1
λµ
2

+ (1− λµ)
[
pV m

t−1 + (1− p)
(
1− V m

t−1
)]

+ ηBt (1− λµ)
[
(1− p)V B

t−1 + p
(
1− V B

t−1
)] .

Proof. See Appendix A.1.

The market maker updates in a ‘normal’way along all the type-signal paths, attributing

a buy (sell) order either to a high (low) signal or to noise, while on the path leading to path-

dependent buying he also updates as if the trader received a low signal, (1− λµ) (1− p)V B
t−1,

times the probability of that path given the trading history.

By construction, (10) satisfies the zero profit condition of the market maker. The next

proposition states that, by setting At = E [V | Ft, at = buy], the market maker cannot prevent

herding or contrarianism from happening, even if he accounts for this possibility in his pricing

rule. This makes At the competitive rational expectation equilibrium price.

Proposition 2 Consider a trading history Ft and a type-signal history Gjt compatible with it

such that V i
t

(
Gjt , σi = L

)
> ANaivet . Then,

V i
t

(
Gjt , σi = L

)
> E [V | Ft, at = buy] .

The converse is also true. Hence, At = E [V | Ft, at = buy] is a rational expectation equilibrium

price.

Proof. See Appendix A.2.

One might be tempted to think that the previous result is driven by the fact that the price

of a sophisticated market maker needs to be lower than the price of a naive market maker

because the former is accounting for both a high and a low signal driving the buy order on

Gj
∗

t . This last intuition is true, but it is only part of the story: a buy order makes Gj
∗

t and

its associated high prior V B
t−1 more likely in the eyes of the market maker, inducing an overall

increase of his valuation. In general we always have that At > Anaivet .
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Proposition 3 Consider a trading history Ft and a type-signal history Gjt compatible with it

such that E
[
V | Gjt , σi = L

]
> ANaivet . Then At > Anaivet . The converse is also true.

Proof. See Appendix A.3.

We have established that E
[
V | Gj

∗

t , σ
i = L

]
> At > Anaivet . This is easily interpreted if we

observe that, by moving from the highest of the valuations to the lowest, we are ‘losing’some-

thing either at the level of information or at the level of rationality. In fact, ifE
[
V | Gj

∗

t , σ
i = L

]
is the valuation of a fully informed and fully rational agent, At is the valuation of a partially

informed and fully rational agent, to conclude with Anaivet , which is the valuation of a partially

informed and partially rational agent.

One consequence of these results is that, at every time period t, investigating the conditions

for path-dependent behavior under the pricing rule of a naive market maker is equivalent to

studying the same market under a sophisticated market maker. This does not mean that using

the pricing rule of a market maker who is always naive is equivalent to using the pricing rule of

a market maker who is not. The simplification is used to check conditions at a specific t, not

as the market maker’s pricing rule over time.

3 Herding and Contrarian Behavior

In this section we study the case of path-dependent behavior occurring for the first time at

t, so when we talk about informed trading up to the herding/contrarian time t, we are assuming

that those traders are following their signal. Typically, in the literature, the reasoning to prove

the existence of herd behavior goes as follows: in finite time any trading history has positive

probability; noise trading can always generate trading histories compatible with herding, hence

the existence of herding. In this model, type-signal realizations are as important for herding

as the trading history they are compatible with. This implies that we will not be able to

appeal to noise trading generating any possible trading history in order to prove the existence

of herding. In fact, noise can generate trading histories whose compatible type-signal histories

meet the conditions for herding, but the very fact of assuming noise to generate those histories
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rules out herding. We can conclude that noise can generate trading histories such that the

market maker attaches a positive probability to the eventuality of herding at some time t, but

if the trading history at t were in fact caused by noise, then herding would not be possible.

However, consistency requires that if the market maker deems some trading history compatible

with herding, then there must exist a type-signal path leading to it. On the other hand, noise

can lead to contrarianism, as during the realization of type II trades the price moves too much

for the amount of information actually present in the market.

The proof of the existence of path-dependent behavior is achieved in two steps: first, in

Theorem 1, we establish conditions on p, λ and µ, involving both the trading history and

the compatible type-signal realizations, under which herd and contrarian buying occur with

probability one; then, in Theorem 2, we prove that trading histories satisfying the conditions

for path-dependency exist with positive probability.

Herd buying is a consequence of the delay, due to the presence of noise, with which the

market maker reacts to a positive history of type I buys. However, traders’ advantage in

observing the nature of trading is not per se suffi cient to generate herd behavior. Consider

1− λµ vis à vis (ht + lt) /t as the level of imbalance between theoretical informed trading and

observed informed trading in the history up to t. Not all observed informed trades exceeding

their theoretical frequency have an impact in causing price rigidity. In fact, if |ht − lt| is

steadily low, although there might be a big discrepancy between observed and theoretical

frequencies of informed trading, type I buys and sells balance out, and the price does not need

to adjust too much (on average) so that price rigidity has no bite. If |ht − lt| gets high, then the

imbalance starts to matter, and a high theoretical noise will cause price rigidity. Everything

else equal, herd buying occurs when a relative high number of type I high signals is realized.

Correspondingly, contrarian buying is a consequence of the excess of informational content the

market maker assigns to a string of type II sells. This is once again due to the possibility for

the traders to observe their colleagues’ types: the share of informed type II traders is only

1− µ, while the market maker believes that any trade has a probability 1− λµ ≥ 1− µ to be

informed. Similarly we have observed for type I trades, what matters is the magnitude of the

20



difference |bit − sit| and not the absolute value of type II sells.

