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Abstract

This paper analyzes a two-player game of strategic experimentation with three-armed

exponential bandits in continuous time. Players face replica bandits, with one arm

that is safe in that it generates a known payoff, whereas the likelihood of the risky

arms’ yielding a positive payoff is initially unknown. It is common knowledge that the

types of the two risky arms are perfectly negatively correlated. I show that the efficient

policy is incentive-compatible if, and only if, the stakes are high enough. Moreover,

learning will be complete in any Markov perfect equilibrium with continuous value

functions if, and only if, the stakes exceed a certain threshold.
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1 Introduction

Instances abound where economic agents have to decide whether to use their current infor-

mation optimally, or whether to forgo current payoffs in order to gather information which

might potentially be parlayed into higher payoffs come tomorrow. Often, though, economic

agents do not make these decisions in isolation; rather, the production of information is a

public good. Think, for instance, of firms exploring neighboring oil fields, or a research team

investigating a certain hypothesis, where it is not possible to assign credit to the individ-

ual researcher actually responsible for the decisive breakthrough. The canonical framework

to analyze these questions involving purely informational externalities is provided by the

literature on strategic experimentation with bandits.1

As information is a public good, one’s first intuition may be that, on account of free-

riding, there will always be inefficiently little experimentation in equilibrium. Indeed, the

previous literature on strategic experimentation with bandits shows that, with positively

correlated two-armed bandits,2 there never exists an efficient equilibrium; with negatively

correlated bandits,3 there exists an efficient equilibrium if, and only if, stakes are below a

certain threshold. In his canonical Moral Hazard in Teams paper, Holmström (1982) shows

that a team cannot produce efficiently in the absence of a budget-breaking principal, on

account of payoff externalities between team members. Surprisingly, though, my analysis

shows that, in a model with purely informational externalities in which players can choose

whether to investigate a given hypothesis or its negation, the efficient solution becomes

incentive compatible if the stakes at play exceed a certain threshold. The extension of

players’ action sets to include how they go about investigating a given hypothesis thus

matters greatly for the results.

Specifically, I consider two players operating replica three-armed exponential bandits in

continuous time.4 One arm is safe in that it yields a known flow payoff, whereas the other two

arms are risky, i.e. they can be either good or bad. As the risky arms are meant to symbolize

two mutually incompatible hypotheses, I assume that it is common knowledge that exactly

one of the risky arms is good. The bad risky arm never yields a positive payoff, whereas a

good risky arm yields positive payoffs after exponentially distributed times. As the expected

1See e.g. Bolton & Harris (1999, 2000), Keller, Rady, Cripps (2005), Klein & Rady (2010), Keller & Rady

(2010); for an overview of the bandit literature, consult Bergemann & Välimäki (2008).
2See the papers by Bolton & Harris (1999, 2000), Keller, Rady, Cripps (2005), Keller & Rady (2010).
3See the paper by Klein & Rady (2010).
4The single-agent two-armed exponential model has first been analyzed by Presman (1990); Keller, Rady,

Cripps (2005) have introduced strategic interaction into the model; Klein & Rady (2010) have then introduced

negative correlation into the strategic model.
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payoff of a good risky arm exceeds that of the safe arm, players will want to know which risky

arm is good. As either player’s actions, as well as the outcomes of his experimentation, are

perfectly publicly observable, there is an incentive for players to free-ride on the information

the other player is providing; information is a public good. Moreover, observability, together

with a common prior, implies that the players’ beliefs agree at all times. As only a good

risky arm can ever yield a positive payoff, all the uncertainty is resolved as soon as either

player has a breakthrough on a risky arm of his and beliefs become degenerate at the true

state of the world. In the absence of such a breakthrough, players incrementally become

more pessimistic about that risky arm that is more heavily utilized. As all the payoff-

relevant strategic interaction is captured by the players’ common belief process, I restrict

players to using stationary Markov strategies with their common posterior belief as the

state variable, thus making my results directly comparable to those in the previous strategic

experimentation literature.

