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Abstract

I develop new results on uniqueness and comparative statics of equilibria in the

Crawford and Sobel (1982) strategic information transmission game. For a class of

utility functions, I demonstrate that logconcavity of the density implies uniqueness of

equilibria inducing a given number of Receiver actions. I provide comparative statics

results with respect to the distribution of types for distributions that are comparable

in the likelihood ratio order, implying, e.g., that advice from a better informed Sender

induces the Receiver to choose actions that are more spread out.
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1 Introduction

Crawford and Sobel (1982) (CS henceforth) study a game of strategic information transmis-

sion between a Sender and a Receiver. The Receiver needs to take some action but is poorly

informed about the state of the world. The Sender is perfectly informed about the state of

the world but his ideal choice in each state di¤ers from the Receiver�s preferred choice. The

Receiver asks the Sender for advice and then takes whichever action he likes best after having

heard the Sender�s advice. CS show that all equilibria of this game are essentially equivalent

to interval partition equilibria, where the Sender divides the type space into subintervals and

all Sender types within the same subinterval pool on the same message, thereby inducing

the same Receiver action.

This paper provides new conditions for uniqueness of equilibria inducing a given number

of Receiver actions and comparative statics results with respect to changes in the distribution

of types. Both questions are intimately tied together. The known su¢ cient conditions for

uniqueness are joint restrictions on preferences and information. As I explain in detail in

section 2.3 below, this is �ne as long as the distribution is kept constant. However, when the

distribution is varied - as I do in the comparative statics part of the paper - then this approach

becomes problematic, as the comparative statics exercise itself may expand the equilibrium

set. Therefore, it is useful to have separate conditions on the utility function and on the

distribution of types that jointly ensure uniqueness of equilibria inducing a given number of

actions. I show that uniqueness of equilibria is guaranteed when the Receiver has preferences

that make his optimal choice respond less than or at most one for one with increases in

the state and the distribution has a logconcave density. The preferences form a natural

class containing quadratic loss functions. Moreover, many well known distributions, such

as the uniform, the (truncated) normal, the (truncated) logistic, the (truncated) extreme-

value distribution, the (truncated) chi-square distribution and many more have logconcave

densities.1

1Logconcave probabilities have been studied in the economics literature by An (1998) and Bagnoli and

Bergström (2005). See Bagnoli and Bergström (2005) for the statement that the distributions listed above

have logconcave densities, for a more extensive list of distributions with a logconcave density, and for a

proof that logconcavity is preserved under truncation. It is also worth noting that logconcavity of the

density implies that hazard rates are monotone nondecreasing, a property that has found widespread uses
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The intuition for the uniqueness result is quite simple. Suppose the Receiver does not

know the state precisely, but merely knows that the state is in some interval. If the Receiver�s

preferences are such that he reacts (weakly) less than one for one to increases in the state if

he knows the state precisely, then, if the density is logconcave and the Receiver knows only

that the state is in some interval, the Receiver reacts (weakly) less than one for one to a

shifting of the interval. The reason is that for a logconcave density, the Receiver becomes

relatively more pessimistic about high realizations of the state in a given interval the higher

the location of the interval. I use this insight to prove uniqueness via a standard contraction

mapping argument of a suitably de�ned composed best reply map.

Given uniqueness of equilibria for all densities in the logconcave class, one can perform

comparative statics exercises with respect to changes in the distribution within a well studied

class. Since the equilibrium partition is not known a priori, clear-cut comparative statics

results require that the distributions can be ranked on arbitrary partitions. Building on the

property that the monotone likelihood ratio property is preserved under arbitrary trunca-

tions, I show that equilibria are higher - in the sense that all Receiver actions and all marginal

Sender types are higher - in a communication game with an upwardly biased Sender if the

distribution is higher in the likelihood ratio order (see Shaked and Shanthikumar (2007) on

stochastic orders). In a symmetric game where the Sender�s and the Receiver�s ideal choice

agree at the prior mean and the Sender�s ideal choice reacts faster to changes in the state

than the Receiver�s ideal choice does, I show that equilibria are more spread out - in the

sense that the Receiver actions and the marginal Sender types are farther away from the

prior mean - if the distribution is more spread out in the sense of a mean reverting monotone

likelihood ratio property.

The latter result has direct consequences for the impact of better information on equi-

librium communication. In the special case where Sender and Receiver preferences are

quadratic, both players�optimal actions depend only on the conditional expectation of the

state conditional on the Sender�s information. Thus, better information impacts on equi-

librium communication through its e¤ects on the ex ante distribution of the conditional

expectation. I show that the stochastic order needed to obtain a spreading of equilibria is

consistent with notions of better information in the literature, such as riskiness of the poste-

in incentive models of contracting and mechanism design.
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rior as in Blackwell (1951), a mean preserving spread in the distribution of the conditional

expectation as in Szalay (2009), and the convex order considered in Ganuza and Penalva

(2010). Thus, advice from a better informed Sender in this sense induces the Receiver to

take actions that are more spread out. For reasons of space, I only sketch this model here,

leaving applications for future research. Moreover, the focus of this paper is entirely on pos-

itive aspects. The normative side of improvements in the quality of information is studied in

companion work (Es½o and Szalay (2012)), where we investigate, among other things, how the

marginal value of information depends on the informativeness of the communication game.

The last 30 years have witnessed an extensive body of research that has extended the

CS model in various directions, some of which - but by far not all - are mentioned below.

Most closely related to this work is Chen et al. (2008) and Gordon (2010, 2011). Chen et al.

(2008) and Gordon (2011) study re�nements among equilibria that induce di¤erent numbers

of Receiver actions. This paper is concerned with uniqueness of equilibria inducing the same

number of Receiver actions. Gordon (2010) develops a general �xed point procedure to study

existence and stability of equilibria. I employ di¤erent techniques, that are useful to prove

uniqueness and for comparative statics purposes once it is known that an equilibrium exists,

thus complementing Gordon�s approach.2

Very little is known on comparative statics with respect to changes in the distribution of

types in the context of strategic information transmission. In contemporaneous and indepen-

dent work, Chen and Gordon (2012) study stochastically monotonic shifts in the distribution

of types. I am not aware of any results on spreads, nor on their connection to information

in the cheap talk context. However, dispersion orders have been used in other contexts to

capture better information. The most general discussion of stochastic orders on the distrib-

ution of conditional expectations is given by Ganuza and Penalva (2010); they apply their

results to study an auctioneer�s incentive to provide information to bidders. Szalay (2009)

provides conditions on the primitives of the updating process such that better information

corresponds to a more risky distribution of the conditional expectation. Inderst and Otta-

viani (2011) study an application in the context of advice; an intermediary advises customers

on which one of two products suits their preferences better. However, since there are only

two actions, the questions they address are quite di¤erent from the ones addressed here.

2See also Bognar et al (2008) for an analysis of a dynamic conversation game with logconcave distributions.
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Formalizing better information by more risky distributions allows us to analyze information

acquisition in the cheap talk game in a general way.3

Any attempt to review the literature on strategic information transmission is bound to

leave out many interesting and important contributions. Sobel (2010) provides a recent

survey of the literature, that is much more complete than the following short paragraph. To

name just a few contributions, in roughly chronological order, Battaglini (2002), Ambrus and

Takahashi (2008), Levy and Razin (2007), and most recently Chakraborty and Harbaugh

(2010) study models of multidimensional cheap talk; Dessein (2002) compares communication

to delegation; Alonso et al. (2008) inquire when coordination requires centralization; Krishna

and Morgan (2004) study communication allowing for multiple rounds of communication;

Ottaviani and Sorensen (2006) study communication by an expert who wishes to appear

well informed; Blume et al. (2007) study noisy talk; Kartik et al. (2007) and Kartik

(2009) introduce costs of lying, making talk no longer cheap; Goltsmann et al. (2009) study

mediated talk; Ivanov (2012) studies informational control by the Receiver. Many exciting

questions involve changes in the distribution of types, that have -to the best of my knowledge-

not been addressed so far. So, this paper hopefully proves useful to address such questions

in future research.

The remainder of the paper is structured as follows: in section two, I introduce the model

alongside with known results about it and explain in more detail why separate conditions on

preferences and information that jointly ensure uniqueness are useful; section three discusses

impacts of changes in the stochastic structure on the Receiver�s optimal choice; section four

demonstrates the uniqueness result; section �ve provides some comparative statics results

with respect to the distribution of types. Section six derives a statistical model that allows to

capture the notion of better information in the game of strategic information transmission

in a useful and general way. The �nal section concludes. All proofs are gathered in the

appendix.

3An alternative route is to study a speci�c statistical model. Speci�c statistical models of information

acquisition in the cheap talk game are studied in Argenziano et al. (2011) (beta-binomial experiments),

Esö and Szalay (2012) (all-or-nothing information acquisition), and Arean and Szalay (2005) (normally

distributed signals and priors).
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2 The model

2.1 Setup

I analyze the strategic information transmission game by Crawford and Sobel (1982). There

are two players, a Sender and a Receiver. The Receiver needs to take an action, y: The

Receiver is uncertain about a state of the world, !; that in�uences the ideal action he would

like to take. The Receiver knows only that the state ! is drawn from a distribution with

continuously di¤erentiable cdf F (!) and density f (!) > 0 on the support [0; 1] : Prior to

taking the action, the Receiver gets advice from a Sender who knows !; that is, the Sender

sends a messagem 2M to the Receiver, whereM is a rich message space. After the Receiver

has heard the Sender�s advice, the Receiver takes whichever action he �nds optimal at that

point; thus, there is no ex ante commitment to a course of action as a function of what the

Sender says. Finally, payo¤s are realized and the game ends. The information structure is

common knowledge.