In Theorem 1 we find that it is easier for a well-informed market (i.e. a market where

the quality p of information is high) to engage in path-dependent behavior than it is for a

poorly-informed market. Intuitively, for any level of noise and type composition, the higher

the signal’s precision the bigger the effect of the asymmetry of information between the traders

and the market maker. This is because the difference in informational content of a type I

trade (correspondingly, the difference in the scarcity of information of a type II trade) between

traders and market maker is much higher when the signal is very precise. It follows that a long

enough sequence of type I buys or type II sells is going to make the difference in valuations

V i
t−1 − V m

t−1 increase more the higher the precision.

There is a trade off between building up, between periods 0 and t− 1, a gap V i
t−1−V m

t−1 big

enough for herd or contrarian buying to occur at t and, given prior valuations V i
t−1 and V

m
t−1

having the best conditions for path-dependent buying to occur at t. We have already noticed

that the gap grows bigger the higher the precision. At the same time, though, we would like

valuations not to react too much to the new information at time t: we would like V i
t−1 not

to decrease too much upon the reception of a low signal, and V m
t−1 not to increase too much

upon observing a buy, so that the gap stays positive and an agent receiving a low signal at t

buys. The situation just described, where V i
t−1 − V m

t−1 is preserved at t, is easier to achieve the

lower the precision of the signal. The following theorem states that, in any circumstance, the

trade off is at the advantage of a high precision signal: it is easier for a high precision signal to

accumulate a big enough gap V i
t−1 − V m

t−1 such that at time t it will not be reverted by a low

realization of the signal and a buy order, than to build the gap itself with a low precision signal.

By ‘easier’we mean that it takes a shorter sequence of type I buys or type II sells, and that it

is more likely that any given trading history Ft will result in path-dependent behavior. It also

means that, for a long enough positive (negative) history of type I (II) trades, herd (contrarian)

buying occurs earlier with a high precision signal.

To ease notation, indicate with L the log-likelihood ratio between V = 1 and V = 0 for a

trader upon the (implicit) observation of a high signal, with Lµ the log-likelihood ratio between

21



V = 1 and V = 0 for a trader upon the observation of a type II buy, and with Lλ the log-

likelihood ratio between V = 1 and V = 0 for the market maker upon the reception of a buy

order. Formally,

L =
Pr (V = 1 | at = buy, τ t = 1)

Pr (V = 0 | at = buy, τ t = 1)
,

Lµ =
Pr (V = 1 | at = buy, τ t = 0)

Pr (V = 0 | at = buy, τ t = 0)
,

Lλ =
Pr (V = 1 | at = buy)
Pr (V = 0 | at = buy)

.

It is easy to check that L ≥ Lλ ≥ Lµ for every p, λ and µ.

Theorem 1 (Conditions for Path-Dependent Behavior) Consider a trading history Ft

such that no path-dependent behavior could have occurred before t and such that

ht−1 − lt−1 >
L+ Lλ

L− Lλ +
(
bit−1 − sit−1

) Lλ − Lµ
L− Lλ (11)

Then,

1. If ht−1− lt−1 < 2
λµ
− 1 +

(
bit−1 − sit−1

) (
1
λ
− 1
)
there exists a cutoff level 1

2
< p∗ (λ, µ) < 1

such that for 1 > p > p∗ (λ, µ) path-dependent buying occurs at t;

2. If ht−1− lt−1 ≥ 2
λµ
−1+

(
bit−1 − sit−1

) (
1
λ
− 1
)
path-dependent buying occurs at t for every

value of p ∈
(
1
2
, 1
)
.

Moreover, we have that ∂p∗

∂λ
< 0 if and only if bmt > smt , whereas

∂p∗

∂µ
< 0 for any Ft leading

to path-dependent behavior.

Proof. See Appendix A.4.

As already mentioned, a high p has the effect of increasing the informational asymmetry

between the traders and the market maker. In fact, as L ≥ Lλ, a higher p increases, in presence

of noise, the informational content of type I trades more to the traders than to the market

maker: coeteris paribus, a smaller ht is needed to generate herd buying. In a similar fashion,
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since Lλ ≥ Lµ, a higher p increases the informational content of a type II trade more to the

market maker than to the traders and, coeteris paribus, a smaller st is needed to generate

contrarian buying.

When p = 1, the signal perfectly reveals the value of the asset, which also implies that

signals are all the same. Conditional on V = 1, the gap in valuations between the traders and

the market maker is always (weakly) positive, and informed traders all act alike not because

they are herding but because they all receive the same, perfectly revealing information.

When p = 1
2
the signal is completely uninformative and traders do not learn anything from

it or by observing the other market participants’behavior. The price remains equal to π0 and

since traders are indifferent between buying and selling, we can assume that they simply follow

their signal. However, no learning takes place.

The overall effect of λ is to make the market maker’s pricing mechanism less reactive to

the trading history. Price stickiness is beneficial in order to generate herding, as the gap∣∣V i
t−1 − V m

t−1
∣∣ is caused mainly by type I trade, but it makes the occurrence of contrarianism

more diffi cult, as the gap increases following a preponderance of type II trades. Hence, if the

condition for path-dependent buying (11) is consistent with herding, which requires bmt > smt ,

then we observe that the cut-off p∗ above which a trader buys with a low signal decreases with

λ: even lower levels of the signal precision are compatible with herd behavior. At the same

time, if path dependent buying occurs when bmt < smt , an increase in λ causes the minimum

level of precision p∗ above which contrarianism takes place to increase.