In the game with positively correlated two-armed bandits, Keller, Rady, Cripps (2005)

find two dimensions of inefficiency in any equilibrium: The overall amount of the resource

devoted over time to the risky arm conditional on there not having been a breakthrough,

the so-called experimentation amount, is too low, as is the intensity of experimentation, i.e.

the resources devoted to the risky arm at a given instant t. Analyzing negatively correlated

two-armed bandits, Klein & Rady (2010) find that, while the experimentation intensity may

be inefficient, the experimentation amount is at efficient levels.5 In particular, learning will

be complete, i.e. beliefs will almost surely eventually become degenerate at the true state

of the world in any equilibrium, if, and only if, efficiency so requires. Here, I show that

learning will be complete in any equilibrium with continuous value functions for exactly the

same parameter range as is the case in Klein & Rady (2010). In the present model, however,

complete learning is efficient for a wider set of parameters, as both players can reap the

benefits of a breakthrough, while in Klein & Rady (2010) one player will be stuck with the

losing project.

There are two distinct effects at play that make players in the three-armed setup perform

better than in the two-armed model. The first effect is also apparent in the comparison of

the planner’s solutions, and is based on a strictly positive option value to both players’

having access to the initially less auspicious approach. The second effect is less obvious,

and purely strategic: Indeed, while even the lower appertaining planner’s solution is not

compatible with equilibrium in the two-armed model,6 the higher planner’s solution can be

5If the correlation is −1, this is true for all Markov Perfect equilibria. If correlation is imperfect, there

always exists a Markov Perfect equilibrium with this property.
6As already mentioned, the negatively correlated case with low stakes provides a notable exception, cf.

Klein & Rady (2010).
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achieved in equilibrium with three arms, if the stakes are high enough. The reason for this

is that with the stakes high enough, the safe option of doing essentially nothing becomes

so unattractive that it can be completely disregarded. But then, since there are no payoff

rivalries or switching costs in my model, given an opponent behaves in the same fashion,

a player is willing to go for the project that looks momentarily more promising, which is

exactly what efficiency requires. In Klein & Rady (2010), by contrast, players will always

choose the safe option if their assigned task looks sufficiently hopeless.

Having characterized the single-agent and the utilitarian planner’s solutions, which are

both symmetric, I construct a symmetric Markov perfect equilibrium with the players’ com-

mon posterior belief as the state variable for all parameter values. For those parameters

where learning is incomplete in equilibrium, I find that the experimentation amount, as

well as the intensity, are inefficiently low. This obtains because, as in Keller, Rady, Cripps

(2005), there is no encouragement effect in these equilibria,7 and hence experimentation will

stop at the single-agent cutoff rather than the more pessimistic efficient cutoff, which takes

into account that both players benefit from finding out which project is good. Indeed, as is

characteristic of the team production paradigm, individual players do not take into account

that their efforts are also benefiting their partner.

The planner’s and the single agent’s solutions, as well as the equilibria I construct, all

exhibit continuous value functions. I show in section 4 that learning will be complete in any

equilibrium with continuous value functions, provided the stakes at play exceed a certain

threshold.

The present paper is related to a fast-growing strand of literature on bandits. Whereas

the introduction of strategic interaction into the model is due to Bolton & Harris (1999),

the use of bandit models in economics harks back to the discrete-time model of Rothschild

(1974).8 While the first papers analyzing strategic interaction featured a Brownian motion

model (Bolton & Harris, 1999, 2000), the exponential framework I use has proved itself to be

more tractable (cf. Keller, Rady, Cripps, 2005, Keller & Rady, 2010, Klein & Rady, 2010).

These previous papers analyzed variants of the two-armed positively correlated model, with

the exception of Klein & Rady (2010), who introduced negative correlation into the literature.

7The encouragement effect was first identified in the Brownian motion model of Bolton & Harris (1999).