The Players�utility functions depend on the action y and the state of the world !: The

Sender�s utility US (y; !) and the Receiver�s utility UR (y; !) satisfy the following assump-

tions: for each !; there exists y such that U j1 (y; !) = 0 for j = R;S; moreover, U
j
11 (y; !) < 0

and U j12 (y; !) > 0 for j = R;S: Subscripts denote partial derivatives. Hence, for each !;

each player has a unique ideal choice yj (!) and this ideal choice is di¤erentiable and strictly

increasing in !; as dy
j(!)
d!

= �Uj12(yj(!);!)
Uj11(y

j(!);!)
: For future reference, note that dy

j(!)
d!

� (�) 1 for all
! if U j1 (y; !)+U

j
2 (y; !) is nonincreasing (nondecreasing) in y: Likewise for future reference,

de�ne the di¤erence between the ideal choices of Sender and Receiver, that is the bias, as

b (!) � yS (!)� yR (!) :

Notice that b (!) is di¤erentiable and allowed to depend on the state !:

2.2 Known results

CS show that any Bayesian equilibrium of this game is essentially equivalent to an interval

partition of the unit interval, where Sender types within the same partition element pool on

the same message. For b (!) > 0 for all !; the Receiver takes a �nite number of distinct

actions in equilibrium.
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Interval partitional equilibria are described by a partition of [0; 1] into N non-degenerate

intervals, de�ned by the thresholds (aN0 ; : : : ; a
N
N) such that 0 = aN0 < aN1 < : : : < aNN = 1.

There are N di¤erent messages needed to sustain the equilibrium, mi for i = 1; :::; N . Let

PNi =
�
aNi�1; a

N
i

�
denote the ith element of a partition with N elements. Types ! 2 PNi send

message mi and the Receiver�s best response to message mi is to pick the action

yi = yi
�
aNi�1; a

N
i

�
� argmax

y

aNiZ
aNi�1

UR (y; !) f (!) d! (1)

The overall construction is an equilibrium if indeed all types ! 2 [aNi�1; aNi ] weakly prefer
to send message mi rather than any other message mj: Given the assumed preferences, the

most tempting deviations are to mimic types in adjacent partition elements. Using (1) ; the

indi¤erence condition for type aNi reporting either ! 2 PNi (that is, sending message mi) or

! 2 PNi+1 (message mi+1) is

US
�
yi; a

N
i

�
= US

�
yi+1; a

N
i

�
: (2)

With yi as de�ned in (1) ; (2) forms a system of N � 1 equations; initial and �nal condition
are aN0 = 0 and aNN = 1; respectively. CS prove that for each given, and strictly positive

divergence of interests between the Sender and the Receiver, measured by the function b (�) ;
there is an integer N (b (�)) such that (2) has at least one solution for N = f1; : : : ; N (b (�))g 4:
Gordon (2010) demonstrates the existence of in�nite equilibria for the case where b (0) <

0 < b (1) : For convenience, I state these results in the following Lemma:

Lemma 1 (Crawford and Sobel (1982)) For each b (�) ; where b (!) > 0 for all !; there is

N (b (�)) such that (2) has at least one solution for N = f1; : : : ; N (b (�))g :
(Gordon (2010)) If b (0) < 0 < b (1) ; then (2) has a solution for any N:

For the proofs of these statements, see Crawford and Sobel (1982) and Gordon (2010),

respectively. Consistently with these results, I impose the following:

4Note a slight departure of CS�s notation; in CS, b is a parameter that measures the closeness of pref-

erences; here the function b (�) is taken to measure the di¤erence in ideal choices directly. However, this
di¤erence is purely notational.
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Assumption: b (!) is non-decreasing.

CS show that if the solutions to the system of equations (2) satisfy a monotonicity

condition (M), then there is only one solution for a given N � N (b (�)) : Formally, condition
(M) requires that if (~aN0 ; : : : ; ~a

N
N) and (â

N
0 ; : : : ; â

N
N) are two solutions of (2) with ~a

N
0 = âN0

and âN1 > ~a
N
1 ; then â

N
i > ~a

N
i for i � 2: The known su¢ cient conditions for condition M (see

Theorem 2 in CS) are

US1 (y; !) + U
S
2 (y; !) is nondecreasing in y (3)

and
aZ
0

UR11 (y; !) f (!) d! + U
R
1 (y; a) f (a) is nonincreasing in a: (4)

2.3 The Agenda

Conditions (3) and (4) are joint restrictions on the Receiver�s utility function and the dis-

tribution of types. This is �ne as long as the distribution is constant. To see this, recall

from CS5 that (3) and (4) hold if the distribution is uniform and there are concave functions

U
j
; for j = R;S; such that UR (y; !) = U

R
(y � !) and US (y; !) = U

S
(y � !; b) ; where

b does not depend on !: If the distribution is nonuniform, then we can take !̂ � F (!) as

the state of the world and rewrite preferences using ! � F�1 (!̂) : If the rescaled prefer-

ences, with !̂ as the state of the world, satisfy conditions (3) and (4) ; then uniqueness

of equilibria is guaranteed. An example in this spirit is when there are concave func-

tions U
R
and U

S
; respectively, such that UR (y; !) = U

R
(y � F (!)) = U

R
(y � !̂) and

US (y; !) = U
S
(y � F (!) ; b) = US (y � !̂; b) : This argument works �ne as long as the dis-

tribution is constant. However, if the object of research is a comparative statics exercise that

changes the distribution of types, then the comparative statics exercise itself a¤ects whether

conditions (3) and (4) are satis�ed. If G is an alternative distribution, then the state needs

to be rescaled with respect to the distribution G: The same preferences as a function of the

rescaled state of the world would now be written as UR (y; !) = U
R
(y � F (G�1 (!̂))) ; so

the relevant derivative in condition (4) would depend on 1 � f
g
; a factor that necessarily

5See their remark after their Theorem 2.
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changes sign over its domain. Thus, changing the distribution from F to G may expand the

equilibrium set.

So, if we wish to engage in comparative statics exercises involving changes in the distri-

bution of types and wish to ensure that equilibria are unique for all distributions that we

allow for, then we need separate conditions on the preferences and the distribution of types

that jointly ensure uniqueness of equilibria given N: I prove the uniqueness of equilibria of

given size N if the Sender utility function satis�es condition (3) ; the Receiver utility function

satis�es

UR1 (y; !) + U
R
2 (y; !) is nonincreasing in y (5)

and

f (!) is logconcave. (6)

Condition (5) describes a natural class of preferences for which the Receiver�s optimal choice

responds less than one for one to increases in the state. Condition (6) describes a natural

class of distributions, as explained in the introduction. Conditions (5) and (6) are neither

stronger nor weaker than condition (4) ; neither do conditions (5) and (6) imply condition (4)

nor is the reverse true. The rescaling argument of CS can be applied also to densities that

are not logconcave; likewise, if we take preferences UR (y; !) = U
R
(y � !) and US (y; !) =

U
S
(y � !; b) ; then (5) and (6) are satis�ed for the whole class of logconcave densities, while

(4) holds only for the uniform distribution. For the purpose of comparative statics with

respect to the distribution of types conditions (5) and (6) have the advantage that varying

the distribution within the class of logconcave densities can never lead to multiplicity of

equilibria for given N:

Before proving uniqueness of equilibria and engaging in comparative statics, we need to

understand how the Receiver�s best reply reacts to changes in the information structure.
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3 The Receiver�s best reply and the information struc-

ture

Consider the Receiver�s decision problem. If he knows the state of the world, !; then he

chooses in each state of the world the act yR (!) ; de�ned by the condition

UR1
�
yR (!) ; !

�
= 0:

Consider now the Receiver�s decision problem, when he does not know the state of the world

precisely, but knows that ! 2 [x+�; x+�] ; where 0 � x + � < x + � < 1: In that case

the solution to the Receiver�s problem becomes

y (x+�; x+�;h) = argmax
y

x+�Z
x+�

UR (y; !)h (!) d!: (7)

where h 2 f; g denote two alternative densities. x; x, �; and h describe elements of the
Receiver�s information structure. How does his decision depend on these objects? We are

interested in describing the class of densities for which it is true that y (x; x; g) > y (x; x; f)

for arbitrary truncations x; x:6 Moreover, we wish to know for which classes of densities it is

true that @
@�
y (x+�; x+�) � 1 for a given density f:

Lemma 2 Let f and g denote two continuous densities. We have, for any x and x such
that 0 � x < x � 1,

y (x; x; g) > y (x; x; f)

if and only if g
f
is strictly increasing in ! for all ! 2 [0; 1] :

If g
f
is strictly increasing in ! for all ! 2 [0; 1] then g is said to be higher in the likelihood

ratio order than f (see Shaked and Shanthikumar (2007)). Thus, the Receiver believes

that the high realizations of the state are relatively more likely when the state of the world

follows the distribution with density g than when it follows the distribution with density f:

Since UR12 > 0; the Receiver responds to the change in the density from f to g by increasing

6Since � is constant in this exercise and the truncation is arbitrary, it is without loss of generality to set

� = 0 to characterize this class of densities.
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his optimal choice. The monotone likelihood ratio property is not only su¢ cient but also

necessary by the fact that the truncation is arbitrary. If f and g are both continuous then

so is their ratio. Moreover, the monotone likelihood ratio is preserved under truncation. So,

if there is a subinterval over which g
f
is strictly decreasing, then the inequality in the lemma

would be reversed.

Consider now the second question:

Lemma 3 y (x; x) = argmaxy

xZ
x

UR (y; !) f (!) d! satis�es for any x and x such that 0 �

x < x � 1 and for any Receiver utility function such that UR1 (y; !) + U
R
2 (y; !) is nonin-

creasing in y
@

@x
y (x; x) +

@

@x
y (x; x) � 1 (8)

if and only if f (!) is logconcave.

To understand this result, it proves useful to compare decision problem (7) with a decision

problem where where h = f and � � 0; which has solution

y (x; x) = argmax
y

xZ
x

UR (y; !) f (!) d!: (9)

The decision problems (9) and (7) di¤er in that the support of the random variable in the

former problem is higher than in the latter problem. Changing variables to ~! = ! � � in

problem (7) makes the supports of both problems equal to [x; x] and changes the integrand in

the latter problem to UR (y; ! +�) f (! +�) : So, there are two e¤ects when � is increased:

a direct e¤ect on the utility function and a second e¤ect that the density is changed from f (!)

to f (! +�) : Consider �rst the direct e¤ect for a constant density. By UR12 > 0; the Receiver

wishes to increase his optimal action when the state is higher. Since UR1 (y; !) + U
R
2 (y; !)

is nonincreasing in y; he wishes to increase his optimal action less than one for one with

increases in the state. The second e¤ect turns out to be just another incarnation of the

preceding lemma. To see this, recall from An (1998) that f (!) is logconcave if and only if

f (!0 + �) f (!00) � f (!00 + �) f (!0)

11



for all !0; !00 and � such that 0 � !0 < !00 � !00+� � 1. Since I assume that the distribution
has full support, this is equivalent to

f (!0 + �)

f (!00 + �)
� f (!0)

f (!00)
:

Taking � � !00 � !0 > 0; this is equivalent to

f (!)

f (! +�)
nondecreasing in !: (10)

(10) is an upshifted likelihood ratio order.7 Thus, when the decision problem is changed

from (9) to (7), then the Receiver becomes relatively more pessimistic about the state of the

world, in the sense that he now believes high outcomes are relatively less likely than before

in the sense of the monotone likelihood ratio property, (10). Therefore, the e¤ect on the

Receiver�s optimal choice y (x+�; x+�) ; arising through the changed inference about the

state of the world, reinforces the e¤ect through the utility function where increases in the

state induce a less than one for one reaction in the Receiver�s optimal choice.

Taking the Receiver�s utility as a quadratic function isolates the statistical e¤ects on

the Receiver�s decision problem. For this utility function, we have y (x+�; x+�) =

E [!jx+� � ! � x+�] and the proof of the lemma specializes then to show that

E [!jx+� � ! � x+�] � E [!jx � ! � x] + �:

Rearranging, dividing by �; and taking limits as � goes to zero, we have the following

Corollary:

Corollary 1 For any x and x such that 0 � x < x � 1;

@

@x
E [!jx � ! � x] + @

@x
E [!jx � ! � x] � 1 (11)

if and only if f (!) is logconcave.

7See Shaked and Shanthikumar (2007). A proof of the equivalence between the upshifted likelihood ratio

order and logconcavity appears also in Lillo et. al (2001).
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To summarize, the optimal choice y (x; x) is increased by a change in the density for

arbitrary truncations if and only if the densities satisfy the monotone likelihood ratio prop-

erty. y (x; x) depends on the bounds of truncation as follows: by the full support assump-

tion and the fact that UR12 > 0; I have @
@x
y (x; x) and @

@x
y (x; x) > 0: By the lemma, I

have @
@x
y (x; x) + @

@x
y (x; x) � 1: Together, these results imply also (the known result) that

@
@x
y (x; x) < 1 and @

@x
y (x; x) < 1:8

4 Uniqueness

Suppose from now on that conditions (3) ; (5) and (6) hold. These assumptions imply

uniqueness of the solution to the system (2) for givenN , whenever a solution withN partition

elements exists.

To illustrate the idea in simple terms, consider a three-partition equilibrium, which sat-

is�es a30 = 0; a
3
3 = 1; and a

3
1,a

3
2 are determined by

�1
�
a31; a

3
2

�
� US

�
y1
�
0; a31

�
; a31
�
� US

�
y2
�
a31; a

3
2

�
; a31
�
= 0 (12)

and

�2
�
a32; a

3
1

�
� US

�
y2
�
a31; a

3
2

�
; a32
�
� US

�
y3
�
a32; 1

�
; a32
�
= 0: (13)

For given a32; equation (12) determines a
3
1; let ~�1 (a

3
2) denote the solution of (12) for given a

3
2:

Likewise, equation (13) determines a32 as a function of a
3
1; let ~�2 (a

3
1) denote the solution of

(13) for given a31:We can think of these functions as of best reply functions in a simultaneous

move game, where a �high�player chooses a32 2 [a31; 1] and a �low�player chooses a31 2 [0; a32] :
Obviously, there is no such game being played, but the point is that the situation can be

8While it is well known that @
@xy (x; x) < 1 and

@
@xy (x; x) < 1 for logconcave densities, to the best of my

knowledge, the equivalence between logconcavity and condition (8) has not been noted in the literature. To

be sure, not even the simpler condition (11) has been noted. Logconcave densities have been used extensively

in reliability theory, where typical questions concern the residual lifetime of an object. An (1998) and Bagnoli

and Bergstrom (2005) prove the connections between logconcave probability and various other conditions

that are frequently used in economic analysis. Reliability theory uses one-sided measures and studies, e.g.,

how a failure rate changes as an object ages. Formally, this amounts to changes in one truncation point in a

truncated distribution. In the present context, it is useful to analyze a simultaneous moving of both points

of truncation.
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analyzed as if such a game were played. An equilibrium must satisfy the following �xed

point condition

a31 =
~�1

�
~�2
�
a31
��
: (14)

Consider the slope of the composed �best reply�on the right-hand side, ~�01
�
~�2 (a

3
1)
�
~�02 (a

3
1).

By the implicit function theorem, I have ~�01 (a
3
2) =

da31
da32
=

@

@a32
�1(a31;a32)

� @

@a31
�1(a31;a32)

and so9

da31
da32

=
US1 (y2 (a

3
1; a

3
2) ; a

3
1)

@y2
@a32

US1 (y1 (0; a
3
1) ; a

3
1)

@y1
@a31
+ US2 (y1 (0; a

3
1) ; a

3
1)� US1 (y2 (a31; a32) ; a31) @y2@a31

� US2 (y2 (a31; a32) ; a31)
(15)

Likewise, ~�02 (a
3
1) =

da32
da31
=

@

@a31
�2(a32;a31)

� @

@a32
�2(a32;a31)

and so

da32
da31

=
US1 (y2 (a

3
1; a

3
2) ; a

3
2)

@y2
@a31

US1 (y2 (a
3
2; 1) ; a

3
2)

@y2
@a32
+ US2 (y2 (a

3
2; 1) ; a

3
2)� US1 (y2 (a31; a32) ; a32) @y2@a32

� US2 (y2 (a31; a32) ; a32)
:

(16)

Conditions (3) ; (5) and (6) imply that ~�01 (a
3
2) 2 (0; 1) and ~�02 (a31) 2 (0; 1). Since the proof

of the Theorem below discusses the arguments at length, I merely sketch the arguments

here. Consider (15) �rst. The indi¤erence condition of the Sender, US (y1 (0; a31) ; a
3
1) =

US (y2 (a
3
1; a

3
2) ; a

3
1), and the fact that U

S
12 > 0; imply that y1 (0; a31) < yS (a31) < y2 (a

3
1; a

3
2).

Hence, by US11 < 0; I have U
S
1 (y2 (a

3
1; a

3
2) ; a

3
1) < 0 and thus that the numerator on the right-

hand side of (15) is positive: From conditions (5) and (6) I have
@y1(0;a31)

@a31
;
@y2(a31;a32)

@a31
< 1:

Together with condition (3) ; this implies that the denominator is negative as well. Using

these properties, I have ~�01 (a
3
2) < 1 i¤

US1
�
y2
�
a31; a

3
2

�
; a31
��@y2 (a31; a32)

@a31
+
@y2 (a

3
1; a

3
2)

@a32

�
+ US2

�
y2
�
a31; a

3
2

�
; a31
�

> US1
�
y1
�
0; a31

�
; a31
� @y1 (0; a31)

@a31
+ US2

�
y1
�
0; a31

�
; a31
�
: (17)

Again using the indi¤erence condition of the Sender, I have US1 (y1 (0; a
3
1) ; a

3
1) > 0 >

US1 (y2 (a
3
1; a

3
2) ; a

3
1) : Together with the equivalent characterization of logconcave densities

9The dependence of @yi
@a3j

for i; j = 1; 2 is suppressed for reasons of space.
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from the Lemma, (8) ; it is now easy to see that the left-hand side of this inequality is weakly

larger than US1 (y2 (a
3
1; a

3
2) ; a

3
1)+U

S
2 (y2 (a

3
1; a

3
2) ; a

3
1) while the right-hand side is strictly smaller

than US1 (y1 (0; a
3
1) ; a

3
1) + U

S
2 (y1 (0; a

3
1) ; a

3
1) : Obviously, condition (3) then implies that (17)

is indeed satis�ed.

Virtually the same argument can be made to show that conditions (3) ; (5) and (6)

imply that ~�02 (a
3
1) < 1, the only di¤erence being that now both the numerator and the

denominator in (16) are positive. Hence, logconcavity of the density implies, for the class of

Sender and Receiver utility functions considered, that the composed function ~�1
�
~�2 (a

3
1)
�

is a contraction mapping. This insight applies equally well to equilibria with an arbitrary

number of partition elements. I have the following Theorem:

Theorem 1 Suppose that (2) has a solution for given N: Suppose also that US1 (y; a) +
US2 (y; a) is nondecreasing in y, that U

R
1 (y; a) + U

R
2 (y; a) is nonincreasing in y and that the

distribution has a logconcave density. Then there is only one solution inducing N distinct

Receiver choices.

The formal proof in the appendix is very similar to the original one given given by CS. The

key di¤erence is the su¢ cient conditions. Consider the sequence
�
x; aN2 (x) ; : : : ; a

N
N�1 (x) ; 1

	
for given initial value x 2 [0; 1) : In contrast to the equilibrium sequence of thresholds�
0; aN1 ; : : : ; a

N
N�1; 1

	
; aN1 is replaced by the value x: x is an initial condition for the sequence�

x; aN2 (x) ; : : : ; a
N
N�1 (x) ; 1

	
and is allowed to take an arbitrary value. Clearly, the entire

sequence depends on the initial condition x: For Sender utility functions such that US1 (y; a)+

US2 (y; a) is nondecreasing in y; logconcavity of the density allows me to prove that each of

the threshold points aNi (x) for i = 2; : : : ; N�1 increases with x and does so at a rate smaller
than unity. In particular, the threshold aN2 (x) satis�es

daN2 (x)

dx
2 (0; 1) :

An equilibrium sequence of thresholds must satisfy in addition the condition

US
�
y1
�
aN0 ; x

�
; x
�
= US

�
y2
�
x; aN2 (x)

�
; x
�
: (18)

Condition (18) is again a �xed-point condition. However, aN2 (x) depends on x in a fairly

complicated way. (18) together with US12 > 0 imply that y1
�
aN0 ; x

�
< yS (x) < y2

�
x; aN2 (x)

�
and therefore US1

�
y1
�
aN0 ; x

�
; x
�
> 0 > US1

�
y2
�
x; aN2 (x)

�
; x
�
. Using these insights, I prove
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that, for Sender utility functions such that US1 (y; a) + U
S
2 (y; a) is nondecreasing in y and

logconcave densities, the e¤ect of a change in x on the left-hand side,

US1
�
y1
�
aN0 ; x

�
; x
� @y1 �aN0 ; x�

@x
+ US2

�
y1
�
aN0 ; x

�
; x
�

is always smaller than the e¤ect of a marginal increase in x on the right-hand side,

US1
�
y2
�
x; aN2 (x)

�
; x
� @y2 �x; aN2 (x)�

@x
+
@y2

�
x; aN2 (x)

�
@aN2 (x)

daN2 (x)

dx

!
+ US2

�
y2
�
x; aN2 (x)

�
; x
�
:

Hence, there is at most one solution to (18) in x:10

5 Comparative statics

I now turn to comparative statics with respect to changes in the distribution of types. I �rst

consider stochastically monotonic shifts and then proceed to analyze spreads in a symmetric

model.

5.1 Monotonic shifts and onesided biases

Consider an alternative distribution of the Sender�s type with density g (!) and cdf G (!) :

Suppose that g (!) is logconcave just as f (!) is and suppose that both communication

games with type distributions f and g; respectively, have an equilibrium inducing N distinct

Receiver actions. Let yNi (h) denote the Receiver�s optimal choice conditional on the density

being h and on ! 2 PNi (h) for h = f; g and let aNi (h) denote the i
th threshold when the

distribution is h:

Rewriting (2) as a system of �best-reply�functions, the unique equilibrium for given N

satis�es

US
�
yNi (h) ; a

N
i (h)

�
= US

�
yNi+1 (h) ; a

N
i (h)

�
for i = 1; : : : ; N � 1: (19)

10There is a second di¤erence to the proof in CS, which is however not important. CS consider the sequence�
0; x; aN2 (x) ; : : : ; a

N
N�1 (x) ; a

N
N (x)

	
and show that there is a unique x such that aNN (x) = 1: Obviously, both

arguments are identical. The exposition given above emphasizes the connection to the �xed point and

contraction mapping arguments most clearly.
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yNi (h) is an increasing function of a
N
i�1 (h) and a

N
i (h) ; y

N
i+1 (h) is an increasing function of

aNi (h) and a
N
i+1 (h) : Both functions do not directly depend on all non-adjacent thresholds

aNj (h) for j 6= i� 1; i; i+ 1: As part of the proof of the Theorem below, I show that aNi (h)

is strictly increasing in aNi�1 (h) and a
N
i+1 (h) : Thus, (19) forms a system of �best-response�-

functions such that aNi (h) is non-decreasing in a
N
�i; the vector of the remaining thresholds

and strictly increasing in the adjacent thresholds aNi�1 (h) and a
N
i+1 (h) : Hence, we can build

on comparative statics methods developed for games with strategic complementarities (see

Vives (1990, 1999)). In particular, if the change from f to g weakly increases yNi (h) and

yNi+1 (h) ; for i = 1; : : : ; N � 1; then the equilibrium thresholds in the game with density g

are higher than in the game with density f . Recalling that Lemma 2 has established that

yNi (g) > y
N
i (f) for arbitrary truncations if g is higher than f in the likelihood ratio order,

the following theorem is obvious:

Theorem 2 Suppose that two densities f and g are both logconcave. Suppose further that
the communication games when the state is distributed according to f and g; respectively,

each have an equilibrium inducing N distinct Receiver actions. If b (!) > 0 and g
f
is strictly

increasing in !; then aNi (g) > a
N
i (f) and y

N
i (g) > y

N
i (f) for i = 1; : : : ; N � 1.

The strict monotone likelihood ratio property (MLRP) implies that the induced Receiver

actions when the density is g are higher than the induced Receiver actions when the density

is f for arbitrary truncations resulting from the Sender strategy. To restore the system of

indi¤erence condtions for the threshold types, (19) ; each threshold aNi needs to be increased

for given adjacent thresholds aNi�1 and a
N
i+1: Thus, changing the distribution from f to g

amounts to an upward shift of the best reply functions in a system of nondecreasing best

replies. Hence, we obtain strict monotone comparative statics.

5.2 Spreads

Spreads are more di¢ cult to analyze than (stochastically) monotonic shifts in the distribu-

tion. However, the logic behind Theorem 2 extends readily to spreads in a symmetric model.

To make the model symmetric, I restrict the density and preferences as follows:
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The density is symmetric around its mean value, one half. The Receiver�s utility is a

quadratic loss function

UR (y; !) = �r (y � !)2 :

where r > 0 is a constant.11 Finally, the Sender�s utility function is symmetric around its

bliss point, yS (!) = ! + b (!) ; so

US (y; !) = U
S
(y � (! + b (!))) :

where U
S
is strictly concave with a peak at zero. For this speci�cation, the optimal choices

from the Receiver�s and the Sender�s perspective are yR (!) = ! and yS (!) = ! + b (!) ;

respectively, and the equilibrium condition (2) simpli�es to�
aNi + b

�
aNi
��
� E

�
!j! 2

�
aNi�1; a

N
i

��
= E

�
!j! 2

�
aNi ; a

N
i+1

��
�
�
aNi + b

�
aNi
��
:

b (!) satis�es b
�
1
2
+ �
�
= �b

�
1
2
� �
�
for all � 2

�
0; 1

2

�
: Consistently with the assumptions

made above, I assume that the Sender�s bias is positive for values above the mean and nega-

tive for values below the mean. Obviously, I can construct a symmetric equilibrium around

the mean value one half - and I do so in the appendix. By logconcavity of the distribution,

for each given N; the equilibrium is unique. The following result is then immediate:

Theorem 3 Consider a symmetric model as outlined above and two densities f and g that
are both symmetric and logconcave. Suppose further that g

f
is strictly decreasing in ! for

! < :5 and that g
f
is strictly increasing in ! for ! > :5 and consider any equilibrium with �nite

N: Then,
��aNi (g)� :5�� � ��aNi (f)� :5�� and ��yNi (g)� :5�� � ��yNi (f)� :5�� for i = 1; : : : ; N�1.

11It is possible to extend the model to the generalized quadratic loss function analyzed in Alonso and

Matoushek (2008). As Alonso and Matouschek (2008) note, a game where the Receiver has a generalized

quadratic loss function with a state dependent weight r (!) can be analyzed as if the Receiver just had

a standard quadratic loss function by merging the weight r (!) with the density as follows: notice that

h (! j!1; !2 ) � r (!) f (!) =

!2Z
!1

r (t) f (t) dt is a well de�ned probability density function for any 0 � !1 <

!2 � 1: Using this adjusted density, the Receiver simply minimizes the standard quadratic loss function.

Note that with a state dependent weight, the merged density needs to be logconcave.

To avoid the notational clutter, I assume that r (!) � r > 0: However, it should be kept in mind, that the
results carry over in straightforward manner to the case of a state dependent weight.
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If N is even, then all inequalities are strict; if N is odd, then aNN+1
2

(f) = aNN+1
2

(g) = :5; and

all inequalities are strict but for i = N+1
2
:

The densities in the theorem satisfy a strict monotone likelihood ratio property on the

half-supports. Obviously, this ordering is not preserved under arbitrary truncations but

only under truncations on the half support. However, given symmetry it su¢ ces to rank

distributions on the half supports to tell how equilibria change when the distribution changes.

Hence, by the same rationale as in Theorem 2, the equilibrium thresholds and the induced

choices are more spread out under distribution g than under distribution f:

Obviously, symmetry is a restrictive assumption. It is well known that logconcave dis-

tributions are strongly unimodal (see Dharmadhikari and Joag-dev (1988), Theorem 1.10).

Hence, symmetric, logconcave densities have their mode at the mean. However, the assump-

tion buys a lot of tractability. In particular, better information can be modeled by more

dispersed distributions. Hence, Theorem 3 is useful to study the e¤ects of improved infor-

mation in the CS model in a fairly general way. I now derive the statistical details of such

a model.

6 The e¤ects of improved information on communica-

tion

Let both the Sender�s and the Receiver�s utility functions be quadratic, so UR (y; !) =

� (y � !)2 and US (y; !) = � (y � (! + b (!)))2 ; where b (!) = ! � E! [!] for the sake of
concreteness12. Suppose that neither the Sender nor the Receiver know the state of the

world, !; however, the Sender obtains a signal, s; about the state of the world. Conditional

on s; the optimal choices of the Receiver and the Sender, respectively, are yR (s) = E! [!j s]
and yS (s) = 2E! [!j s] � E! [!] ; respectively. Expanding their utilities around these bliss
points, we can write

E!js
�
UR (y; !)

�� s� = � (y � E! [!j s])2 � V ar (!j s)
12It is easy to generalize the results to nonlinear biases; this is left to the reader.
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and

E!js
�
UR (y; !)

�� s� = � (y � 2E! [!j s] + E! [!])2 � 4V ar (!j s) ;
where V ar (!j s) is the conditional variance given s: Observe that in these expressions, only
the conditional expectation of ! given s interacts nontrivially with the decision y: Other

details of the distribution, that is the variance, a¤ect the level of utility but do not impact

on the optimal choice in each state. This suggests a change of variables, reformulating the

model in terms of communicating about what is believed to be optimal, rather than about

signals themselves.

Let z (s) denote the density of s and let q (s) � E! [!j s] denote the conditional ex-
pectation function, and suppose this function is strictly increasing and di¤erentiable in s:

Before the signal s is realized, the value that the function q (s) takes is random; let � de-

note this random variable. Since for any ŝ and �̂ = q (ŝ) ; Pr [s � ŝ] = Pr [q (s) � q (ŝ)] =
Pr
h
s � q�1

�
�̂
�i
; I have

f (�) = z
�
q�1 (�)

� 1

qs (q�1 (�))
;

where q�1 (�) denotes the inverse of the function q: Totally di¤erentiating � = q (s) and

rearranging, I have 1
qs(s)

d� = ds: Thus, letting � � q (s) and � � q (s) ; I can write

E!;sUR (y; !) = �
�Z
�

(y � �)2 f (�) d� � EsV ar (!j s) (20)

and

E!;sUS (y; !) = �
�Z
�

(y � 2� + E! [!])2 f (�) d� � 4EsV ar (!j s) : (21)

(20) and (21) are representations of the communication problem that are equivalent to the

original one, but much more useful. These representations make clear that the equilibrium

e¤ects of changes in the quality of information depend on how the ex ante distribution of the

conditional expectation, �; depends on the quality of information. Let the distribution with

density g (�) and cdf G (�) denote an alternative information structure. When is it true that

the alternative distribution of the conditional expectation corresponds to better information?

Blackwell (1951) provides an ordering requiring that the distribution of the posterior under
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the more informative information structure should be more risky in the sense of second

order stochastic dominance (SOSD) than under the less informative information structure.

Since � is the �rst moment of the posterior, we require consistently with this notion that
�Z
�

G (�) d� �
�Z
�

F (�) d� for all �: By the law of iterated expectations, it is always true that

�Z
�

�f (�) d� =

�Z
�

�g (�) d� = E! [!] ; implying for distributions with the same support that

�Z
�

G (�) d� =

�Z
�

F (�) d�: Obviously, this ordering provides too little structure to obtain clear

comparative statics results. Szalay (2009) imposes more structure. Let ~� = q (~s) denote the

conditional expectation arising from a signal equal to its expected value, ~s: Szalay (2009)

assumes that

G (�) T F (�) for � S ~�: (22)

(22) is a mean reverting First Order Stochastic Dominance condition, implying that the

distribution g is more risky in the sense of a mean preserving spread than the distribution

f: While stronger than the Blackwell ordering, Lemma 2 and Theorem 3 suggest that the

ordering is still not strong enough for comparative statics purposes. A still stronger ordering

is obtained if we require that for �0 < �00

g (�00) f (�0) � (�) g (�0) f (�00) for ~� � �00 (~� � �0): (23)

(23) is stronger than (22) in the sense that for two distributions with F
�
~�
�
= G

�
~�
�
(which

is natural for symmetric distributions); (23) implies (22) : Note that (23) is precisely the

mean reverting monotone likelihood ratio property introduced in Theorem 3, allowing for

the case that distribution g has wider support than distribution f: Hence, the following

proposition is now obvious:

Proposition 1 Suppose that f and g are symmetric and logconcave. Moreover, suppose that
the distribution with density g corresponds to better information than the one with density f

in the sense of (23). Then, for any �nite number of induced Receiver choices, N; the unique

equilibrium of the communication game is more dispersed in the sense of Theorem 3.
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The proof of this proposition follows directly from Theorem 3 and the discussion preceding

the proposition.

Proposition 1 should prove useful to analyze information acquisition in a general way. As

the discussion preceding the Proposition has shown, the ranking of information structures

is consistent with other rankings discussed in the literature. The most general treatment of

orders on the distribution of the conditional expectation is given by Ganuza and Penalva

(2010). On top of the concepts already mentioned, they study distributions that are com-

parable in the convex order and the dispersive order. As noted above the means of � under

distribution f and g, respectively, are identical. Moroever, for distributions with the same

mean, distribution g is higher in the convex order than f if and only if distribution g is a

mean preserving spread of f: Therefore, (23) also implies that distribution g is higher in the

convex order than distribution f:13

To illustrate the features of the solution, consider the following example. Suppose the

distribution of s is uniform on [0; 1] and suppose, � (!j s) ; the conditional density of ! given
s takes the form � (!j s) = 1 + �

�
! � 1

2

� �
s� 1

2

�
; where � 2 (0; 4) is a parameter that

measures the informativeness of the signal s: Then, q (s) = 1
2
+ �

12

�
s� 1

2

�
and f (�) = 12

a
:

Take now � 2 f�; �g where � < �: For any �; the distribution of � is uniform. For the more
informative experiment where � = �; the distribution of � has a wider support. Let a31 (�)

and a31 (�) denote the interior thresholds of the unique three partition equilibrium for given �:

It is easy to verify that these values are a31 (�) =
1
2
� 1
168
� and a32 (�) =

1
2
+ 1
168
�; respectively,

so the solution is indeed more spread around the mean 1
2
the higher is �: While this is a

nicely tractable example, it should be stressed that nothing depends on the moving support

feature of this example. It is easy to construct examples with a non-moving support.14

7 Conclusion

This paper studies the role of the distribution of types in the strategic information trans-

mission game. I show that logconcavity of the density combined with a restriction on the

13There is no connection between the conditions studied here and the dispersive order.
14The interested reader is referred to Szalay (2009). The example given there needs to be amended in an

obvious way so as to make it work for the support [0; 1] of ! assumed here. This is left to the reader.
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Receiver�s utility, whereby this restriction is independent of the distributional assumption,

implies uniqueness of equilibria inducing a given number of Receiver choices. Moreover, I

provide comparative statics for distributions that can be ordered by their likelihood ratios,

showing in particular that equilibria in a communication game where the Sender has better

information are more spread out than when the Sender�s information is worse. I sketch a

general model to study improvements in the quality of information, which hopefully proves

useful in future applications.

While this work focusses entirely on the positive e¤ects of varying the quality of infor-

mation, in companion work (Esö and Szalay (2012)) we explore the normative aspects of

varying the quality of information. Among other things, we study incentives for information

acquisition as a function of the informativeness of equilibrium communication.

8 Appendix

Proof of Lemma 2. Suppose that g
f
is strictly increasing in ! for all ! 2 [0; 1] : The

�rst-order condition for y (x; x; f) is

xZ
x

UR1 (y (x; x; f) ; !) f (!) d! = 0

To prove that y (x; x; g) > y (x; x; f) ; it su¢ ces to show that

xZ
x

UR1 (y (x; x; f) ; !) g (!) d! > 0:

Indeed, multiplying and dividing by f(!)
F (x)�F (x) ; I have

(F (x)� F (x))
xZ
x

UR1 (y (x; x; f) ; !)
g (!)

f (!)

f (!)

F (x)� F (x)d!

= (F (x)� F (x))Cov
�
UR1 (y (x; x; f) ; !) ;

g (!)

f (!)

����! 2 [x; x]� ;
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where the equality uses the fact that

xZ
x

UR1 (y (x; x; f) ; !) f (!) d! = 0:Now, since U
R
12 (y; !) >

0 and g(!)
f(!)

is increasing in !; I have indeed

Cov

�
UR1 (y (x; x; f) ; !) ;

g (!)

f (!)

����! 2 [x; x]� > 0:
By concavity of the function UR (y; !) in y; y needs to be increased when the density is

changed from f to g: So, we have shown that g
f
being strictly increasing in ! for all ! 2 [0; 1]

implies that

y (x; x; g) > y (x; x; f) :

To see the converse is also true, suppose that there is an interval [x; x] such that g(!)
f(!)

is

non-increasing over that interval. This would imply that

Cov

�
UR1 (y (x; x; f) ; !) ;

g (!)

f (!)

����! 2 [x; x]� � 0
and thus that y (x; x; g) � y (x; x; f) : Thus, requiring the condition to hold for arbitrary

points of truncation, x; x; makes the su¢ cient condition also necessary.

Proof of Lemma 3. Consider two intervals of the same length, [x; x] and [x+�; x+�] :

Let y� = y (x; x) solve
xZ
x

UR1 (y
�; !) f (!) d! = 0

and let y� (�) = y (x+�; x+�) solve

x+�Z
x+�

UR1 (y
� (�) ; !) f (!) d! = 0:

We wish to show that y� (�) � y� +�: By UR11 (y; !) < 0; this is equivalent to

x+�Z
x+�

UR1 (y
� +�; !)

f (!)

F (x+�)� F (x+�)d! � 0:
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Notice that
x+�Z
x+�

UR1 (y
� +�; !)

f (!)

F (x+�)� F (x+�)d! =
xZ
x

UR1 (y
� +�; ! +�)

f (! +�)

F (x+�)� F (x+�)d!:

Moreover,

xZ
x

UR1 (y
� +�; ! +�)

f (! +�)

F (x+�)� F (x+�)d!

=

xZ
x

UR1 (y
� +�; ! +�)

�
f (! +�)

F (x+�)� F (x+�) �
f (!)

F (x)� F (x)

�
d!

+

xZ
x

UR1 (y
� +�; ! +�)

f (!)

F (x)� F (x)d!

Now
xZ
x

UR1 (y
� +�; ! +�)

f (!)

F (x)� F (x)d!

=

xZ
x

24UR1 (y�; !) + �Z
0

@

@z
UR1 (y

� + z; ! + z) dz

35 f (!)

F (x)� F (x)d!

=

xZ
x

24 �Z
0

@

@z
UR1 (y

� + z; ! + z) dz

35 f (!)

F (x)� F (x)d!;

where the second line follows from the �rst-order condition de�ning y�: By assumption
@
@z
UR1 (y

� + z; ! + z) � 0; thus the expression is maximized for a utility function that satis�es
@
@z
UR1 (y

� + z; ! + z) = 0; in which case it takes value zero. Hence, the overall expression is

nonpositive.

Consider now the expression

xZ
x

UR1 (y
� +�; ! +�)

�
f (! +�)

F (x+�)� F (x+�) �
f (!)

F (x)� F (x)

�
d!:
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After an integration by parts, we have

xZ
x

UR1 (y
� +�; ! +�)

�
f (! +�)

F (x+�)� F (x+�) �
f (!)

F (x)� F (x)

�
d!

= �
xZ
x

UR12 (y
� +�; ! +�)

�
F (! +�)� F (x+�)
F (x+�)� F (x+�) �

F (!)� F (x)
F (x)� F (x)

�
d!:

By UR12 (y; !) � 0; UR1 (y
� +�; ! +�) is an increasing function of !: Thus, the e¤ect is

nonpositive if and only if

F (! +�)� F (x+�)
F (x+�)� F (x+�) �

F (!)� F (x)
F (x)� F (x) ; (24)

that is if the truncated distribution of ! 2 [x; x] dominates the truncated distribution of
! 2 [x+�; x+�] in the sense of First Order Stochastic Dominance.
As argued in the text, a fully supported density f (!) is logconcave if and only if for

� > 0, f(!)
f(!+�)

is nondecreasing in !: Hence, for a logconcave density

@

@!

f(!)
F (x)�F (x)
f(!+�)

F (x+�)�F (x+�)

� 0: (25)

By Milgrom (1981), the monotone likelihood ratio property, (25) ; implies First Order Sto-

chastic Dominance, (24) : This establishes su¢ ciency of the conditions.

To establish necessity, suppose there is an interval [x; x] over which (10) fails to hold, so

that f(!)
f(!+�)

is decreasing in ! over that interval. Suppose we choose in addition a utility

function such that @
@z
UR1 (y + z; ! + z) = 0: Then, both inequalities in conditions (25) and

(24) are reversed, and in fact hold as strict inequalities. Thus, for this construction we would

have y� (�) > y� +�:

Proof of Theorem 1. Recall that, for all Receiver utility functions such that dy
R(!)
d!

� 1;
logconcavity of f (!) is equivalent to

@

@x
yi (x; x) +

@

@x
yi (x; x) � 1 (26)
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for for all x; x such that 0 � x < x � 1:
Suppose there is an equilibrium inducing N distinct Receiver actions, i.e., the system (2)

has a solution with initial condition aN0 and given end point a
N
N = 1: It is useful to split (2)

into two sets. For arbitrary initial condition x 2 [0; 1) split the conditions into

US
�
y1
�
aN0 ; x

�
; x
�
= US

�
y2
�
x; aN2 (x)

�
; x
�

(27)

on the one hand and

US
�
y2
�
x; aN2 (x)

�
; aN2 (x)

�
= US

�
y3
�
aN2 (x) ; a

N
3 (x)

�
; aN2 (x)

�
(28)

US
�
yi
�
aNi�1 (x) ; a

N
i (x)

�
; aNi (x)

�
= US

�
yi+1

�
aNi (x) ; a

N
i+1 (x)

�
; aNi (x)

�
(29)

for i = 3; : : : ; N � 2; and

US
�
yN�1

�
aNN�2 (x) ; a

N
N�1 (x)

�
; aNN�1 (x)

�
= US

�
yN
�
aNN�1 (x) ; a

N
N

�
; aNN�1 (x)

�
(30)

on the other hand.

x can be viewed as an initial condition to the system given by (28) ; (29) ; and (30) :

When we require x to satisfy (27) as well, then x is forced to take its equilibrium value. To

prove the result, we need to show that (27) has exactly one solution in x: Di¤erentiating

(27) ; we �nd that the e¤ect of a marginal increase in x on the left-hand side is

US1
�
y1
�
aN0 ; x

�
; x
� @y1 �aN0 ; x�

@x
+ US2

�
y1
�
aN0 ; x

�
; x
�

while the e¤ect of a marginal increase in x on the right-hand side is

US1
�
y2
�
x; aN2 (x)

�
; x
� @y2 �x; aN2 (x)�

@x
+
@y2

�
x; aN2 (x)

�
@aN2 (x)

daN2 (x)

dx

!
+ US2

�
y2
�
x; aN2 (x)

�
; x
�

I now show that the latter e¤ect always dominates the former, using the implications of

logconcavity from the Lemma and showing that da
N
2 (x)

dx
2 (0; 1) : In turn, to show that da

N
2 (x)

dx
2

(0; 1) ; I need to show how the entire sequence
�
aN2 (x) ; : : : ; a

N
N�1 (x)

	
changes with the initial

condition x:

In what follows I suppress the dependence of yi on its arguments where this is needed for

reasons of space.
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By smoothness of the Receiver�s optimal choice as a function of the threshold values, the

system�s solution varies smoothly in the initial condition x: Di¤erentiating (30) totally with

respect to aNN�2 and a
N
N�1 we obtain

daNN�1
daNN�2

=
US1
�
yN�1; a

N
N�1
� @yN�1
@aNN�2

US1
�
yN ; aNN�1

�
@yN
@aNN�1

+ US2
�
yN ; aNN�1

�
� US1

�
yN�1; aNN�1

� @yN�1
@aNN�1

� US2
�
yN�1; aNN�1

� :
(31)

The Sender�s indi¤erence condition, US
�
yN�1; a

N
N�1
�
= US

�
yN ; a

N
N�1
�
; implies that yN�1

�
aNN�2; a

N
N�1
�
<

yS
�
aNN�1

�
< yN

�
aNN�1; a

N
N

�
and thus that US1

�
yN ; a

N
N�1
�
< 0 < US1

�
yN�1; a

N
N�1
�
: Therefore,

the numerator is positive. The denominator is positive i¤

US1
�
yN ; a

N
N�1
� @yN
@aNN�1

+ US2
�
yN ; a

N
N�1
�
> US1

�
yN�1; a

N
N�1
� @yN�1
@aNN�1

+ US2
�
yN�1; a

N
N�1
�
:

By the now familiar arguments, the left-hand side is bounded below by and strictly larger

than US1
�
yN ; a

N
N�1
�
+US2

�
yN ; a

N
N�1
�
; while the right-hand side is bounded above by and

strictly smaller than US1
�
yN�1; a

N
N�1
�
+US2

�
yN�1; a

N
N�1
�
: So, for a function such that US1 (y; a)+

US2 (y; a) is nondecreasing in y; the denominator is positive, so
daNN�1
daNN�2

> 0: Using that the

denominator is positive, I have
daNN�1
daNN�2

< 1 i¤

US1
�
yN�1; a

N
N�1
��@yN�1
@aNN�2

+
@yN�1
@aNN�1

�
+US2

�
yN�1; a

N
N�1
�
< US1

�
yN ; a

N
N�1
� @yN
@aNN�1

+US2
�
yN ; a

N
N�1
�
:

The left-hand side is weakly smaller than US1
�
yN�1; a

N
N�1
�
+US2

�
yN�1; a

N
N�1
�
while the right-

hand side is strictly larger than US1
�
yN ; a

N
N�1
�
+US2

�
yN ; a

N
N�1
�
: So, for a function such that

US1 (y; a) + U
S
2 (y; a) is nondecreasing in y; I have

daNN�1
daNN�2

< 1:

Di¤erentiating (29) totally, and substituting for

daNi�1
daNi+1

=
daNi�1
daNi

daNi
daNi+1

;

I have

daNi
daNi�1

=
US1
�
yi; a

N
i

�
@yi
@aNi�1

US1 (yi+1; a
N
i )
�
@yi+1
@aNi

+ @yi+1
@aNi+1

daNi+1
daNi

�
+ US2 (yi+1; a

N
i )� US1 (yi; aNi ) @yi

@aNi
� US2 (yi; aNi )

:

(32)
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I can now show by induction that
daNi+1
daNi

2 (0; 1) implies that daNi
daNi�1

2 (0; 1) :
By the Sender�s indi¤erence condition, I have yi

�
aNi�1; a

N
i

�
< yS

�
aNi
�
< yi+1

�
aNi ; a

N
i+1

�
;

and thus US1
�
yi
�
aNi�1; a

N
i

�
; aNi

�
> 0 > US1

�
yi+1

�
aNi ; a

N
i+1

�
; aNi

�
: Hence, the numerator on

the right-hand side of (32) is positive. The denominator on the right hand side of (32) is

positive i¤

US1
�
yi+1; a

N
i

��@yi+1
@aNi

+
@yi+1
@aNi+1

daNi+1
daNi

�
+ US2

�
yi+1; a

N
i

�
> US1

�
yi; a

N
i

� @yi
@aNi

+ US2
�
yi; a

N
i

�
Suppose that

daNi+1
daNi

2 (0; 1) : Then, I have

@yi+1
�
aNi ; a

N
i+1

�
@aNi

+
@yi+1

�
aNi ; a

N
i+1

�
@aNi+1

daNi+1
daNi

< 1

and thus that the left-hand side is strictly larger than US1
�
yi+1; a

N
i

�
+US2

�
yi+1; a

N
i

�
: The

right-hand side is strictly smaller than US1
�
yi; a

N
i

�
+US2

�
yi; a

N
i

�
: Hence, for a function such

that US1 (y; a)+U
S
2 (y; a) is nondecreasing in y; the denominator is positive. Hence,

daNi
daNi�1

< 1

i¤

US1
�
yi; a

N
i

�� @yi
@aNi�1

+
@yi
@aNi

�
+US2

�
yi; a

N
i

�
< US1

�
yi+1; a

N
i

��@yi+1
@aNi

+
@yi+1
@aNi+1

daNi+1
daNi

�
+US2

�
yi+1; a

N
i

�
:

(33)

By the now familiar argument, this holds true for a function such that US1 (y; a)+U
S
2 (y; a) is

nondecreasing in y: Therefore, the inductive hypotheses,
daNi+1
daNi

2 (0; 1) ; implies that daNi
daNi�1

2

(0; 1) : This argument shows that daNi
daNi�1

2 (0; 1) for i = 3; : : : ; N � 2: Note in particular, that

the argument implies that da
N
3

daN2
2 (0; 1) :

Finally, consider (28) : Totally di¤erentiating the condition and substituting for

daN3
dx

=
daN3
daN2

daN2
dx

I obtain I have

daN2
dx

=
US1
�
y2; a

N
2

�
@y2
@x

US1 (y3; a
N
2 )

@y3
@aN2

+ US1 (y3; a
N
2 )

@y3
@aN3

daN3
daN2

+ US2 (y3; a
N
2 )� US1 (y2; aN2 ) @y2@aN2

� US2 (y2; aN2 )
:

(34)
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By the now familiar arguments y2
�
x; aN2

�
< yS

�
aN2
�
< y3

�
aN2 ; a

N
3

�
and hence US1

�
y2; a

N
2

�
>

0 > US1
�
y3; a

N
2

�
: Hence, (34) has got the exact same structure as (32) has, and hence I have

daN2
dx
2 (0; 1) :
Hence we have shown that there is a unique x�; such that

US
�
y1
�
aN0 ; x

�
; x
�
= US

�
y2
�
x; aN2 (x)

�
; x
�

(35)

for x = x�; where aN2 (x) is determined by (28) ; (29) ; and (30) :

Since N is arbitrary in this argument, we have shown that for any N; there is at most

one solution to (2) :

Proof of Theorem 2. The equilibrium of the game is the initial condition aN0 (h) = 0;

the �nal condition aNN (h) = 1; together with the system of equations

US
�
yNi (h) ; a

N
i (h)

�
= US

�
yNi+1 (h) ; a

N
i (h)

�
for i = 1; : : : ; N � 1: (36)

for i = 1; : : : ; N � 1:
Totally di¤erentiating (19) with respect to aNi and a

N
i�1 -suppressing the dependence of

these values on h for brevity - I obtain

daNi
daNi�1

=
US1
�
yNi ; a

N
i

� @yNi
@aNi�1

US1
�
yNi+1; a

N
i

� @yNi+1
@aNi

+ US2
�
yNi+1; a

N
i

�
� US1 (yNi ; aNi )

@yNi
@aNi

� US2 (yNi ; aNi )
:

By the fact that yNi < y
S
�
aNi
�
< yNi+1; I have U

S
1

�
yNi ; a

N
i

�
> 0 > US1

�
yNi+1; a

N
i

�
: Hence, the

numerator is positive. Moreover, since
@yNi+1
@aNi

;
@yNi
@aNi

2 (0; 1) ; the denominator is strictly larger
than

US1
�
yNi+1; a

N
i

�
+ US2

�
yNi+1; a

N
i

�
� US1

�
yNi ; a

N
i

�
� US2

�
yNi ; a

N
i

�
> 0;

where the conclusion follows from the fact that US1 (y; a) + U
S
2 (y; a) is nondecreasing in y:

Hence, daNi
daNi�1

> 0: An identical argument can be given to show that daNi
daNi+1

> 0: So, aNi is

increasing in aNi�1 and a
N
i+1:

Suppose that, for any given sequence of thresholds, yNi (g) > yNi (f) and y
N
i+1 (g) >

yNi+1 (f) for i = 1; : : : ; N �1: The equilibrium condition for the thresholds under distribution
f is

US
�
yNi (f) ; a

N
i (f)

�
= US

�
yNi+1 (f) ; a

N
i (f)

�
:
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Keep now the sequence unchanged, but change the distribution from f to g and adjust the

Receiver�s choices accordingly to

yNi (f; g) � yNi
�
aNi�1 (f) ; a

N
i (f) ; g

�
and

yNi+1 (f; g) = y
N
i

�
aNi (f) ; a

N
i+1 (f) ; g

�
To prove that aNi (g) > a

N
i (f) ; we need to show that

US
�
yNi (f; g) ; a

N
i (f)

�
� US

�
yNi+1 (f; g) ; a

N
i (f)

�
> 0:

To show this, we �rst establish that yNi (f; g) < y
S
�
aNi (f)

�
< yNi+1 (f; g) : Since y

N
i+1 (f; g) >

yNi+1 (f) and y
N
i+1 (f) > y

S
�
aNi (f)

�
; the second inequality is trivially satis�ed. So, it su¢ ces

to show that yNi (f; g) < yS
�
aNi (f)

�
: For b (!) > 0; we have yR

�
aNi (f)

�
< yS

�
aNi (f)

�
:

For any aNi�1 < a
N
i ; we have y

N
i

�
aNi�1; a

N
i

�
< yR

�
aNi
�
: Therefore, it follows that yNi (f; g) <

yS
�
aNi (f)

�
: Thus, we have shown that US1

�
y; aNi (f)

�
> 0 for all y 2

�
yNi (f) ; y

N
i (f; g)

�
and

US1
�
y; aNi (f)

�
< 0 for all y 2

�
yNi+1 (f) ; y

N
i+1 (f; g)

�
: Notice that

US
�
yNi (f; g) ; a

N
i (f)

�
� US

�
yNi+1 (f; g) ; a

N
i (f)

�
= US

�
yNi (f; g) ; a

N
i (f)

�
� US

�
yNi+1 (f; g) ; a

N
i (f)

�
�
�
US
�
yNi (f) ; a

N
i (f)

�
� US

�
yNi+1 (f) ; a

N
i (f)

��
=

yNi (f;g)Z
yNi (f)

US1
�
y; aNi (f)

�
dy �

Z yNi+1(f;g)

yNi+1(f)

US1
�
y; aNi (f)

�
dy:

The �rst equality follows from the fact that US
�
yNi (f) ; a

N
i (f)

�
�US

�
yNi+1 (f) ; a

N
i (f)

�
= 0;

the second from the fundamental theorem of di¤erentiation. By the arguments just made,

we have
yNi (f;g)Z
yNi (f)

US1
�
y; aNi (f)

�
dy �

Z yNi+1(f;g)

yNi+1(f)

US1
�
y; aNi (f)

�
dy > 0:

The next step is to show that US
�
yNi (f; g) ; a

N
i (f)

�
� US

�
yNi+1 (f; g) ; a

N
i (f)

�
is decreasing
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in aNi (f) : Di¤erentiating the di¤erence, we have

@

@aNi (f)

�
US
�
yNi (f; g) ; a

N
i (f)

�
� US

�
yNi+1 (f; g) ; a

N
i (f)

��
= US1

�
yNi (f; g) ; a

N
i (f)

� @yNi (f; g)
@aNi (f)

+ US2
�
yNi (f; g) ; a

N
i (f)

�
�US1

�
yNi+1 (f; g) ; a

N
i (f)

� @yNi+1 (f; g)
@aNi (f)

� US2
�
yNi+1 (f; g) ; a

N
i (f)

�
By the now familiar arguments, we have

@

@aNi (f)

�
US
�
yNi (f; g) ; a

N
i (f)

�
� US

�
yNi+1 (f; g) ; a

N
i (f)

��
< US1

�
yNi (f; g) ; a

N
i (f)

�
+ US2

�
yNi (f; g) ; a

N
i (f)

�
� US1

�
yNi+1 (f; g) ; a

N
i (f)

�
� US2

�
yNi+1 (f; g) ; a

N
i (f)

�
� 0;

where the last inequality uses that US1 (y; a)+U
S
2 (y; a) is nondecresing in y: So, U

S
�
yNi (f; g) ; a

N
i (f)

�
�

US
�
yNi+1 (f; g) ; a

N
i (f)

�
is indeed decreasing in aNi (f) : Hence, to reset the di¤erence equal

to zero, we need to increase aNi (f) : Hence, a
N
i (g) > a

N
i (f) :

Proof of Theorem 3. To prove the theorem, I construct symmetric equilibria and

show that the equilibrium thresholds in such symmetric equilibria are more spread out for

distribution g.

Part i: symmetric equilibria.

There are two cases to distinguish: a) N is even and b) N is odd. I provide a detailed

proof of case a and sketch the argument for case b:

a) Suppose N is even. In a symmetric equilibrium, aNN
2

(h) = :5 for h = f; g: Consider

now the half-support for ! � :5 and ignore the thresholds aNi (h) for i >
N
2
for the time

being. In what follows I suppress the dependence of the thresholds on the distribution

where this can be done without creating confusion. De�ne !Ni = E
�
!j! 2

�
aNi�1; a

N
i

��
and

!Ni+1 = E
�
!j! 2

�
aNi ; a

N
i+1

��
: Suppose the thresholds aNi for i � N

2
are a solution to (2) with

initial condition aN0 = 0 and �nal condition a
N
N
2

(h) = :5; thus - using the fact that utilities

are quadratic - �
aNi + b

�
aNi
��
� !Ni = !Ni+1 �

�
aNi + b

�
aNi
��
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for i = 1; : : : ; N
2
� 1: Letting �i � :5� aNi ; I can write

(:5� �i + b (:5� �i))� !Ni = !Ni+1 � (:5� �i + b (:5� �i))

for i = 1; : : : ; N
2
� 1: Rearranging, I have

(��i + b (:5� �i)) + :5� !Ni + :5� !Ni+1 = � (��i + b (:5� �i)) (37)

Let now j (i) = N
2
+
�
N
2
� i
�
= N � i and �j � aNj � :5: We wish to show that (37) implies

that �
aNj(i) + b

�
aNj(i)

��
� !Nj(i) = !Nj(i)+1 �

�
aNj(i) + b

�
aNj(i)

��
for i = 1; : : : ; N

2
�1 describes an equilibrium sequence of thresholds on the upper half-support.

Substituting for �j

(�j + :5 + b (�j + :5))� !Nj = !Nj+1 � (�j + :5 + b (�j + :5))

and rearranging

(�j + b (�j + :5)) = !
N
j � :5 + !Nj+1 � :5� (�j + b (�j + :5)) : (38)

Clearly, for �i = �j, I have :5 � !Ni = !Nj � :5 and :5 � !Ni+1 = !Nj+1 � :5 by symmetry of
the distribution. Moreover, (38) characterizes an equilibrium sequence of thresholds for the

upper half support i¤

2�i � 2b (:5� �i) = 2�j + 2b (�j + :5) ;

which is satis�ed since b (:5� �) = b (� + :5) :
b) N is odd. In this case I take aNN+1

2
�1 as a given �nal condition on the lower half of

the support and aNN+1
2

as a given initial condition on the upper half of the support. The

equilibrium construction works in two steps. In the �rst step, aNN+1
2
�1 and a

N
N+1
2

are arbitrary

but for the requirement that aNN+1
2

� :5 = :5 � aNN+1
2
�1: Given this restriction, I can apply

the argument of part a) to the supports
h
0; aNN+1

2
�1

i
and

h
aNN+1

2

; 1
i
: In the second step, the

distance aNN+1
2

�:5 is adjusted to make the entire construction an equilibrium. This establishes
that, given uniqueness, the equilibrium must be symmetric.

Part ii: equilibria are more spread out under distribution g:

33



Consider �rst the case where N is even. I can apply Theorem 2 to the half-supports�
0; 1

2

�
, since for any symmetric equilibrium with N even I have aNN

2

(h) = :5: It follows that

aNi (g) < aNi (f) for i <
N
2
: The properties on the upper half-support follow from the fact

that the distribution and bias are symmetric around the mean, thus aNi (g) > aNi (f) for

i > N
2
:

For the case where N is odd, consider �rst the supports
h
0; aNN+1

2
�1 (f)

i
and

h
aNN+1

2

(f) ; 1
i

where the bounds aNN+1
2
�1 (f) and a

N
N+1
2

(f) are the equilibrium thresholds for the distribution

f: Note that theses thresholds satisfy t aNN+1
2

(f)� :5 = :5�aNN+1
2
�1 (f) : Applying Theorem 2

to these supports, I �nd that for given ��nal condition�aNN+1
2
�1 (f) ; changing the distribution

from f to g; shifts all the conditional means i = 1; : : : ; N+1
2
� 1 and all the threshold types

i = 1; : : : ; N+1
2
� 2 downwards. By symmetry, all conditional means and thresholds types

i = N+1
2
+1; : : : ; N�1 are shifted upwards for given aNN+1

2

(f) : Note that the truncated mean

over the interval
h
aNN+1

2
�1 (f) ; a

N
N+1
2

(f)
i
is by symmetry equal to :5:

By the fact that the initial construction is an equilibrium under distribution f; I have�
aNN+1

2
�1 (f) + b

�
aNN+1

2
�1 (f)

��
� !NN+1

2
�1 (f) = :5�

�
aNN+1

2
�1 (f) + b

�
aNN+1

2
�1 (f)

��
;

where I have substituted !NN+1
2

= :5: Changing the distribution to g; I have�
aNN+1

2
�1 (f) + b

�
aNN+1

2
�1 (f)

��
� !NN+1

2
�1 (g) > :5�

�
aNN+1

2
�1 (f) + b

�
aNN+1

2
�1 (f)

��
;

since !NN+1
2
�1 (g) < !

N
N+1
2
�1 (f) by the argument made above. By logconcavity, the left-hand

side is non-decreasing in aNN+1
2
�1; the right-hand side is decreasing in a

N
N+1
2
�1: Hence, decreas-

ing aNN+1
2
�1 decreases the left-hand side and increases the right-hand side, so a

N
N+1
2
�1 (g) <

aNN+1
2
�1 (f) :
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