The effect of noise trading is always beneficial to the occurrence of path-dependency: in

case of herding, it dampens the market maker’s price adjustment to type I trading, while in

case of contrarianism it makes the price too reactive to type II trading. It follows that, for any

given trading history satisfying condition (11) an increase in the mass of noise traders increases

the set of values for the signal precision leading to path dependency.

Theorem 2 (Existence of Path-Dependent Behavior) For p ∈
{
1
2
, 1
}
path-dependent

behavior does not occur for any trading history Ft and any λ, µ ∈ [0, 1]. For p ∈
(
1
2
, 1
)
and for

every 1 > λ, µ > 0, price paths with path-dependent behavior occur with positive probability. In
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particular, path-dependency occurs with positive probability for the first time at t whenever Ft

is such that

bmt−1 ≥
L+ Lλ

L− Lλ − s
m
t−1

Lλ − Lµ
L− Lλ . (12)

Proof. See appendix A.5.

For an intuition of Theorem 2, consider the simple case in which the market opens with a

string of bmt−1 type I buys in the first t− 1 periods. Then ht−1 = bmt−1 and if at t an individual

with a low signal is called to trade, he will herd at t for given values of p and µ if bmt−1 ≥[
Lλ + L

]
/
[
L− Lλ

]
. Suppose, instead, that the market opens with a string of smt−1 type II sells

in the first t − 1 periods. Then, an individual with a low signal who is called to trade at t

engages in contrarian buying if smt−1 ≥
[
L+ Lλ

]
/
[
Lλ − Lµ

]
.

Indicate with dxe the smallest integer greater than x. The minimum amount of time that

is needed for the possibility of herd buying to realize given some values of p and µ is equal to

t∗h =

⌈
2L

L− Lλ

⌉
,

whereas, the minimum amount of time that is needed for the possibility of contrarian buying

to realize is equal to

t∗c =

⌈
2Lλ + L− Lµ
Lλ − Lµ

⌉
.

It is easy to show that there exists a threshold λ∗ (p, µ) such that t∗h < (>) t∗c when λ > (<)λ∗.

This is clearly related to the fact that ∂p∗

∂λ
< 0 if and only if bmt > smt and it is a complementary

result: for any level of p and for any given trading history, herding occurs faster when prices

are stickier, while contrarianism occurs faster if, coeteris paribus, prices move ‘too much’.

Concurrently, a low λ facilitates the price alignment to the traders’valuation following a period

of type I trades which slows down the possibility of herding. In both cases, ∂t
∗
h

∂p
< 0 and ∂t∗c

∂p
< 0:

both herding and contrarian behavior are more likely to happen earlier for higher levels of the

signal precision.
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4 Reconciling with Avery and Zemsky

In this section we are going to reconcile the results of Theorem 1 with those already found in the

literature. In particular, we are going to show that, if we take prior evaluations V i
t−1 and V

m
t−1

as given, herding at time t is easier to achieve for low levels of the signal’s precision as stated

in [1]. In this respect, we isolate herding from any other path dependent phenomena, and we

make the assumption that the only path-dependent behavior arising at t at the ask price At is

herd buying. Moreover, in line with AZ’s results, we look for conditions for herding to occur

at a generic time t regardless of whether other path-dependent behaviors could have occurred

already in the trading history. In order to do this, we need to make sure we can still use (10)

as the correct ask price. In fact, when the possibility of herding arises for the first time, the

herding type-signal path and hence the traders’valuation attached to it is unique. However,

when the possibility of herding has already occurred in the past, new herding paths might not

be unique and more than one valuation along those paths might be taken into account when

forming the ask price. The next result establishes that, although herding paths are not unique,

they must share the same valuation of the asset, allowing us to use the same formulation as

in (10) for a generic ask price at t when the only path-dependent behavior we need to worry

about is herding.

To fix ideas, consider again the simple case of F3 = {B,B} leading to the possibility of

herd buying at t = 3. In fact, if the correct type-signal path is G13 , traders do not update their

beliefs at t = 3, as the agent trading is either herding or he is a noise trader. If there is still an

opportunity for herd buying at time four, the traders’prior valuation at t = 4 is the same as

in the previous period. If the correct type-signal path is not G13 , then traders on path G13 and

those emanating from paths G23 and G33 who observed a type I buy at t = 3 will have the same

prior at the beginning of t = 4. With this logic in mind, we can state the next proposition.

Proposition 4 If there is the possibility that agents with prior V i
t−1are herding at t on G

j
t for

some j, then all the herding agents have prior V i
t−1 for every j.

Proof. See Appendix A.6.
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Proposition 4 shows that, at the beginning of t+ 1, following the possibility of herd buying

at t on Gjt , the traders’valuation on the paths emanating from Gjt continues to be V i
t−1: whether

they observed a type I or a type II trader at t they would not update their prior, as all informed

traders would be herding. Moreover, traders on the paths where the number of type I buys

is one less than in Gjt update their valuation upon observing an informed buy t. Then, at the

beginning of t+ 1, this valuation is aligned to the one of traders coming from Gjt , and which is

equal to V i
t−1. Hence, V

i
t−1 remains the highest traders’prior valuation at the beginning of time

t+1. In fact, V i
t−1 remains the highest traders’prior valuation throughout all the periods where

there is the possibility of herd buying, whereas both V m
t−1 and the probability ηt of being on the

type-signal path leading to herding increase. It follows that the formula used for the ask price

for the case of first time herding is in fact a general formula for the ask price at any period, the

only things changing over time being V m
t−1 and ηt, with V

i
t = V i

t−1 whenever ηt−1 > 0.

Having just clarified the way the market maker updates his beliefs given the possible type-

signal scenarios compatible with the trading history, it comes natural to explain here why

informational cascades cannot occur in this market. An informational cascade means that

nobody updates anymore, not even the market maker. The latter does not update when he

thinks that the probability of an action is independent of the state of the world. For instance,

in a cascade the market maker might believe that all the informed traders are buying and all

sell orders come from noise traders. For this to occur, the market maker needs to believe that

on all the type-signal paths informed traders are doing the same thing. However, there will

always be paths were a buy does not mean herding and hence a sell does not mean noise. For

this reason an informational cascade cannot happen.

Using (10), we can state and prove the following theorem, which delivers conditions for herd

buying stated, analogously to AZ, as a function of posterior beliefs.

Theorem 3 Suppose that the trading history at t is such that V i
t−1 > V m

t−1. Then there exist

a cut off level p
(
λ, µ, V i

t−1, V
m
t−1
)
such that traders engage in herd buying if and only if p <

p
(
λ, µ, V i

t−1, V
m
t−1
)
.

Proof. See Appendix A.7.
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The first thing to notice is that we have a cut off level p
(
λ, µ, V i

t−1, V
m
t

)
below which herd

buying occurs. This is because, given the priors V i
t−1 and V

m
t−1 such that V

i
t−1 > V m

t−1, a low

precision of the signal decreases trader’s valuation less upon the reception of a low signal and

make herd buying easier. However, for any Ft such that V i
t−1 > V m

t−1, the difference V
i
t−1−V m

t−1 is

larger the higher the precision p. Consider, in fact, the extreme case where p = 1
2
: the precision

is the lowest possible, however, V i
t−1 = V m

t−1 for every λ, µ and any Ft. When p = 1
2
neither

the market maker nor the traders change their beliefs over time and herding is impossible (no

action is strictly preferred to any other action).

Consider the case where herding occurred for the first time at t. Then V i
t = V i

t−1, while the

market maker’s prior valuation at t + 1 has increased to V m
t = At. Proposition 2 ensures that

V i
t−1 > V m

t , and that at t+ 1 we just need to check whether Anaivet+1 < E
[
V | Gjt+1, σi = L

]
. The

proof of the theorem shows that this condition is equivalent to

∆t+1 (p) = p2
(
V i
t−1 − V m

t

)
(1− λµ) +

(
V i
t−1 − V i

t−1V
m
t

)(
1− λµ

2

)
(13)

+p
λµ

2

(
V i
t−1 − V m

t

)
− 2p

(
V i
t−1 − V m

t V
i
t−1
)(

1− λµ

2

)
> 0.

The theorem guarantees that there exists a cut offp
(
λ, µ, V i

t−1, V
m
t

)
such that, when V i

t−1 > V m
t ,

∆t+1 (p) > 0 for p < p
(
λ, µ, V i

t−1, V
m
t

)
. Moreover, it is easy to check that when V i

t−1 = V m
t ,

p
(
λ, µ, V i

t−1, V
m
t

)
< 1

2
, so condition (13) can never be satisfied when p = 1

2
. If p

(
λ, µ, V i

t−1, V
m
t

)
<

p∗ (λ, µ) herding stops with t. If p
(
λ, µ, V i

t−1, V
m
t

)
> p > p∗ (λ, µ) then herding continues at

t+ 1, and at the beginning of t+ 2 the priors will be V m
t+1 = At+1 and V i

t+1 = V i
t−1. In general,

as ∂p
∂Vmt

< 0, at each herding period the cut off level of precision below which herding continues

decreases.

5 Discussion

Although we have derived all our results for the case of path-dependent buying, it is clear

that the case of path-dependent selling follows symmetrically. In particular, the equivalent of
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condition (11) for path-dependent selling is

lt−1 − ht−1 >
L+ Lλ

L− Lλ +
(
sit−1 − bit−1

) Lλ − Lµ
L− Lλ ,

while the minimum waiting time for the first possibility of herd and contrarian selling are still

equal to t∗h and t
∗
c respectively. Moreover, whether the first instance of herd selling occurs earlier

or later than contrarian selling depends on the same threshold λ∗ (p, µ) found for the case of

buying.

We would like to know how the market price behaves in the long run. In particular, we

are interested in the informational properties of the price in our market, where the private

information about types leads to path dependency, compared to a market where traders always

follow their signal. In this respect, consider a market which is identical to the one we have

been studying so far with the exception that traders cannot observe each other’s types: this is

simply a market à la Glosten and Milgrom, where the intermediate layer of information which

is common knowledge only among traders is shut down. Indeed, in a GM market traders always

follow their signal. We would like to know whether the price in our market is a better or a

worse predictor of the true value of the asset compared to a market à la GM.

For this purpose, indicate with V ar
(
V | V GM

t

)
= πGMt

(
1− πGMt

)
the variance of the value

of the asset after having observed the realized price in a market where traders have no infor-

mation about types, where πGMt is the probability that the true state is V = 1 at t in such a

market. We would like to compare this with V ar (V | V m
t ) = πmt (1− πmt ). It is clear then that

the price is more informative the higher (or lower) is πmt .

Assuming V = 1, πmt > πGMt if and only if the occurrence of path-dependent buying is

more frequent than the occurrence of path-dependent selling. This for two reasons: the first

reason lies in the fact that path-dependent buying ‘hides’low signals, whereas it does not alter

the traders’behavior compared to a GM market when a high signal is realized; moreover, as

we have seen in Proposition 3, the price is more volatile in periods of path-dependent trading
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which reduces2 the conditional volatility of V even further.

When V = 1, the incidence of herd buying is naturally higher than the incidence of herd

selling, whereas the incidence of contrarian selling is higher than the incidence of contrarian

buying. Then, to make path-dependent buying more likely than path-dependent selling, the

share of type II trades λ, which is responsible for contrarianism, needs to be ‘small enough’3.

We can (roughly and perhaps not surprisingly) conclude that V ar (V | V m
t ) is smaller than

V ar
(
V | V GM

t

)
when the share of type I traders is high: then, being able to observe traders’

types is very informative and it leads to herding. By suppressing the opinion of the minority,

given that the majority is correct in the limit, herding pushes the market closer to the true

value of the asset. When the market is mostly composed of type II traders, the conditional

variance of the state given the realized price is lower in a GM-type of market. In fact, the ability

to observe types induces traders to attribute too much noise to the type II trading activity in

a non-neutral way. For instance, when V = 1 more high signals than low signals moving the

type II trading activity are thought to likely be noise, which in turns leads to more frequent

contrarian selling and the hiding of high signals.

A Appendix

A.1 Proof of Proposition 1
Suppose that at t the first possibility of herd/contrarian buying arises on Gj

∗

t , where j
∗ ∈ arg maxj E

i
[
V | Gjt

]
and

{
Gjt
}
j
is the family of type-signal histories at time t compatible with Ft. We know that j∗ is unique,

namely that the argmax is a singleton, Indicate with V it−1 the valuation of the asset by a trader i who has

observed Gj
∗

t . We can write the market maker’s valuation of the asset as the weighted sum of the value of the

asset along the paths
{
Gjt
}
j
with weights given by the probability of each of the paths given the trading history.

2Vives ([6], p.131) proves that V ar (V mt ) = V ar (V )− V ar (V | V mt ).
3Notice that we can have th < tc and at the same time have contrarianism more likely than herding: th and

tc indicate how fast herding and contrarianism can occur, not how likely they are.
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We can then rewrite V mt−1 as

V mt−1 = E [V | Ft] = Pr (V = 1 | Ft) =
Pr (Ft | V = 1) Pr (V = 1)

Pr (Ft)

=

∑
i Pr

(
Git | V = 1

)
Pr (V = 1)

Pr (Ft)

=

∑
i

Pr(V=1|Git)Pr(G
i
t)

Pr(V=1) Pr (V = 1)

Pr (F3)
=

∑
i Pr

(
V = 1 | Git

)
Pr
(
Git
)

Pr (Ft)
(14)

Using the fact that Pr
(
Ft | Git

)
= 1,

Pr
(
Git | Ft

)
Pr (Ft) = Pr

(
Ft | Git

)
Pr
(
Git
)

= Pr
(
Git
)
.

It follows that
Pr
(
Git
)

Pr (Ft)
= Pr

(
Git | Ft

)
(15)

and we can re-write (14) as
V mt−1 =

∑
i

Pr
(
V = 1 | Git

)
Pr
(
Git | Ft

)
. (16)

To ease notation, we use at = B to indicate a buy. Using the law of conditional expectations and Bayes’rule
we can write (4) as

Pr (V = 1 | at = B,Ft) =
Pr (Ft, at = B, V = 1)

Pr (at = B,Ft)
,

=
Pr (at = B,Ft, V = 1)

Pr (at = B,Ft, V = 1) + Pr (at = B,Ft, V = 0)
,

=
Pr (Ft | at = B, V = 1) Pr (at = B, V = 1)

Pr (Ft | at = B, V = 1) Pr (at = B, V = 1) + Pr (Ft | at = B, V = 0) Pr (at, V = 0)
.

Since
{
Git
}
i
‘partitions’Ft,

Pr (V = 1 | at = B,Ft)

=

∑2t

i=1 Pr
(
Git | at = B, V = 1

)
Pr (at = B, V = 1)∑2t

i=1

[
Pr
(
Git | at = B, V = 1

)
Pr (at = B, V = 1) + Pr

(
Git | at = B, V = 0

)
Pr (at = B, V = 0)

] ,
=

∑2t

i=1 Pr
(
at = B | V = 1,Git

)
Pr
(
V = 1 | Git

)
Pr
(
Git
)∑2t

i=1

[
Pr
(
at = B | V = 1,Git

)
Pr
(
V = 1 | Git

)
Pr
(
Git
)

+ Pr
(
at = B | V = 0,Git

)
Pr
(
V = 0 | Git

)
Pr
(
Git
)] .

Dividing both the numerator and the denominator by Pr (Ft) and using (14), the numerator can be written
as

2t∑
i=1

Pr
(
at = B | V = 1,Git

)
Pr
(
V = 1 | Git

)
Pr
(
Git | Ft

)
. (17)

On Gj
∗

t , the probability of a buy order differs from the probability in other type-signal paths, as traders herd
and buy regardless of their signal. In particular,

Pr
(
at = B | V = 1,Git

)
=

[
λµ

2
+ (1− λµ) p

]
for i 6= j∗,

Pr
(
at = B | V = 1,Git

)
=

[
λµ

2
+ (1− λµ) (p+ 1− p)

]
for i = j∗.
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We can the rewrite (17) as

[
λµ

2
+ (1− λµ) p

] 2t∑
i=1

Pr
(
V = 1 | Git

)
Pr
(
Git | Ft

)
︸ ︷︷ ︸

Vmt−1

+ (1− λµ) (1− p) Pr
(
V = 1 | Gj

∗

t

)
︸ ︷︷ ︸

V Bt−1

Pr
(
Gj

∗

t | Ft
)
.

It follows that

Pr (V = 1 | at = B,Ft)

=

[
λµ
2 + (1− λµ) p

]
V mt−1 + (1− λµ) (1− p)V Bt−1ηBt[

λµ
2 + (1− λµ) p

]
V mt−1 + (1− λµ) (1− p)V Bt−1ηBt +

[
λµ
2 + (1− λµ) p

]
V mt−1 + (1− λµ) p

(
1− V Bt−1

)
ηBt

where ηBt = Pr
(
Gj

∗

t | Ft
)
is the probability of the path leading to herding/contrarianism. Q.E.D.

A.2 Proof of Proposition 2
V it

(
Gjt , σi = L

)
> ANaivet is equivalent to

(1− p)V it−1
(1− p)V it−1 + p

(
1− V it−1

) >
[
λµ
2 + (1− λµ) p

]
V mt−1

λµ
2 + (1− λµ)

[
pV mt−1 + (1− p)

(
1− V mt−1

)] ,
rearranging,

(1− p)V it−1
{
λµ

2
+ (1− λµ)

[
pV mt−1 + (1− p)

(
1− V mt−1

)]}
>
[
(1− p)V it−1 + p

(
1− V it−1

)] [λµ
2

+ (1− λµ) p

]
V mt−1.

Adding ηt (1− λµ) (1− p)V it−1
{

(1− p)V it−1 + p
(
1− V it−1

)}
to both sides,

(1− p)V it−1
{
λµ

2
+ (1− λµ)

[
pV mt−1 + (1− p)

(
1− V mt−1

)]
+ ηt (1− λµ)

[
(1− p)V it−1 + p

(
1− V it−1

)]}
>

[
(1− p)V it−1 + p

(
1− V it−1

)]{[λµ
2

+ (1− λµ) p

]
V mt−1 + ηt (1− λµ) (1− p)V it−1

}
.

Rearranging,

(1− p)V it−1
(1− p)V it−1 + p

(
1− V it−1

)
>

[
λµ
2 + (1− λµ) p

]
V mt−1 + ηt (1− λµ) (1− p)V it−1

λµ
2 + (1− λµ)

[
pV mt−1 + (1− p)

(
1− V mt−1

)]
+ ηt (1− λµ)

{
(1− p)V it−1 + p

(
1− V it−1

)} ,
which is equivalent to V it

(
Gjt , σi = L

)
> E [V | Ft, at = buy]. Hence, At = E [V | Ft, at = buy] is a rational

expectations price. Q.E.D.
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A.3 Proof of Proposition 3
At > Anaivet is equivalent to [

λµ
2 + (1− λµ) p

]
V mt−1 + ηt (1− λµ) (1− p)V it−1

λµ
2 + (1− λµ)

[
pV mt−1 + (1− p)

(
1− V mt−1

)]
+ ηt (1− λµ)

{
(1− p)V it−1 + p

(
1− V it−1

)}
>

[
λµ
2 + (1− λµ) p

]
V mt−1

λµ
2 + (1− λµ)

[
pV mt−1 + (1− p)

(
1− V mt−1

)] .
Rearranging, {

λµ

2
+ (1− λµ)

[
pV mt−1 + (1− p)

(
1− V mt−1

)]}
ηt (1− λµ) (1− p)V it−1

> ηt (1− λµ)
{

(1− p)V it−1 + p
(
1− V it−1

)} [λµ
2

+ (1− λµ) p

]
V mt−1,

which is equivalent to

(1− p)V it−1
(1− p)V it−1 + p

(
1− V it−1

) >
[
λµ
2 + (1− λµ) p

]
V mt−1

λµ
2 + (1− λµ)

[
pV mt−1 + (1− p)

(
1− V mt−1

)] ,
which concludes the proof. Q.E.D.

A.4 Proof of Theorem 1
Herd buying occurs when E

[
V | Ft, Tt, σi = L

]
> At. By proposition (2), this is equivalent to E

[
V | Ft, Tt, σi = L

]
>

Anaivet which, in the case of first time herding, can be written as

p(ht−1−lt−1−1)
[
µ
2 + (1− µ) p

]bit−1−sit−1
p(ht−1−lt−1−1)

[
µ
2 + (1− µ) p

]bit−1−sit−1 + (1− p)(ht−1−lt−1−1)
[
µ
2 + (1− µ) (1− p)

]bit−1−sit−1 (18)

>

[
λµ
2 + (1− λµ) p

]bmt−1−smt−1+1
[
λµ
2 + (1− λµ) p

]bmt−1−smt−1+1
+
[
λµ
2 + (1− λµ) (1− p)

]bmt−1−smt−1+1 .
As long as no path-dependent behavior has occurred yet, given the number of and type of buys and sells,
their sequence does not change the market maker’s and traders’ valuations at t. Setting δt = ht−1 − lt−1,
δit = bit−1 − sit−1, δmt = bmt−1 − smt−1 and γt = δt−1

δt+1
and

K (p) =

[µ2 + (1− µ) p
] [

λµ
2 + (1− λµ) (1− p)

]
[
µ
2 + (1− µ) (1− p)

] [
λµ
2 + (1− λµ) p

]


δit
δt+1

,

the previous condition is equivalent to

∆
(
p, λ, µ, δt, δ

i
t

)
= pγt

λµ

2
K (p) + pγt (1− p) (1− λµ)K (p)− (1− p)γt λµ

2
− (1− p)γt (1− λµ) p > 0.

Notice that 0 < K (p) ≤ 1 for every p ∈
[
1
2 , 1
]
. As K

(
1
2

)
= 1, we have that ∆

(
1
2

)
= 0 and ∆ (1) > 0 for
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every λ, µ, δt and δ
i
t. The derivative of ∆ with respect to p is

∆′
(
p, µ, δt, δ

i
t

)
= γtp

γt−1λµ

2
K (p) + pγt

λµ

2
K ′ (p) + γtp

γt−1 (1− p) (1− λµ)K (p)− pγt (1− λµ)K (p)

+pγt (1− p) (1− λµ)K ′ (p) + γt (1− p)γt−1 λµ
2
− (1− p)γt (1− λµ) + γt (1− p)γt−1 (1− λµ) p.

At p = 1
2 this is equal to

∆′
(

1

2
, λ, µ, δt, δ

i
t

)
=

(
1

2

)γt−1{
γt − (1− λµ)− δit

δt + 1
µ (1− λ)

}
,

whose sign behaves as follows:

∆′
(

1

2

)
≥ 0 when δt ≥

2

λµ
− 1 + δit

(
1

λ
− 1

)
,

∆′
(

1

2

)
< 0 when δt <

2

λµ
− 1 + δit

(
1

λ
− 1

)
.

The function ∆
(
p, λ, µ, δt, δ

i
t

)
= 0 implicitly defines δt = ϕt

(
p, λ, µ, δit

)
, everywhere but at

(
1
2 , λ, µ, δ

i
t

)
. We can

find ϕt
(
p, λ, µ, δit

)
explicitly:

ϕt
(
p, λ, µ, δit

)
=
L+ Lλ

L− Lλ + δit
Lλ − Lµ
L− Lλ . (19)

Define l = ∂L/∂p. Differentiating (19) we respect to p we find:

∂ϕt
∂p

=

(
lλ + l

) (
L− Lλ

)
−
(
Lλ + L

) (
l − lλ

)
+ δit

[(
lλ − lµ

) (
L− Lλ

)
−
(
l − lλ

) (
Lλ − Lµ

)]
(L− Lλ)

2

The sing of ∂ϕt∂p depends on the value of δit. In particular,
∂ϕ
∂p is positive if and only if

δit < 2
lLλ − lλL

lλL− lLλ − lµ (L− Lλ) + Lµ (l − lλ)
= D (p, λ, µ) ,

where D (p, λ, µ) < 0 for every p, λ and µ and ∂D(p,λ,µ)
∂p > 0.

Case 1: δt < 2
λµ−1+δit

(
1
λ − 1

)
.When p = 1

2 we found that ∆′
(
1
2

)
< 0 . Since ∆ (1) > 0 for every λ, µ, δt

and δit, we can conclude that ∆
(
p, λ, µ, δt, δ

i
t

)
cuts the x-axis at least once. Suppose that ∆

(
p∗, λ, µ, δt, δ

i
t

)
= 0

and that δit < D (p∗, λ, µ). This means that if we increase p from p∗ to p′ ∈ (p∗, 1], the level of δt needed to
keep ∆ at zero increases. As ∆

(
p, λ, µ, δt, δ

i
t

)
is increasing in δt, this means that, for given δt and δ

i
t, if ∆ is

cutting the x-axis at p∗ it must be doing it from above. However, as ∆ (1) > 0, it must be the case that it is
cutting it again from below. This last fact is not possible, as ∂D(p,λ,µ)

∂p > 0, which implies that for any other

p′ ∈ (p∗, 1], we continue to have δit < D (p′, λ, µ): any crossing of the x-axis as p increases must occur from
above. We conclude that we must have δit > D (p∗, λ, µ), and any crossing of the x-axis for p ∈

(
1
2 , 1
]
must be

occurring once and from below.
Case 2: δt ≥ 2

λµ−1+δit
(
1
λ − 1

)
. As ∆′

(
1
2

)
≥ 0 and ∆ (1) > 0, and given that we have just established that

∆
(
p, µ, λ, δt, δ

i
t

)
can never cross the x-axis from above, it follows that ∆

(
p, µ, λ, δt, δ

i
t

)
> 0 for every p ∈

(
1
2 , 1
]
.

The analysis of the previous two cases shows that path-dependent buying occurs either for high values or
for any value of the signal precision. If the conditions on the type-signal path are satisfied and this type-signal
path leads to bmt > smt (bmt < smt ) we incur in herd (contrarian) buying.

To study the effect of λ on p∗, notice that ∆ > 0 if and only if Γ = (δt − 1)L + δitL
µ − (δmt + 1)Lλ > 0.

As Lλ is decreasing in λ, Γ increases in λ whenever bmt < smt , and it decreases in λ when b
m
t > smt , for every

p ∈
(
1
2 , 1
]
. It follows that ∂p

∗

∂λ > 0 when bmt < smt , and that
∂p∗

∂λ < 0 when bmt > smt . Moreover, when condition
(11) is satisfied, Γ is increasing in µ for every p ∈

(
1
2 , 1
]
. It follows that ∂p

∗

∂µ < 0.
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A.5 Proof of Theorem 2
Consider p = 1

2 . Then both the market maker and the traders’valuations will be equal to
1
2 for every Ft , every

σ and every λ, µ ∈
[
1
2 , 1
]
. Since we have defined herd buying only in the case where buying is strictly preferred

to any other actions, then herding is not possible.
Consider p = 1. Then for any Ft and every λ, µ ∈

[
1
2 , 1
]
, E

[
V | Ft, Tt, σi

]
= 1 if σi = H (and Ft,

E
[
V | Ft, Tt, σi

]
= L if σi = L) and no herding is possible.

For p ∈
(
1
2 , 1
)
, we have from (18) that herd buying occurs at t whenever

ht−1 − lt−1 >
L+ Lλ

L− Lλ +
(
bit−1 − sit−1

) Lλ − Lµ
L− Lλ

whose left hand side is maximized for lt−1 = 0 and whose right hand side it minimized for bit−1 = 0. The
path just described, where all buys are type I and the sells are type II, is a unique type-signal path compatible
with Ft, and the one with the highest possible traders’valuation of the asset associated to it. It follows that
herd buying has positive probability of happening at t whenever

bmt−1 >
L+ Lλ

L− Lλ − s
m
t−1

Lλ − Lµ
L− Lλ (20)

We cannot appeal to noise trading in order to say that a trading history such that the previous inequality is
satisfied has positive probability and this is enough to prove existence of herding because if, in fact, the trading
history were generated by at least one noise buy, then herding could not occur anymore. However, if the market
maker assigns positive probability to herd buying given the trading history, then consistency implies that, from
an ex-ante perspective, this probability must be positive.

A.6 Proof of Proposition 4
The statement is certainly satisfied when the possibility of herding arises for the first time, since all informed

traders agree on E
[
V | Gjt

]
for some Gjt . Suppose that herding, in fact, occurs at t: then traders will not update

and V it = E
[
V | Gjt+1

]
= E

[
V | Gjt

]
for every i. Hence, if there is still a possibility for herding at t+ 1, traders

will all agree on the value V it .
Suppose, instead that we were not on Gjt , that there was no herding at t and that we are in fact on Gkt .

It is obvious that Ei
[
V | Gkt

]
< Ei

[
V | Gjt

]
. If that were not the case and Ei

[
V | Gkt

]
≥ Ei

[
V | Gjt

]
herding

would have occurred on Gkt to start with. If a type I buy occurs at t leading to the possibility of herding at t+ 1

on the k-path, we have Ei
[
V | Gkt , σi = H

]
= Ei

[
V | Gjt

]
= Ei

[
V | Gjt+1

]
, so herding at t+ 1 happens for the

same traders’prior on the Gkt and on the G
j
t paths.

Suppose that herding is again possible at t+ 2 on both Gkt+2 and G
j
t+2 and suppose we are in fact on Glt+2.

It follows that Ei
[
V | Glt

]
< Ei

[
V | Gkt

]
< Ei

[
V | Gjt

]
must hold. If then herding is possible on Glt+2, it must

be the case that Ei
[
V | Glt+2

]
= Ei

[
V | Gkt+2

]
= Ei

[
V | Gkt+1

]
= Ei

[
V | Gjt

]
. And so on. Q.E.D.

A.7 Proof of Theorem 3
Herd buying occurs when E

[
V | Ft, Tt, σi = L

]
> At. This is equivalent to

(1− p)V it−1
(1− p)V it−1 + p

(
1− V it−1

)
>

[
λµ
2 + (1− λµ) p

]
V mt−1 + ηt (1− λµ) (1− p)V it−1

λµ
2 + (1− λµ)

[
pV mt−1 + (1− p)

(
1− V mt−1

)]
+ ηt (1− λµ)

[
(1− p)V it−1 + p

(
1− V it−1

)] .
We can re-write the above inequality as:
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∆t (p) = p2
(
V it−1 − V mt−1

)
(1− λµ) +

(
V it−1 − V it−1V mt−1

)(
1− λµ

2

)
+p

λµ

2

(
V it−1 − V mt−1

)
− 2p

(
V it−1 − V mt−1V it−1

)(
1− λµ

2

)
> 0.

It is easy to check that∆t (1) < 0 and∆t

(
1
2

)
> 0, and that∆′t (p) < 0 for every p ∈

[
1
2 , 1
]
. We can conclude that

there exists a cut-off p
(
V it−1, V

m
t−1, λ, µ

)
such that herd buying occurs whenever p < p

(
V it−1, V

m
t−1, λ, µ

)
.Q.E.D.
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