It makes players experiment at beliefs that are more pessimistic than their single-agent cutoff, because they

will have a success with a non-zero probability, which will make the other players more optimistic also,

thus inducing them to provide more experimentation, from which the first player can then benefit. With

fully revealing breakthroughs as in this model, as well as in Keller, Rady, Cripps (2005) and Klein & Rady

(2010), however, a player could not care less what others might do after a breakthrough, as there will not

be anything left to learn. Therefore, there is no encouragement effect in these models.
8Bandit models have been analyzed as early as the 1950s; see e.g. Bradt, Johnson, Karlin (1956).
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While the afore-mentioned papers, as well as the present one, assume both actions and

outcomes to be public information, there has been one recent contribution by Bonatti &

Hörner (2010) analyzing strategic interaction under the assumption that only outcomes are

publicly observable, while actions are private information.9 Rosenberg, Solan, Vieille (2007),

as well as Murto & Välimäki (2006), analyze the two-armed problem of public actions and

private outcomes in discrete time, assuming action choices are irreversible.10

Bergemann & Välimäki (1996, 2000) analyze strategic experimentation in buyer-seller

setups. In their 1996 model, they investigate the case of a single buyer facing multiple firms

offering a product of differing, and initially unknown, quality, and show that experimentation

is efficient in any Markov perfect equilibrium in this setting. With multiple buyers and two

firms, one of which offers a product of known quality, whereas the other firm’s product quality

is initially unknown, equilibrium results in excessive experimentation.11 The reason for this is

that price competition leads the “risky” firm to subsidize experimentation beyond efficient

levels. If there are many different markets, though, with each having its own, separate,

incumbent firm, while the same “risky” firm is active in all the markets, incumbents price

more aggressively as they also benefit from the experimentation being performed in other

markets. Indeed, Bergemann & Välimäki (2000) show that as the number of markets grows

large, experimentation tends toward efficient levels.

Manso (2010) analyzes the case of a single worker, who can either shirk, or take risks

and innovate, or produce in an established, safe, manner. In a two-period model, he shows

that, in order to induce risk taking, the principal will optimally be very tolerant of, or even

reward, early failure and long-term success. In a related fully dynamic continuous-time

model, Klein (2010) also shows that incentives are optimally provided through continuation

values after breakthroughs. He furthermore shows that the principal will optimally choose to

implement the efficient amount of experimentation. Chatterjee & Evans (2004) analyze an R

& D race also involving payoff externalities in discrete time, where it is common knowledge

that exactly one of several projects is good. As in my model, they allow players to switch

projects at any point in time.

Recently, there has also been an effort at generalization of existing results in the decision-

theoretic bandit literature. For example, Bank & Föllmer (2003), as well as Cohen & Solan

(2009), analyze the single-agent problem when the underlying process is a general Lévy

process, while Camargo (2007) analyzes the effects of correlation between the arms of a

9Bonatti & Hörner’s (2010) is not a full-blown experimentation model, though; indeed, their game stops

as soon as there has been a breakthrough, implying that there is no positive value of information. Therefore,

no player will ever play risky below his myopic cutoff.
10In my model, by contrast, players can switch between bandit arms at any time completely free of costs.
11cf. Bergemann & Välimäki (2000).
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two-armed bandit operated by a single decision maker.

The rest of the paper is structured as follows: Section 2 introduces the model; sec-

tion 3 analyzes the benchmarks provided by the single agent’s and the utilitarian planner’s

problems; section 4 analyzes some long-run properties of equilibrium learning; section 5 an-

alyzes the non-cooperative game, exposing a symmetric Markov perfect equilibrium for all

parameter values, and a necessary and sufficient condition for the existence of an efficient

equilibrium; section 6 concludes. Proofs are provided in the appendix.

2 The Model

I consider a model of two players, either of whom operates a replica three-armed bandit

in continuous time. Bandits are of the exponential type as studied e.g. in Keller, Rady

& Cripps (2005). One arm is safe in that it yields a known flow payoff of s; both other

arms, A and B, are risky, and it is commonly known that exactly one of these risky arms is

good and one is bad. The bad risky arm never yields any payoff; the good risky arm yields

a positive payoff with a probability of λ dt if played over a time interval of length dt; the

appertaining expected payoff increment amounts to g dt. The constants λ and g are assumed

to be common knowledge between the players. In order for the problem to be interesting,

we assume that a good risky arm is better than a safe arm, which is better than a bad risky

arm, i.e. g > s > 0.

The objective of both players is to maximize their expected discounted payoffs by choos-

ing the fraction of their flow resource they want to allocate to either risky arm. Specifically,

either player i chooses a stochastic process {(ki,A, ki,B)(t)}0≤t which is measurable with re-

spect to the information filtration that is generated by the observations available up to time

t, with (ki,A, ki,B)(t) ∈ {(a, b) ∈ [0, 1]2 : a + b ≤ 1} for all t; ki,A(t) and ki,B(t)) denote the

fraction of the resource devoted by player i at time t to risky arms A and B, respectively.

Throughout the game, either player’s actions and payoffs are perfectly observable to the

other player. At the outset of the game, the players share a common prior belief that risky

arm A is the good one, which I denote by p0. Thus, players share a common posterior pt

at all times t. Thus, specifically, player i seeks to maximize his total expected discounted

payoff

E

[
∫ ∞

0

r e−r t [(1 − ki,A(t) − ki,B(t))s + (ki,A(t)pt + ki,B(t)(1 − pt)) g] dt

]

,

where the expectation is taken with respect to the processes {pt}t∈R+
and {(ki,A, ki,B)(t)}t∈R+

.
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As can immediately be seen from this objective function, there are no payoff externalities

between the players; the only channel through which the presence of the other player may

impact a given player is via his belief pt, i.e. via the information that the other player is

generating. Thus, ours is a game of purely informational externalities.

As only a good risky arm can ever yield a lump sum, breakthroughs are fully revealing.

Thus, if there is a lump sum on risky arm A (B) at time τ , then pt = 1 (pt = 0) at all t > τ .

If there has not been a breakthrough by time τ , Bayes’ Rule yields

pτ =
p0e

−λ
∫ τ

0
KA,t dt

p0e
−λ

∫ τ

0
KA,t dt + (1 − p0)e

−λ
∫ τ

0
KB,t dt

,

where KA,t := k1,A(t) + k2,A(t) and KB,t := k1,B(t) + k2,B(t). Thus, conditional on no

breakthrough having occurred, the process {pt}t∈R+
will evolve according to the law of motion

ṗt = −(KA,t − KB,t)λpt(1 − pt)

almost everywhere.

As all payoff-relevant strategic interaction is captured by the players’ common posterior

beliefs {pt}t∈R+
, it seems quite natural to focus on Markov perfect equilibria with the players’

common posterior belief pt as the state variable. As is well known, this restriction is without

loss of generality in the single agent’s and the planner’s problems, which are studied in

Section 3. In the non-cooperative game, the restriction rules out history-dependent play

that is familiar from discrete-time models.12 A Markov strategy for player i is any piecewise

continuous function (ki,A, ki,B) : [0, 1] → {(a, b) ∈ [0, 1]2 : a + b ≤ 1}, pt 7→ (ki,A, ki,B)(pt),

implying that ki,B(p) − ki,A(p) exhibits a finite number of jumps. However, this definition

does not guarantee the existence, and even less the uniqueness, of a solution to Bayes’ Rule,

which now amounts to

pτ =
p0e

−λ
∫ τ

0
KA(pt) dt

p0e
−λ

∫ τ

0
KA(pt) dt + (1 − p0)e

−λ
∫ τ

0
KB(pt) dt

,

if there has not been a breakthrough by time τ , with KA(pt) := k1,A(pt) + k2,A(pt) and

KB(pt) := k1,B(pt) + k2,B(pt). Further restrictions on the players’ strategy spaces are hence

needed to ensure that their actions and payoffs be well-defined and uniquely pinned down. I

shall call admissible all strategy pairs for which Bayes’ rule admits of a solution that coincides

with the limit of the unique discrete-time solution. This in effect boils down to ruling out

those strategy pairs for which there either is no solution in continuous time, or for which the

solution is different from the discrete-time limit.

12See e.g. Bergin & McLeod (1993) for appropriate continuous-time concepts.
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All that matters for the admissibility of a given strategy pair is the behavior of the func-

tion ∆(p) := sgn{KB(p)−KA(p)} at those beliefs p‡ where a change in sign occurs, i.e. where

it is not the case that limp↑p‡ ∆(p) = ