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Abstract

We consider two players facing identical discrete-time bandit problems
with a safe and a risky arm. In any period, the risky arm yields either a
success or a failure, and the first success reveals the risky arm to dominate
the safe one. When payoffs are public information, the ensuing free-rider
problem is so severe that the equilibrium number of experiments is at most
one plus the number of experiments that a single agent would perform.
When payoffs are private information and players can communicate via
cheap talk, the socially optimal symmetric experimentation profile can be
supported as a perfect Bayesian equilibrium for sufficiently optimistic prior
beliefs. These results generalize to more than two players whenever the
success probability per period is not too high. In particular, this is the
case when successes occur at the jump times of a Poisson process and the
period length is sufficiently small.
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1 Introduction

In many real-life situations, economic agents face a trade-off between exploring
new options and exploiting their knowledge about which option is likely to be
best. A stylized model capturing this feature is a two-armed bandit problem
in which a gambler repeatedly decides which of two different slot machines to
play with the ultimate goal of maximizing his monetary reward. In the simplest
version of this problem, one arm is safe, and the other risky. The expected
payoff per round is known for the safe arm, whereas the consecutive payoffs of
the risky arm are independent draws from some unknown distribution. When
playing the risky arm, the agent learns more about this distribution—knowledge
that is useful for future choices. Starting with Rothschild (1974), variants of this
bandit problem have been studied in a wide variety of economic settings; see
Bergemann and Välimäki (2008) for an overview, and the references cited below
for specific applications.

Often, it is natural to presume that an agent can learn not only from her own
exploration but also from the experiences of others. Experimental consumption
is a case in point. As a stylized example, suppose there are two restaurant goers
with common tastes. They choose between two items on a given menu and both
know the quality of one regular item that has been on the menu for a long time.
The other item is new on the menu; its quality critically depends on how well it
is cooked. The restaurant’s chef is believed to be either good or very good. A
very good chef is able to sometimes prepare the item nearly perfectly, while a
good chef is only able to prepare a dish of average quality. Each diner can now
learn through three channels: he may experiment himself and try the new item,
he may learn from observing what the other chooses, and finally he may ask the
other customer about whether the item was well-prepared whenever she tried it.

To formalize these ideas, we consider a game in which two players face identical
bandit problems with a safe and a risky arm. The payoff distribution of the
risky arm is the same for both players, and can be either “good” or “bad”. In
each period, either type of arm produces a “success” or a “failure”, with the
latter being more likely when the arm is bad. While we are mainly interested
in the problem of strategic experimentation with private payoffs, we begin by
analyzing a benchmark case in which players’ actions and payoffs are publicly
observable, so that even absent any communication all players always share a
common belief about the state of the world. This scenario has been studied
extensively (Bolton and Harris 1999, 2000, Keller, Rady and Cripps 2005, Keller
and Rady 2010). Focusing on continuous-time setups, the literature shows that,
if the players condition their actions on their common belief only, i.e. if they
use Markov perfect strategies, it is impossible to achieve the social optimum.
Furthermore, if a single success on the risky arm fully reveals the good state of
the world, then in any Markov perfect equilibrium players stop experimenting
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once the common belief reaches the single-agent cut-off (Keller, Rady and Cripps
2005).

Maintaining the assumption of fully revealing successes, we introduce a discrete-
time setup and considerably strengthen these existing results by showing that in
any Nash equilibrium, players stop experimenting once the common belief falls
beneath the single-agent cut-off. Furthermore, we prove that the total number of
experiments performed in equilibrium differs from the single-agent optimum by
at most one.

We then turn to the main focus of this paper: strategic experimentation under
private information. Now, the players observe each other’s behavior but not the
realized payoffs. Instead, we allow players to communicate via cheap talk.1 In
such a context, players have three sources of information: their own signals,
their observation of other players, and the cheap-talk messages. We begin by
noting that cheap talk in this environment is very effective. In particular, we
show that for every equilibrium with publicly observable payoffs, there exists an
equilibrium with privately observable payoffs that yields the same distribution
over experimentation paths, that is, sequences of experimentation choices and
results.

The key intuition lies in the fact that truthful communication is easy to sus-
tain. Following a success, a player is certain about the underlying state of the
world and is willing to truthfully communicate her success. Furthermore, if a
player believes that the other player is communicating truthfully, she believes
that the state of the world is good with probability 1 upon hearing that her
fellow player had a success. In this case, she is willing to play the risky arm for-
ever without communicating her future payoffs. But then no player will want to
wrongly announce a success because this will make it impossible to learn anything
from one’s fellow player in the future. Truthful revelation of payoffs, therefore, is
always incentive compatible and any equilibrium outcome with observable payoffs
can be replicated when payoffs are only privately observable.

More surprisingly, we also prove that if the initial belief is sufficiently opti-
mistic, then the socially optimal symmetric strategy profile can be supported as a
perfect Bayesian equilibrium.2 To see the logic behind the equilibrium construc-
tion, suppose that the optimal symmetric solution of the social planner requires
τ > 1 periods of experimentation. Given an initial belief above the cut-off that

1It is very natural to let players communicate in a strategic environment in which there is
only an information externality between them. A similar approach has been taken in collusion
models with imperfect private monitoring—where communication however is illegal in contrast
to the current setting; see e.g. Compte (1998) and Kandori and Matsushima (1998). Athey and
Bagwell (2008) analyze collusive schemes in a framework with publicly observable pricing and
output decisions and cheap-talk announcements of private cost shocks.

2Focussing on the socially optimal symmetric profile entails only a minor efficiency loss. In
fact, we show that in the “unrestricted” social optimum there is at most one period in which a
single player experiments.
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a myopic agent would apply, both players are willing to experiment in the first
period. At a later stage, player i may be tempted to pause while her fellow player
j engages in costly experimentation. Following such a deviation to the safe arm
by player i, however, player j believes that i had a prior success and, hence, j is
willing to use the risky arm forever without communicating.3 This implies that
player i cannot learn anything from player j’s subsequent actions, and thereby
deters free-riding.

While these beliefs are consistent in the sense of sequential equilibrium, one
may not find them fully convincing. This leads us to consider an ad-hoc refine-
ment of pessimistic beliefs. Upon observing a deviation to the safe arm, pes-
simistic beliefs require a player—who is still uncertain as to whether the risky
arm is good—to believe that the other player’s experiments all failed. We prove
that the socially optimal symmetric strategy profile can be supported as a perfect
Bayesian equilibrium with pessimistic beliefs if the players’ initial belief is suffi-
ciently optimistic. To implement the socially optimal symmetric profile, we let
both players experiment for as many rounds τ as the social planner would, and
thereafter communicate whether they have had a success. Intuitively, we exploit
the fact that a player observing only his own experiments learns at a slower rate
than a social planner who observes both players’ experiments. As players learn
only from their own experiments prior to round τ , therefore, they remain above
the myopic cut-off if initially they were sufficiently optimistic.

It is straightforward to embed our discrete-time model in a version of the
continuous-time framework of Keller, Rady and Cripps (2005). The discrete-time
model then corresponds to imposing an equally-spaced grid of times at which
the players can choose actions and send messages. Taking the grid size to zero,
we show that in our construction of perfect Bayesian equilibria with punishment
via beliefs, the restriction to sufficiently optimistic prior beliefs can be dropped.
Given any prior, therefore, a sufficiently small period length will ensure that the
symmetric optimum can be achieved in an equilibrium with private payoffs and
cheap-talk communication, in marked contrast to the case of public payoffs.

The proofs of our main results extend to an arbitrary number of players when-
ever the probability of observing a success in any given period is not too high. In
particular, this is the case when we embed the model in continuous time as de-
scribed and consider sufficiently short periods. Proceeding this way also ensures
that the socially optimal symmetric strategy profile remains a good proxy for the
asymmetric profile that an unrestricted social planner would like to implement.

Besides the papers on strategic experimentation already mentioned, our work
is most closely related to Rosenberg, Solan and Vieille (2007). We follow these
authors in studying a discrete-time experimentation game with bandits whose
risky arm can be of two possible types, and with players who observe each other’s

3This “punishment via beliefs” construction is similar in spirit to the one sustaining collusion
in Blume and Heidhues (2006).
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actions but not each other’s payoffs. There are, however, two important differ-
ences: first, Rosenberg et al. assume the decision to stop experimenting to be
irreversible, whereas we allow the players to freely switch from one arm to the
other and back; second, we permit communication between the players. With
irreversible stopping decisions, players cannot free-ride on an opponent’s exper-
imentation efforts, so if we assumed irreversible decisions in our framework, the
socially optimal symmetric strategy profile could easily be supported as an equi-
librium with truthful communication.4 The ability to switch actions freely thus
enriches the players’ strategic possibilities considerably, and makes it more diffi-
cult to achieve efficiency.

There are a number of papers which introduce private information into a
model of learning where, as in our setting, one type of risky “project” generates
a perfectly informative signal at some random time while the other type never
does.5 Bergemann and Hege (1998, 2005) study the financing of a venture project
in a dynamic agency model where the allocation of funds and the learning process
are subject to moral hazard. Décamps and Mariotti (2004) analyze a duopoly
model of irreversible investment with a learning externality and privately ob-
served investment costs. Acemoglu, Bimpikis and Ozdaglar (2011) investigate
the effect of patents on firms’ irreversible decisions to experiment themselves or
copy a successful rival; they allow for private information about a project’s success
probability, but assume observable actions and outcomes.6 In a model with public
actions, private payoffs and irreversible stopping decisions, Murto and Välimäki
(2011) examine information aggregation through observational learning by a large
number of players. Allowing for reversible experimentation choices, Bonatti and
Hörner (2011) study a game in which the players’ actions are private information
and experimentation outcomes are public, which is precisely the opposite of what
we assume here. Like Rosenberg et al., these authors all preclude communication
between the players.

The remainder of the paper proceeds as follows. Section 2 sets up the model.
Section 3 solves the social planner’s problem. Section 4 studies strategic experi-
mentation, first with public payoffs, then with private payoffs. Section 5 embeds

4In fact, a player who is meant to experiment under this strategy profile faces the same
trade-off as the social planner: if she experiments, she bears the current cost of one experiment
but learns the result of two experiments, while if she refrains from experimenting she obtains the
outside payoff. Crucially, the players have no incentive to misrepresent their experimentation
results when implementing this optimum: above the social planner’s cut-off belief, both players
experiment anyhow and benefit from each other’s experimentation; below the cut-off, each
player wants to cease experimentation even if the other experiments, and therefore has no
incentive to misrepresent the fact that she is below the cut-off.

5With public information, this signal structure can be found in the models of R&D compe-
tition proposed by Malueg and Tsutsui (1997) and Besanko and Wu (2012).

6In their analysis of R&D races as preemption games with private information, Hopenhayn
and Squintani (2011) instead let players’ private information states increase stochastically over
time according to a compound Poisson process.
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the model in a continuous-time framework. Section 6 explains how our results
generalize to more than two players. Section 7 concludes and discusses possible
extensions.

2 The Model

There is an infinite number of periods t = 0, 1, . . . and there are two players
who in each period choose between a safe and a risky action (or “arm”). Before
making this choice, they can costlessly communicate with each other.

More precisely, at the beginning of period t, each player i chooses a cheap-
talk message mi(t) ∈ [0, 1]. Upon having observed the other player’s cheap-talk
message, each player i then chooses an action ki(t) ∈ {R, S}. If ki(t) = S, the
player receives a safe payoff normalized to 0; if ki(t) = R, the player receives a
risky payoff Xi(t) that is either low (XL) or high (XH), where XL < 0 < XH .

The distribution of the risky payoff depends on an unknown state of the world,
which is either good (θ = 1) or bad (θ = 0). Conditional on the state of the world,
payoffs are drawn independently across players and periods. In the good state of
the world, the probability of the high payoff is P(XH |θ = 1) = π > 0; in the bad
state, it is P(XH |θ = 0) = 0. Thus, a single draw of XH proves that the state
of the world is good. This makes our model a discrete-time analog of the model
analyzed in Keller, Rady and Cripps (2005). We write Eθ for the conditional
expectation E[Xi(t)|θ] of the risky payoff in any given period, and assume that
E0 < 0 < E1. We say that a player experiments if he chooses the risky action
while still being uncertain about the true state of the world.

Our primary interest below is in analyzing the game in which actions are
publicly observable but the realizations of the risky payoffs Xi(t) are private
information. When considering this game, we partition the set of private histories
for each player into those after which he has to send a message and those after
which he has to choose an action. Let

O = {(R,XL), (R,XH), (S, 0)}

be the set of possible combinations of a player’s actions and payoffs that can
occur in any period. Then, the set of private message histories of player i at time
t is

Hm
i,t =

 [0, 1]2︸ ︷︷ ︸
messages

× O︸︷︷︸
own action & payoff

× {R,S}︸ ︷︷ ︸
opponent’s action

t

.

Similarly, the set of all private action histories of player i at time t is

Ha
i,t =

 [0, 1]2︸ ︷︷ ︸
messages

t+1

×

 O︸︷︷︸
own action & payoff

× {R, S}︸ ︷︷ ︸
opponent’s action

t

.
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Finally, let Hm
i =

∪∞
t=0H

m
i,t and H

a
i =

∪∞
t=0H

a
i,t.

A pure strategy is a mapping that assigns to each private message history
hmi ∈ Hm

i a message mi(h
m
i ) ∈ [0, 1] and to each private action history hai ∈ Ha

i

an action ki(h
a
i ) ∈ {R, S}. Mixed strategies are defined in the usual way.

Given a probability pi(0) = p that player i initially assigns to the good state
of the world, his expected payoff from a pure-strategy profile is

(1− δ)Ep

[
∞∑
t=0

δt1{ki(ha
i (t))=R}Xi(t)

]
,

where the factor 1−δ serves to express the overall payoff in per-period units. Note
that player j’s strategy only enters through the expectation operator—there is
just an informational externality at play here. We assume throughout that players
start with a common non-degenerate prior: p1(0) = p2(0) ∈ ]0, 1[ .

As a benchmark, we will also study the game with observable payoffs. The
set of all public message histories at time t in this game is

Hm
t =

 [0, 1]2︸ ︷︷ ︸
messages

× O ×O︸ ︷︷ ︸
actions & payoffs

t

,

and the set of all public action histories at time t is

Ha
t =

 [0, 1]2︸ ︷︷ ︸
messages

t+1

×

 O ×O︸ ︷︷ ︸
actions & payoffs

t

.

With Hm =
∪∞

t=0H
m
t and Ha =

∪∞
t=0H

a
t , a pure strategy of player i is now

a mapping that assigns to each public message history hm ∈ Hm a message
mi(h

m) ∈ [0, 1] and to each public action history ha ∈ Ha an action ki(h
a) ∈

{R,S}.7
Unless stated explicitly otherwise, our solution concept is perfect Bayesian

equilibrium. Thus, a strategy profile is an equilibrium if there exists a belief
system such that each player acts optimally after every history given her beliefs
and the other player’s strategy, and each player’s beliefs are updated according to
Bayes’ rule whenever possible. Furthermore, we naturally require player i’s beliefs
about the state of the world to be independent of player j’s actions and messages
whenever every signal that player j observed, was observed by player i as well. In
other words, we do not allow beliefs to change in response to observations which
cannot contain new information.

7While communication obviously has no role in transmitting experimentation results when
payoffs are observable, players could still use their messages to coordinate their continuation
play.
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Whether payoffs are public information or not, we call

He
t = (O ×O)t

the set of all possible experimentation paths at time t, and we let He =
∪∞

t=0H
e
t .

Using the canonical projections Ha
1,t × Ha

2,t → He
t and Ha

t → He
t , we associate

an experimentation path with each pair of private action histories and with each
public action history, respectively. We call two strategy profiles path-equivalent
if they induce the same distribution over the set of all experimentation paths,
He. Note that all path-equivalent strategy profiles give rise to the same payoff
profile. What is more, this equivalence relation also applies in situations where
one strategy profile is from the game with private payoffs, and the other from the
game with public payoffs.

For future reference, we define

pm =
|E0|

|E0|+ E1

.

This is the belief at which the expected current payoff from the risky option just
equals zero, i.e. the safe payoff. A myopic player chooses the risky arm if and
only if his posterior belief exceeds pm. We therefore call pm the myopic cut-off
belief.

Given any probability p ∈ [0, 1] assigned to the good state of the world, the
updated probability after n failed experiments is

B(n, p) =
p(1− π)n

p(1− π)n + 1− p
.

In the planner’s problem as well as in the game with public payoffs, we denote
by p(t) the public belief induced by the history up to time t; that is, p(t) = 1 if
there was a success prior to period t, and p(t) = B(n, p(0)) if there were n failed
experiments prior to period t.

3 The Planner’s Problem

In this section, we discuss the problem of a social planner who chooses a strategy
profile to maximize the average of the two players’ objective functions. The
optimum in this situation will serve as a benchmark for the case that individual
players pursue their goals independently.

Let k = (k1, k2) denote a pure strategy profile in the scenario with private
payoffs. Then the players’ expected average payoff, expressed in per-period units,
is

u(p, k) = (1− δ)Ep

[
1
2

2∑
i=1

∞∑
t=0

δt1{ki(ha
i (t))=R}Xi(t)

]
,
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where p denotes the probability that the planner initially assigns to the good
state.

For the social planner, it can never be strictly beneficial to have players hide
information from each other because she can always choose a strategy profile that
ignores unwanted information. Hence, when discussing the planner’s problem, we
will focus on strategy profiles in which all players truthfully communicate their
past payoffs via their cheap-talk messages. The planner’s problem then becomes a
Markovian decision problem with the posterior belief as the single state variable.

A single success in the past fully reveals that the state of the world is good. It
is then a dominant choice for the planner to have both players take the risky action
in all following periods. Using this fact and restricting attention to symmetric
strategy profiles, we can think of the planner as choosing a natural number τ ≥ 0
such that both players experiment in periods t ≤ τ − 1 and, in case all these
experiments were unsuccessful, no player experiments in periods t ≥ τ . For any
such τ , expected average payoffs are

u(p, τ) = (1− δ)

{
(1− p)

τ−1∑
t=0

δtE0 + p
τ−1∑
t=0

δtE1 + p[1− (1− π)2τ ]
∞∑
t=τ

δtE1

}
= (1− δτ )Ep + δτp[1− (1− π)2τ ]E1

with Ep = pE1 + (1− p)E0. Since the difference

u(p, τ + 1)− u(p, τ) = δτ
{
(δ − 1)(1− p)|E0| − (1− π)2τpE1(δ(1− π)2 − 1))

}
is positive if and only if

τ <
1

2 ln(1− π)

(
ln

δ − 1

δ(1− π)2 − 1
+ ln

1− p

p
+ ln

|E0|
E1

)
,

the value function of the social planner is vsc(p) = u(p, τ sc(p)) with8

τ sc(p) = max

{⌈
1

2 ln(1− π)

(
ln

δ − 1

δ(1− π)2 − 1
+ ln

1− p

p
+ ln

|E0|
E1

)⌉
, 0

}
.

As τ sc(p) = 0 if and only if p lies below the cut-off

psc =
(1− δ)|E0|

(1− δ)(E1 + |E0|) + δ(2− π)πE1

,

we have the following result.

Proposition 1 (Optimal symmetric pure-strategy profile). Among all pure
symmetric strategy profiles, the following maximizes the players’ expected average
payoff: both players always communicate their payoffs truthfully, both choose the
risky arm when p(t) ≥ psc, and both choose the safe arm otherwise.

8The superscript “sc” indicates the “symmetric cooperative” solution. For any real number
x, the ceiling ⌈x⌉ is the smallest integer not less than x.
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If the social planner can use asymmetric strategy profiles, it is optimal for
her to experiment beyond the belief psc. In fact, the expected discounted payoff
from letting one player experiment and stopping all experimentation thereafter,
(1− δ)1

2
Ep + δpπE1, is positive above the cut-off

pc =
(1− δ)|E0|

(1− δ)(E1 + |E0|) + δ2πE1

< psc.

For the full description of the social optimum, we will also need the following
cut-off:

p̃c =
(1− δ)|E0|

(1− δ)(E1 + |E0|) + δ2(1− π)πE1

.

It is straightforward to see that p̃c > psc and that starting at p̃c, one failed
experiment takes the posterior belief below pc.

Proposition 2 (Optimal strategy profile). There exists a socially optimal
strategy profile in which both players always communicate their payoffs truthfully,
both choose the risky arm when p(t) ≥ p̃c, one player chooses the risky arm when
p̃c > p(t) ≥ pc, and both choose the safe arm otherwise. Furthermore, there is at
most one period in which just one player experiments.

Proof. See Appendix.

Restricting the planner to symmetric pure-strategy profiles thus entails only
a small loss in expected average payoffs.

4 Strategic Experimentation

We now turn to the analysis of strategic experimentation, first with public payoffs,
then with private payoffs. While the planner’s solution identified in the previous
section constitutes an upper bound on the average of the two players’ equilibrium
payoffs, the solution to the single-agent bandit problem constitutes a lower bound
on each player’s individual equilibrium payoff. In fact, each player always has the
option to ignore the information contained in the opponent’s actions and payoffs
(if the latter are observable).

A simpler version of the arguments leading up to Proposition 1 establishes
that the single-agent (or “autarky”) solution is given by the cut-off belief

pa =
(1− δ)|E0|

(1− δ)(E1 + |E0|) + δπE1

> psc ,

where—as in the planner’s solution—we adopt the convention that the agent ex-
periments when she is indifferent, that is, when her belief equals pa. We shall
show that with publicly observable payoffs, equilibrium experimentation cannot
go beyond this cut-off. With privately observed payoffs and cheap-talk commu-
nication, by contrast, more efficient equilibria can be played.
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4.1 Public Payoffs

As both players choose the risky arm after any history h(t) ∈ Ha
t in which a

success has been observed, we can restrict our attention to histories with no prior
success. We begin our analysis of equilibrium behavior with the observation that
in every Nash equilibrium of the game with public payoffs, both players choose
the safe arm after any history that takes their common belief below the social
planner’s cut-off pc. To see this, suppose to the contrary that there exists a
Nash equilibrium in which a player experiments at some belief p < pc. From
the analysis of the planner’s solution, we know that the average of the players’
objective functions at p is negative. Consequently there needs to be at least one
player who receives a negative expected payoff. By deviating and always choosing
the safe arm this player can increase her payoffs.

To get a first intuition for why equilibrium experimentation cannot go beyond
the single-agent cut-off, consider pure-strategy Nash equilibria first. Since players
do not experiment below pc, there are only finitely many periods in which a pure-
strategy Nash equilibrium can require players to experiment in the absence of a
prior success. In the last period in which a player is meant to experiment, the
player knows that if she fails, no player will experiment in future. Hence, she
will only be willing to experiment if this is individually optimal, that is, if the
current belief is at least pa. When both players are meant to experiment, the
belief must be above pa because the value of experimenting in this last period is
lower if one’s fellow player also experiments. Hence, in any pure-strategy Nash
equilibrium there can be at most one more experiment than in the single-agent
solution.

Conversely, it cannot be the case that both players permanently stop exper-
imenting at a belief above the single-agent cut-off. The reason is simply that
each player—believing that the other player stopped experimenting—would then
face the single-agent trade-off. The following proposition exploits this logic and
extends it to mixed-strategy Nash equilibria.

We call the number of times a player chooses the risky arm on the path of play
when every experiment is unsuccessful the amount of experimentation performed
by that player. The total amount of experimentation by both players is simply
the sum of the individual amounts. The total amount will typically depend on
the initial belief and, with mixed strategies, may be a random variable.

Proposition 3. Given an initial belief, let the optimal amount of experimentation
in the single-agent problem be K. In any Nash equilibrium of the experimentation
game with public payoffs, the realized total amount of experimentation is K − 1,
K or K + 1.

Proof. First, consider any history of length t for which pa < p(t) < 1. Since
p(t) < 1, no prior experiment has been successful, and since p(t) > pa, fewer than
K experiments have been performed. We now argue that players experiment with
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probability 1 at least one more time following any such history. Let va(p(t)) > 0
be the value of the single-agent problem at the belief p(t). Let τ be the smallest
integer such that δτE1 < va(p(t)), and ψ the probability that there will be at least
one experiment in the periods t, t − 1, . . . , t + τ − 1. The period t continuation
value of each player is then trivially bounded above by (1 − ψ)δτE1 + ψE1. So
ψ cannot be smaller than ψ̄ = [va(p(t)) − δτE1]/[(1 − δτ )E1], because otherwise
it would be profitable for each player to deviate to the single-agent solution. For
n = 1, 2, . . ., the probability that no player experiments in the next nτ periods is
bounded above by (1− ψ̄)n. Letting n→ ∞, we see that there will almost surely
be another experiment on the path of play.

Next, consider a history of length t for which p(t) = p < pa. Let ϕ be
the probability with which player j experiments at time t. Suppose that the
equilibrium requires player i to experiment with positive probability. Then he
can do no better by switching to the strategy of playing safe now and, in case
player j experiments and is unsuccessful, continuing to play safe forever. This
implies

δϕpπE1 ≤ (1− δ)Ep + δ
{
p[π + ϕπ − ϕπ2]E1 +

(
1− p[π + ϕπ − ϕπ2]

)
v
}
,

where π + ϕπ − ϕπ2 is the probability of at least one success, and v player i’s
continuation value after a double failure, that is, a payoff realization X1(t) =
X2(t) = XL. As 0 ≤ v ≤ E1, this in turn requires that

0 ≤ (1− δ)Ep + δ
{
pπE1 + (1− pπ)v

}
.

As p < pa, we have (1−δ)Ep+δpπE1 < 0, and hence v > 0. So some player must
experiment with positive probability in round t+ 1 or later. Repeating this step
until a time t+ τ at which p(t+ τ) < pc in the absence of a success, we obtain a
contradiction because no player can experiment below pc in equilibrium.

Finally, consider a history of length t for which p(t) = pa, meaning that
pa = B(K − 1, p(0)). Then, there can be no, one, or two further experiments on
the path of play, which completes the proof.

Keller, Rady and Cripps (2005) establish in a continuous-time setup that
with fully revealing successes on the risky arm, the amount of experimentation
in any Markov perfect equilibrium is limited by the single-agent amount. In our
discrete-time setup, we can drop the assumption of Markov strategies and, with
a minor qualification due to discrete rather than continuous time, establish that
their finding extends to all Nash equilibria of the game with public payoffs.9

From now on, whenever we speak of an equilibrium, we mean a perfect
Bayesian equilibrium that satisfies the restriction on beliefs set out in Section
2. Since such equilibria are also Nash equilibria, Proposition 3 immediately im-
plies

9Note that a realized amount of experimentation equal to K − 1 is non-generic because it
requires the initial belief to lie in a countable subset of the unit interval.

11



Corollary 1. Whenever the total amount of experimentation in the planner’s
optimal (or optimal symmetric) strategy profile exceeds the single-agent amount
by more than 1, it cannot be implemented in an equilibrium of the experimentation
game with observable payoffs.

Above, we have fully characterized the equilibria with public payoffs in terms
of the total amount of experimentation that is carried out on the path of play.
These, equilibria, however, may differ in other dimensions such as when players
experiment. For example, just above pa players may engage in a war of attrition
as to who has to carry out the final experiment. Thus, there may be periods in
which no player experiments. Furthermore, players may use their communication
to coordinate on whether a given player is meant to experiment in a given period.
Below, we nevertheless show that for every equilibrium with observable payoffs
we can find a path-equivalent equilibrium in the game with unobservable payoffs,
that is, an equilibrium which induces the same distribution over experimenta-
tion paths. Moreover, we show that under certain conditions, higher amounts of
experimentation can be supported when payoffs are unobservable.

For future reference, it is useful to establish the existence of a symmetric
Markov perfect equilibrium for the game with observable payoffs. Since in all
equilibria the total amount of experimentation is bounded by K + 1, we can
restrict attention to finitely many beliefs when constructing equilibria. Using
these finitely many beliefs as states (and thinking of the lowest belief as an ab-
sorbing state), it follows that there exist only finitely many pure Markov perfect
strategies. We construct an auxiliary game in which players’ finite action set cor-
responds to the set of pure Markov perfect strategies and payoffs are defined as
in the original game. This is a symmetric finite game and the existence of a sym-
metric (possibly mixed-strategy) equilibrium in this auxiliary game follows from
Nash (1951). The equilibrium in the auxiliary game corresponds to a symmetric
Markov perfect equilibrium in the original game.

Below, we use the following bound on the payoffs of any symmetric Markov
perfect equilibrium of the game with observable payoffs to construct punishment
equilibria in the game with unobservable payoffs.

Lemma 1. When payoffs are observable, the players’ expected total payoff in any
symmetric Markov perfect equilibrium is lower than the payoff from any strategy
profile which has both players experiment with probability 1 if and only if p(t) ≥ pa.

Proof. See Appendix.

To see why this holds, fix a symmetric Markov perfect equilibrium. It follows
from Proposition 3 that both players experiment with strictly positive probability
at all beliefs above pa. Since player i at least weakly prefers to experiment, his
payoff remains unchanged if we modify the strategy profile so that he experiments
with probability 1 at all beliefs above pa. The crucial step is to show that if we,
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in addition, change the strategy profile so that player j also experiments for sure
at all these beliefs, player i’s payoff weakly increases. This is obvious in the final
period as player i now benefits from the greater information externality. The
proof uses backward induction to establish this result in earlier periods as well.

4.2 Private Payoffs

We begin by noting that truthful communication can be sustained with privately
observed, fully revealing payoffs. Suppose that after every period in which a player
experimented, she announces a first success by sending the messagemi(t) = 1 and
randomizes uniformly over all other messages otherwise. Furthermore, after the
first success has been announced and both players know that the state of the world
is good, suppose there are no meaningful messages any more, that is, both players
always “babble” by randomizing uniformly over the interval [0, 1]. Similarly, a
player who did not experiment randomizes uniformly over [0, 1]. Finally, on and
off the equilibrium path, players believe that past communication by the other
player was truthful. Intuitively, we are then back in the case of public payoffs.10

The key observation now is that if players anticipate this communication strat-
egy, truthful communication is incentive compatible. Following a first success on
player i’s risky arm, player i knows the state of the world and hence is indifferent
as to what player j believes. So truthfully announcing a success is optimal for
player i following a success of his own. After such an announcement, player j
believes with certainty that the state of world is good, and hence will play risky
in all future periods irrespectively of what player i does after the announcement.
If player i incorrectly announces a success, he cannot infer anything from player
j’s future behavior, so he is at last weakly better off telling the truth. We thus
have the following result.

Proposition 4. For every equilibrium of the game with public payoffs, there exists
a path-equivalent equilibrium of the game with private payoffs.

This shows that private information does not hurt players. Our next result es-
tablishes that players can often do better when payoffs are private. We construct
equilibria in which players perform the optimal symmetric amount of experimen-
tation whereafter, on the path of play, they once communicate and announce
whether they had a prior success. If so, both players keep experimenting forever;
otherwise, both stop experimenting. We punish early deviations (after the initial
period) through beliefs: if a player refrains from experimenting at a time when
the socially optimal symmetric strategy profile requires her to experiment, then

10One caveat here is that players may use the messages to create a controlled joint lottery
to coordinate continuation play in the equilibrium with observable payoffs. But then we can
encode the original message by using the odd digits only, while using the even digits to send
the messages constructed above.
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the other player reacts to this out-of-equilibrium event by assigning probability 1
to the good state of the world. Given the restriction on beliefs that we adopted in
Section 2, our equilibrium concept does not allow us to assign the same optimistic
beliefs to a player who observes a deviation at t = 0: as a player deviating in the
first round cannot have seen a prior success, the other player cannot draw any
inference on the state of the world from this deviation, and thus is not allowed
to update her beliefs.11

Proposition 5. There exists a threshold p† < pm such that for all initial beliefs
p ≥ p†, the experimentation game with private payoffs admits an equilibrium that
is path-equivalent to the socially optimal symmetric pure-strategy profile.

Proof. First, we specify the players’ strategies, beginning with the behavior after
all message histories and then turning to action histories. Play following any
history in which at least one player did not experiment in period 0 is specified
separately below; following such a history, we will prescribe players to play an
equilibrium with truthful communication. For brevity, we do not explicitly specify
behavior following observable simultaneous deviations as this is irrelevant for the
incentives to deviate unilaterally.

If both players used the risky arm in all periods t ≤ τ sc − 1, they both report
truthfully in period τ sc; following any other message history in which both players
used the risky arm in period 0, they send babbling messages. Both players use the
risky arm in any period t ≤ τ sc − 1 as long as both did so in all prior periods. If
both players used the risky arm in all periods t ≤ τ sc− 1 and player j announced
a success in period τ sc, player i uses the risky arm in all periods t ≥ τ sc. If
both players used the risky arm in all periods t ≤ τ sc − 1 and neither announced
a success in period τ sc, player i uses the risky arm in period t′ ≥ τ sc if and
only if he had a prior success himself or player j used the risky arm in a period
t′′ ∈ {τ sc, . . . , t′ − 1} when neither player did so in periods t = τ sc, . . . , t′′ − 1.
We are left to specify behavior for all action histories in which at least one player
used the safe arm in any period t ≤ τ sc−1. If the first unilateral deviation occurs
in a period t′ ∈ {1, . . . , τ sc − 1}, and player j is the one who deviates, then in
all periods t ≥ t′ + 1 player i uses the risky arm and player j plays the autarky
strategy (conditioning her behavior on her own signals only). Recall that the case
of a first deviation in period t = 0 is handled separately below.

Second, we specify the players’ beliefs if there was no deviation in period
t = 0. It is convenient to specify beliefs about whether the state of the world is
good (rather than the usual beliefs about nodes in an information set).12 Both
players use Bayesian updating on the path of play; in particular, if both players

11We could circumvent this constraint by letting the players observe one draw from the
distribution of risky payoffs before the game starts. The following proposition would then hold
with p† = psc.

12A probability distribution about possible nodes in a player’s information set (where a node
can be identified through whether and when the other player had a success when experiment-
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used the risky arm in all periods t ≤ τ sc − 1, both update under the assumption
that the opponent reports truthfully in period τ sc. If the first unilateral deviation
occurs in a period t′ ∈ {1, . . . , τ sc−1}, and player j is the one who deviates, then
player i switches irrevocably to the belief that the state of the world is good with
probability 1, while player j continues to apply Bayes’ rule, conditioning on her
own observations only. If the first unilateral deviation occurs in a period t ≥ τ sc

by player j after a success was announced by player j, player i ignores this as well
as all possible future deviations of player j and continues to believe that the state
of the world is good with probability 1. If the first unilateral deviation occurs in
a period t ≥ τ sc by player j after a success was announced by player i but not
player j, player i ignores this deviation as well as all possible future deviations
of player j and continues to apply Bayes’ rule in every period based on his own
experimentation results only. If the first unilateral deviation occurs in a period
t ≥ τ sc by player j after no success was announced, player i switches irrevocably
to the belief that the state of the world is good with probability 1 while player j
updates using only her own experimentation results from thereon.

Third, we prove sequential rationality if there was no deviation in period
t = 0. Any player who had a success in a period t ≤ τ sc − 1 is willing to
announce it truthfully in round τ sc; given that the other player believes the
announcement to be truthful (i.e. has the belief that the state of the world is
good with probability 1), it is optimal for her to choose the risky action forever.
If the first unilateral deviation occurs in a period t′ ∈ {1, . . . , τ sc− 1}, and player
j is the one who deviates, then player i holds the belief that the state of the
world is good and hence it is optimal for him to choose the risky action in all
subsequent periods. As a consequence, player j ceases to learn anything from
observing i’s future behavior, hence finds herself in an autarky situation. It is
optimal for her, therefore, to play the autarky strategy, and beliefs are consistent
with this. If player j does not deviate, she obtains the value of the symmetric
cooperative solution. Since the latter is always weakly larger than the autarky
value, the deviation is unprofitable. We are left to consider behavior following
histories in which the first deviation occurred in a period t ≥ τ sc. If both players
used the risky arm in all periods t ≤ τ sc−1, and if player i had a success or player
j announced a success, it is obviously optimal for player i to always choose the
risky action since he assigns probability 1 to the good state of the world. Exactly
the same holds if both players used the risky arm in all periods t ≤ τ sc − 1,
neither announced a success and player j was the first to deviate by using the
risky instead of the safe arm. If both players used the risky arm in all periods
t ≤ τ sc − 1 and player j neither announced a success nor was the first to deviate

ing in addition to one’s own observations), can be constructed in the obvious way from the
probability that the state of the world is good together with how often the other player used
the risky arm; this probability distribution is unique but for the fact that we can arbitrarily
prescribe when another player had a success following an out-of-equilibrium observation.
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to the safe arm in a period t ≥ τ sc, player i’s belief is below psc if he had no prior
success himself, and hence it is optimal for him to use the safe arm.

Fourth, we construct a continuation equilibrium that deters deviations at
t = 0. Fix a symmetric Markov perfect equilibrium of the game with observable
payoffs starting with the common prior B(1, p). By Lemma 1, the corresponding
equilibrium value is bounded above by ṽ(B(1, p)), the value from both players
always using the risky arm until their belief falls below the autarky cut-off pa.
Consider an equilibrium of the game with private payoffs that is path-equivalent
to the Markov perfect equilibrium; such an equilibrium exists by Proposition
4. Following a unilateral deviation by player j in t = 0, we require player i to
communicate truthfully whether he had a success; by the argument underlying
Proposition 4, this is incentive compatible. If he announces a failure, both players’
continuation play corresponds to the selected equilibrium of the game with private
payoffs.

So, if player j experiments at t = 0, her expected overall payoff is

vsc(p) = (1− δ)Ep + δ
{
p[1− (1− π)2]E1 +

(
1− p[1− (1− π)2]

)
vsc(B(2, p))

}︸ ︷︷ ︸
(I)

;

if she deviates, this payoff is no more than

δ {pπE1 + (1− pπ) ṽ(B(1, p))}︸ ︷︷ ︸
(II)

.

By construction, ṽ(B(1, p)) ≤ vsc(B(1, p)). Being the upper envelope of linear
functions, vsc is convex. This implies that vsc(B(1, p)) ≤ B(1, p)πE1 + (1 −
B(1, p)π) vsc(B(2, p)). As the points (B(1, p), vsc(B(1, p))), (B(2, p), vsc(B(2, p)))
and (1, E1) do not lie on a line, this inequality is in fact strict. Using this and
the fact that (1 − pπ)B(1, p) = p(1 − π), one has (I) > (II). As Ep ≥ 0 for
p ≥ pm, moreover, we see by continuity that there exists a belief p† < pm such
that deviating at t = 0 is suboptimal.

In our equilibrium construction, deviations in the initial period are punished
through a continuation equilibrium that is path-equivalent to a symmetric Markov
perfect equilibrium. Of course, there may be harsher punishments for a player
who deviates in the first period. For example, we could search for an equilibrium
of the game with observable payoffs that minimizes the payoff of a given player.
By playing a continuation equilibrium that is path-equivalent to this asymmetric
equilibrium, we would punish initial deviations more severely and hence increase
the range of initial beliefs for which the symmetric social optimal strategy profile
can be sustained. In the above proposition as well as in Proposition 6 below, we
refrain from doing so for ease of exposition.

The belief following a deviation in an early (but not the initial) round may
seem somewhat unusual in the above equilibrium. Intuitively, upon observing

16



such a deviation, player i reasons as follows: “Clearly, player j was not careful
and made a mistake. She must already know that the state of the world is good
to be so careless.” While this reasoning is compatible with the logic of sequential
equilibrium, the equilibrium construction hinges crucially on this particular choice
of out-of-equilibrium beliefs. Our next aim is therefore to show that private
payoffs can lead to a more efficient outcome even under the stringent requirement
that whenever a player—who is still uncertain as to whether the state of the world
is good—observes a deviation to the safe action, her beliefs become as pessimistic
as possible.

Definition 1 (Pessimistic Beliefs). We say that an equilibrium of the game with
private payoffs has pessimistic beliefs if a player who observes a deviation to the
safe action and does not yet assign probability 1 to the good state of the world,
believes that the deviating player had only failures before the deviation.

Recall from Proposition 4 that for any equilibrium with observable payoffs,
we can construct an equilibrium with private payoffs that induces the same distri-
bution over experimentation paths. In this equilibrium, players truthfully com-
municate after every period in which they experimented until a first success is
announced.

Lemma 2. The equilibrium constructed in Proposition 4 has pessimistic beliefs.

Proof. If player i had a success, he believes that the state of the world is good with
probability 1. Similarly, once player j has announced a success, the equilibrium
is such that player i believes with probability 1 that there has been a success, and
assigns probability 1 to the good state of world from then on. Consider a history,
therefore, in which neither player j announced a success nor player i observed
a success himself. As player i believes that player j communicated truthfully in
the past, he believes that all of player j’s experiments have been failures. So his
beliefs are indeed pessimistic.

Our next proposition shows that even if we restrict ourselves to pessimistic
beliefs, we can find equilibria that implement the optimal symmetric strategy
profile for sufficiently optimistic starting beliefs. To see the intuition, recall that
in the symmetric optimum, the planner updates her beliefs on the basis of two
experiments in every period until the belief falls below psc. Absent meaningful
communication, however, each player updates her belief using only the result of
her own experimentation, and hence beliefs decrease at a slower rate. The key
observation is that for high enough starting beliefs, this slower learning implies
that the social planner reaches psc before players who do not communicate reach
pm. Above pm, players myopically prefer to experiment, and in the equilibrium
that we will construct, they do so up to the period in which a social planner
who has not observed a success would cease experimentation. At that point in
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time, players truthfully communicate and continue experimenting only if at least
one player had a prior success. A player who deviates by not experimenting
prior to this point in time reduces her myopic payoff and induces a symmetric
continuation equilibrium in which payoffs are weakly lower than in the optimal
symmetric strategy profile; thus, such a deviation is unprofitable.

Let n‡ = min{n ∈ N : B(n, pm) < psc}. This is the minimal number of failed
experiments that moves a player’s belief from pm to below psc. Next, define p‡

implicitly by pm = B(n‡, p‡), so that B(2n‡, p‡) < psc ≤ B(2n‡−1, p‡). Intuitively,
consider the case where both players always experiment and all experiments fail.
Then, for initial beliefs p ≥ p‡, a social planner who observes both players’ failures
reaches psc before a player who only observes her own failures reaches pm.

Proposition 6. For all initial beliefs p ≥ p‡, the experimentation game with
private payoffs has an equilibrium with pessimistic beliefs that is path-equivalent
to the socially optimal symmetric pure-strategy profile.

Proof. Recall that there exists a symmetric Markov perfect equilibrium in the
case of observable payoffs. Choose such a symmetric Markov perfect equilibrium
for any starting belief p. By Proposition 4 there exists an equilibrium with private
payoffs that is path-equivalent. Denote this equilibrium by σ(p).

We are now ready to specify strategies.13 In all periods t ≤ n‡−1, both players
babble and use the risky arm provided no player chose the safe arm in a previous
period t′ ≤ t − 1. If a single player deviated and chose the safe arm in a period
τ ≤ n‡−1, the players truthfully communicate at the beginning of period τ+1. If
player i communicated truthfully in period τ+1, he plays the strategy prescribed
by σ(q) in periods t ≥ τ + 1, where q = B(2τ − 1, p) if no player announced a
success, and q = 1 otherwise. If player i did not communicate truthfully in period
τ + 1, he either had a success he did not announce or he incorrectly announced
a success he did not have. In the former case, he uses the risky arm in periods
t ≥ τ + 1; in the latter case, he plays the autarky strategy.

We are left to specify strategies in case both players used the risky arm in
all periods t ≤ n‡ − 1. In this case, both players truthfully announce at the
beginning of period n‡ whether they had a success in any of the previous rounds;
and independent of how the play proceeds from period n‡ onwards, players babble
in every period t > n‡. If player j announced a success, or if player i observed
a success himself in any prior period, player i uses the risky arm in all periods
t ≥ n‡. If neither announced a success in period n‡, player i uses the risky arm in
period t′ ≥ τ sc if and only if he had a prior success himself or player j used the
risky arm in a period t′′ ∈ {n‡, . . . , t′ − 1} when neither player did so in periods
t = n‡, . . . , t′′ − 1.

Next, we specify beliefs about the state of the world. Any player who had a
prior success believes the state of the world to be good with probability 1. In any

13We follow the usual convention again and ignore simultaneous deviations.
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period t ≤ n‡ − 1 such that both players used the risky arm in all periods t′ ≤ t,
the belief of player i is pi(t) = B(t− 1, p) if all his experiments failed. If a player
deviated to the safe arm in a period τ ≤ n‡ − 1, she believes the state of the
world is good with probability 1 if the other player announces a success in period
τ +1 (or she had a prior success herself); otherwise her belief is q = B(2τ − 1, p).
Thereafter, beliefs are as in the equilibrium σ(q).

Now suppose that both players used the risky arm in all periods t ≤ n‡ − 1.
Each player believes the other’s message in period n‡ to be truthful, and all
subsequent messages to be uninformative. If player i deviates in period n‡ by
incorrectly announcing a success he did not have, and player j does not announce
a success in period n‡, then player i’s belief in period τ ≥ n‡ equals 1 if he
experiences a success in one of the rounds t = n‡, . . . , τ − 1, and equals B(2n‡ +
n, p) if he carries out n experiments in periods t = n‡, . . . , τ − 1 and they all fail.
If player j is the first to deviate in period t′ ≥ n‡ after neither player announced
a success, player i believes the state of the world to be good with probability 1.
If player i is the first to deviate in period t′ ≥ n‡ after neither player announced
a success, player i’s belief in round τ ≥ t′ +1 equals 1 if he experiences a success
in one of the rounds t = t′, . . . , τ − 1, and equals B(2n‡ + n, p) if he carries out
n experiments in periods t = t′, . . . , τ − 1 and they all fail.

As the beliefs that we have specified follow Bayes’ rule whenever possible, it
remains to show sequential rationality. Each player uses the risky arm whenever
he assigns probability 1 to the good state of the world, which is clearly optimal.
If a single player deviates to the safe arm in a period τ ≤ n‡ − 1, it is optimal for
both players to communicate truthfully at the beginning of period τ + 1 by the
argument underlying Proposition 4. If player i does communicate truthfully in
period τ + 1, he believes with probability 1 that player j plays according to σ(q)
with q specified above. As σ(q) constitutes an equilibrium, it is optimal for player
i to play according to σ(q) as well. If player i announces a success in period τ +1
that he did not have, player j uses the risky arm forever, so player i finds himself
in an autarky situation and optimally plays the autarky strategy. If player i does
not announce a success he had, it is clearly optimal for him to use the risky arm
forever. If player i is the first to deviate in a period τ ≤ n‡ − 1, his belief about
the state of the world is weakly above pm; by the same argument as the one used
in the proof of Proposition 5 for deviations in period t = 0, such a deviation is
unprofitable.

We are left to rule out deviations by player i in a period t′ ≥ n‡ following
a history in which both players used the risky arm in all periods t ≤ n‡ − 1,
player i had no success himself, neither player announced a success, and player
j was not the first to deviate in a period t′′ ∈ {n‡, . . . , t′ − 1}. In this case,
player i’s belief is below psc. If player i was the first to deviate in a period
t′′ ∈ {n‡, . . . , t′−1}, player j uses the risky arm in all future periods independent
of her experimentation results. The same holds if there was no deviation in any
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round t ≤ t′ − 1 and player i deviates to the risky arm in round t′. If there was
no prior deviation and player i uses the safe arm in round t′, finally, he expects
player j to use the safe arm in all future periods. Whatever he does in round t′,
therefore, player i cannot learn anything from player j’s future behavior and so
finds himself in an autarky situation. As psc < pa, it is thus optimal for player i
to use the safe arm.

Some straightforward computations show that

p‡ ≥ (1− π)[1− δ + δ(2− π)π]|E0|
(1− π)[1− δ + δ(2− π)π]|E0|+ (1− δ)E1

> pm

and

p‡ <
[1− δ + δ(2− π)π]|E0|

[1− δ + δ(2− π)π]|E0|+ (1− δ)E1

.

Since we could again use harsher punishments after early deviations, the interval
[p‡, 1] constitutes just part of the set of initial beliefs for which the outcome
of the socially optimal symmetric pure-strategy profile can be sustained in an
equilibrium with pessimistic beliefs.

For a range of initial beliefs below p‡, the same logic as in Proposition 6 allows
us to construct equilibria in which the players may not reach the symmetric social
optimum but perform more experiments, and are better off, than in any equilib-
rium with observable payoffs.14 Suppose that B(2, pa) > psc, so that by Corollary
1 the efficient amount of experimentation cannot be reached with observable pay-
offs. Let n′ = min{n ∈ N : B(n, pm) < pa}. This is the minimal number of failed
experiments that moves a player’s belief from pm to below pa. Next, define p′ < p‡

implicitly by pm = B(n′+2, p′), so that B(2n′+4, p′) = B(n′+2, pm) < B(2, pa).
Then, starting from a prior p ≥ p′ and defining strategies as in Proposition 6 but
with n‡ replaced by n′, we obtain an equilibrium of the game with private payoffs
in which both players experiment some way below pa. In view of the similarity
with the above construction, we omit the details.

5 A Continuous-Time Limit

We now embed our discrete-time model in a continuous-time framework that
coincides (up to a normalization of the safe payoff to zero) with the two-player
version of the setup studied by Keller, Rady and Cripps (2005).

Let time be continuous and suppose that operating the risky arm comes at
a flow cost of s > 0 per unit of time. In the good state (θ = 1), the risky arm
yields lump-sum payoffs which arrive at the jump times of a Poisson process with

14We established in the social planner’s problem that the players’ average payoff when both
experiment for τ periods is single-peaked in τ . Here, we are below τ sc, so the average payoff is
still increasing in the number of experiments.

20



intensity λ > 0. These lump-sums are independent draws from a time-invariant
distribution with known mean h > 0, and the Poisson processes in question are
independent across the two players. In the bad state (θ = 0), the risky arm never
generates a lump-sum payoff. The safe arm does not produce any such payoffs
either, but is free to use.

Given the common discount rate r > 0, a player’s payoff increment from using
a bad risky arm for a length of time ∆ > 0 is∫ ∆

0

r e−r t (−s) dt =
(
1− e−r∆

)
(−s).

The expected discounted payoff increment from a good risky arm is

E
[∫ ∆

0

r e−r t (h dNt − s dt)

]
=

∫ ∆

0

r e−r t (λh− s) dt =
(
1− e−r∆

)
(λh− s);

here Nt is a standard Poisson process with intensity λ, and the first equality
follows from the fact that Nt − λt is a martingale. We assume λh > s so that
a good risky arm dominates the safe arm. Finally, the probability of observing
at least one lump-sum on a good risky arm during a time interval of length ∆ is
1− e−λ∆.

If we let the players adjust their actions only at the times t = 0,∆, 2∆, . . . for
some fixed ∆ > 0, we are back in our discrete-time framework with π = 1−e−λ∆,
E0 = −s, E1 = λh − s, and δ = e−r∆. Letting ∆ → 0, we can thus study the
impact of vanishing time lags on the results we derived above.

First, we note that psc and pc converge in a monotonically decreasing fashion
to one and the same limit as ∆ vanishes; this limit is the efficient two-player
cut-off from Keller, Rady and Cripps (2005),

p∗2 =
r|E0|

r(E1 + |E0|) + 2λE1

.

Thus, the difference between the socially optimal symmetric strategy profile and
its unrestricted counterpart (which is small to start with by Proposition 2) com-
pletely disappears in the limit, and implementing the symmetric optimum as we
do in Propositions 5 and 6 fully solves the free-rider problem.

Second, we observe that the restriction to sufficiently optimistic priors in
Proposition 5 can be dropped when ∆ becomes small.

Corollary 2. For any initial belief p > p∗2, there exists a ∆̄(p) > 0 such that for all
∆ < ∆̄(p), the experimentation game with private payoffs admits an equilibrium
that is path-equivalent to the socially optimal symmetric pure-strategy profile.

Proof. The monotone convergence psc → p∗2 as ∆ → 0 implies that p∗2 < psc < p
for sufficiently small ∆. Restricting ourselves to such ∆, we specify strategies and

21



beliefs exactly as in the proof of Proposition 5. According to that proof, these
strategies and beliefs constitute an equilibrium if

vsc(p) ≥ δ {pπE1 + (1− pπ) ṽ(B(1, p))} .

As ṽ is a non-decreasing function and B(1, p) < p, the inequality

vsc(p) ≥ δ {pπE1 + (1− pπ) ṽ(p)}

is a sufficient condition. And as δ → 1 and π → 0 when ∆ → 0, it is enough to
show that

lim
∆→0

vsc(p) ≥ lim
∆→0

ṽ(p) .

Starting from the explicit representation for the constrained planner’s value
function in Section 3, it is straightforward to compute

lim
∆→0

vsc(p) = Ep −
Ep∗2

w(p∗2)
w(p)

with

w(p) = (1− p)

(
1− p

p

) r
2λ

;

this limit is the value of the planner’s problem in continuous time. Similarly,

lim
∆→0

ṽ(p) = max

{
0, Ep −

Ep∗1

w(p∗1)
w(p)

}
with

p∗1 =
r|E0|

r(E1 + |E0|) + λE1

,

the autarky cut-off in continuous time. As p∗2 < p∗1 < pm, we have Ep∗2
< Ep∗1

< 0.
A simple computation reveals that

Ep∗2

w(p∗2)
<

Ep∗1

w(p∗1)
,

so the two limits satisfy the desired inequality.

There is no counterpart to this result for the equilibria constructed in Propo-
sition 6. As ∆ vanishes, p‡ converges to a belief strictly above pm, so having ever
shorter reaction lags does not help here. In fact, what these equilibria require is
that it take a sufficiently long string of failures for the belief of a player learning
only from his own experiments to pass pm; more precisely, the minimal length
of time this must take is n‡∆. When ∆ decreases, each failure becomes less in-
formative, and n† increases so as to make n‡∆ converge to the length of time a
player would have to experiment unsuccessfully in continuous time for his belief
to fall from lim∆→0 p

‡ to pm.
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6 More Than Two Players

We focused on the two-player case but our main insights carry over to more
players with only minor modifications.

With observable payoffs, our proof that in any equilibrium, no player is willing
to experiment at a belief below the single-agent cut-off, and that some player must
experiment above it, goes through almost unaltered. Hence, with observable
payoffs and N players, the equilibrium amount of experimentation is generically
at least K (the single-agent optimum) and never more than K+N−1. Whenever
the social optimum requires a higher amount, therefore, it cannot be achieved in
equilibrium.

With private payoffs, the observation that truthful communication is easy to
sustain remains intact, and so does Proposition 4. Any equilibrium of the game
with observable payoffs thus has a path-equivalent counterpart in the game with
private payoffs.

The logic of the equilibrium constructions in Propositions 5 and 6 also contin-
ues to apply, though some adjustments are needed in the details of the argument.
Regarding possible deviations in early rounds, our proofs of these propositions
use the fact, established in Lemma 1, that for two players a symmetric Markov
perfect equilibrium yields a lower payoff than if both players use the autarky
cut-off, which in turn yields a lower payoff than the socially optimal symmetric
pure-strategy profile. As our proof of Lemma 1 does not extend to more than
two players, we cannot be sure that the threat to play a path-equivalent coun-
terpart of a symmetric Markov perfect equilibrium is enough to deter first-round
deviations.15

There are at least two ways to solve this problem. The first is to establish ex-
istence of some (possibly non-Markov and asymmetric) continuation equilibrium
that gives a lower payoff to the deviating player than the symmetric optimum.
The second is to consider the problem of a social planner who is restricted to
symmetric (but possibly mixed) strategies prescribing use of the safe arm below
the autarky cut-off, and to establish sufficient conditions under which this plan-
ner requires all players to use the risky arm with probability 1 at or above the
autarky cut-off, so that all players applying this cut-off dominates any symmetric
(and in particular, symmetric Markov perfect) equilibrium. One such condition
is that the probability π of observing the high payoff on a good risky arm be

15Our proof of Lemma 1 does not generalize to N > 2 because it relies on the observation
that two players using the autarky cut-off attribute a positive value to a free experiment, that
is, to the observation of a draw from the distribution of risky payoffs before the game starts.
This is no longer true for more than two players. The reason is that the observation of a bad
signal XL can “crowd out” one round of joint experimentation. When N = 2, this happens
precisely when the one experiment thus lost overall would not have been worthwhile performing
in the first place. When N > 2, however, a bad signal can lead to a loss of more than one signal
overall, and this is detrimental to the players.
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sufficiently low. In fact, when π is low enough, the set of beliefs at which a
completely unrestricted social planner wants all players to use the risky arm is
strictly larger than [pa, 1], and so a planner restricted in the above fashion can do
no better than prescribe use of the risky arm with probability 1 on this interval.

Assuming a low π is natural given our emphasis on implementing the socially
optimal symmetric strategy profile. This is because the more players there are,
the larger is the potential performance loss of this strategy profile relative to the
truly efficient profile that an unrestricted social planner would like to implement.
In the continuous-time limit ∆ → 0 of the previous section, however, the differ-
ence between the socially optimal symmetric strategy profile and its unrestricted
counterpart vanishes. With more than two players, assuming a small period
length ∆ thus justifies our focus on the symmetric profile and at the same time
ensures robustness to early deviations of the equilibria in Propositions 5 and 6.
In particular, Corollary 2 holds with p∗2 replaced by

p∗N =
r|E0|

r(E1 + |E0|) +NλE1

,

the efficient N -player cut-off from Keller, Rady and Cripps (2005).
Finally, the equilibrium construction used in Proposition 6 becomes more

powerful as the number of players increases. Calculating the optimal stopping
time for the symmetric social planner’s solution as in Section 3, one finds that
this stopping time is weakly decreasing in the number of players. Because the
time it takes a single player to reach the myopic belief is independent of N by
definition, the set of beliefs for which the optimal symmetric strategy profile can
be implemented as in Proposition 6 increases in the number of players.

7 Conclusion

We analyzed a discrete-time experimentation game with two-armed bandits. For
publicly observable payoffs, the free-rider problem is so severe that in any equilib-
rium, both players together perform at most one experiment more than a single
agent would. Privately observed payoffs mitigate the free-rider problem to the
point where for sufficiently optimistic prior beliefs, it becomes possible to sus-
tain the socially optimal symmetric pure-strategy profile as an equilibrium with
cheap-talk communication. We showed that these results are robust to letting
players react very fast, and discussed how they extend to more than two players.

Throughout, we assumed that players cannot prove the results of their own
experiments. If we suppose instead that a player can provide hard evidence of
any prior success, our equilibrium constructions in Propositions 5 and 6 still
carry through. Intuitively, whenever players communicate, they do so truthfully
in these equilibria and, hence, it is unnecessary to show a proof. Moreover, a
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player who has had a success is indifferent as to the other player’s behavior and
therefore willing not to reveal hard information.

In our model, only the good state of the world can be revealed. Suppose
instead that the bad state of the world can also be fully revealed through an
additional payoffXB. In a research project, for example, this could be a surprising
impossibility result. Whenever XB is not drawn in the bad state, the payoff XL

is drawn, which can also materialize in the good state. As long as the high payoff
XH is drawn more often in the good state than XB is drawn in the bad state,
players become more pessimistic whenever they observe XL. In this case, the
social planner’s solution can be characterized as in Section 3, and Propositions 4
and 6 can be adapted. Regarding the former, observe that a player who drew XB

has a continuation payoff of zero irrespectively of what the other player has done
or said; such a player is clearly willing to communicate his information truthfully.

As a player who has observed a bad signal must cease to experiment, the
equilibrium underlying Proposition 6 needs to be adjusted. On the path of play,
rather than waiting to communicate until a player reaches the myopic cut-off
based on his own experimentation results, we let players truthfully announce in
the early periods whether they have received a bad signal or not. Whenever a
bad signal is observed and announced, both players cease to experiment. When
observing the opponent deviate to the safe arm in an early period (other than
the first), a player concludes that the opponent has received a bad signal and,
hence, stops experimenting. Otherwise, the logic of the equilibrium construction
remains the same: initially, players are myopically motivated to experiment, and
they truthfully communicate whether or not they had a success only at the point
in time at which a social planner observing all experimentation results would
reach the cut-off for the optimal symmetric strategy profile.

Although we believe that in most strategic experimentation problems the
presumption that players can communicate is realistic, one may wonder exactly
what role communication plays for our results. The answer is somewhat subtle.
In the equilibria of Propositions 5 and 6, players only communicate at a single
point in time on the path of play. That is, after a given number of rounds of
experimentation—say 100—players announce truthfully whether or not they had
a success. Intuitively, one could replace this communication by one round of
play in period 101 in which each player uses the risky arm if and only if she
had a prior success, ensuring that all necessary information is exchanged within
one round. The role of communication may thus seem very limited. Truthful
communication, however, plays another important role: it ensures the existence
of a simple continuation equilibrium following a deviation—including one in the
first period. What kind of equilibria exist absent communication remains, in our
view, an interesting question for further research.
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Appendix

Proof of Proposition 2

As pc ≤ psc it follows that below pc the social planner prefers not experimenting
over one or two experiments. We calculate the payoff of performing one experi-
ment and then stopping as

(1− δ)1
2
Ep + δpπE1,

and the payoff of performing two experiments and then stopping as

(1− δ)Ep + δp[1− (1− π)2]E1 .

Subtracting the latter payoff from the former, we get

−(1− δ)1
2
Ep + δpπ(1− π)E1,

which is negative above p̃c and positive below. Because it is suboptimal to perform
more than two experiments below p̃c, it follows that between pc and p̃c, the planner
prefers one experiment to two experiments.

Next, we establish that above p̃c, the planner prefers the sequence 2–1 (two
experiments this round followed by one experiment next round) to the sequence
1–2. Suppose it is optimal for the social planner to let one player experiment
in one round, and two players in the subsequent round. We will prove that the
planner can make herself strictly better off by first letting two players experiment,
then one player, and afterwards using the same strategy as before. In the two
rounds under consideration, the expected payoff of the social planner from 2–1 is

(1− δ)
{
Ep + δ

(
1
2
Ep + p[1− (1− π)2]1

2
E1

)}
.

The expected payoff from 1–2 is

(1− δ)(1
2
Ep + δEp) .

Subtracting the latter payoff from the former, we get

(1− δ)1
2

{(
Ep + δp[1− (1− π)2]E1

)
− δEp

}
.

The part in parentheses is positive above psc by definition, and −δEp is positive
above psc because psc ≤ pm, so the sequence 1–2 will never be used by the social
planner above psc.

This means that if the planner ever switched to 1 (i.e. a single experiment)
above p̃c, she would have to continue with 1 until pc is reached. In a last step,
we rule this out by showing that the planner engages in at most one round of
experimentation by a single agent before stopping.
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If the planner finds it optimal at some belief p to engage in two rounds of
experimentation by a single agent and then stop, her expected discounted payoff
is

(1− δ)1
2
Ep + δpπE1

+δ(1− pπ)

{
(1− δ)1

2

[
p(1− π)

1− pπ
E1 +

1− p

1− pπ
E0

]
+ δ

p(1− π)

1− pπ
πE1

}
,

which must be non-negative. The expression in braces must be non-negative
as well or else it would not be optimal to perform one final experiment after a
failure. The expected discounted payoff from performing two experiments at once
and then stopping is

(1− δ)Ep + δp[1− (1− π)2]E1.

Subtracting the former payoff from the latter, we obtain

(1− δ)1
2
[p(1− π)E1 + (1− p)E0] + (1− δ)1

2
pπE1 + δp(1− π)πE1

−δ
{
(1− δ)1

2
[p(1− π)E1 + (1− p)E0] + δp(1− π)πE1

}
= (1− δ)

{
(1− δ)1

2
[p(1− π)E1 + (1− p)E0] + δp(1− π)πE1

}
+ (1− δ)1

2
pπE1,

which is positive since the term in braces is non-negative and E1 > 0.

Proof of Lemma 1.

Given p(0) = p, let ṽ(p) be the players’ common value under the strategy profile
where both experiment with probability 1 if and only if p(t) ≥ pa, and vM(p) the
value in some symmetric Markov perfect equilibrium.

We first show that under the former strategy profile, the players assign positive
value to a free signal, that is, for all beliefs p ∈ ]0, 1[ ,

ṽ(p) < pπE1 + (1− pπ)ṽ(B(1, p)) .

As a first step, note that

ṽ(p) = (1− δT )Ep + δT [1− (1− π)2T ]pE1 ,

where T = T (p) is the number of periods needed for the belief to fall below the
autarky cut-off pa when the players’ experiments all fail; that is, B(2T, p) < pa ≤
B(2T −2, p). Now, if B(2T −1, p) ≥ pa, the free signal does not alter the number
of experiments that the players conduct under the strategy profile in question,
and their expected payoff is

(1− δT )Ep + δT [1− (1− π)2T+1]pE1 > ṽ(p).
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If B(2T − 1, p) < pa, by contrast, the players engage in one less round of joint
experimentation when all experiments fail, and their expected payoff is

(1− δT−1)Ep + δT−1[1− (1− π)2T−1]pE1

= ṽ(p)− δT−1
{
(1− δ)Ep + δ[1− (1− π)2T ]pE1 − [1− (1− π)2T−1]pE1

}
.

Because the inequality B(2T − 1, p) < pa means that an agent starting with the
initial belief p in autarky strictly prefers not to experiment after 2T − 1 failed
experiments, the expression in braces is negative. In either case, therefore, the
players benefit from the free signal, which establishes the claimed inequality.

Let pn = B(p, n) be the belief that is reached after n failed experiments. We
are now ready to show by backward induction that vM(pn) ≤ ṽ(pn) for all n ∈ N0.
First observe that vM(p) = ṽ(p) = 0 for all p < pa. For the induction step, let
pn ≥ pa and assume that vM(pn′) ≤ ṽ(pn′) for all n′ > n. Let q be the probability
with which the players experiment in the symmetric Markov perfect equilibrium
at the belief pn. As each player must weakly prefer to experiment at pn, we have

vM(pn) = (1− δ)Epn + δ[q(1− (1− π)2) + (1− q)π]pnE1

+δ(1− q)(1− pnπ)v
M(pn+1) + δq[(1− π)2pn + 1− pn]v

M(pn+2)

≤ (1− δ)Epn + δ[q(1− (1− π)2) + (1− q)π]pnE1

+δ(1− q)(1− pnπ)ṽ(pn+1) + δq[(1− π)2pn + 1− pn]ṽ(pn+2) .

The right-hand side is linear in q and equals ṽ(pn) for q = 1. It thus suffices to
show that the right-hand side is increasing in q, which is equivalent to

[1− (1− π)2 − π]pnE1 − (1− pnπ)ṽ(pn+1) + [(1− π)2pn + 1− pn]ṽ(pn+2) > 0.

As ṽ(pn+1) < pn+1πE1 + (1− pn+1π)ṽ(pn+2), moreover, it is enough to show that

[1− (1− π)2 − π]pnE1 − (1− pnπ)pn+1πE1

+ [(1− π)2pn + 1− pn − (1− pnπ)(1− pn+1π)]ṽ(pn+2) ≥ 0.

As (1− pnπ)pn+1 = pn(1− π), this is is easily seen to hold as an equality.
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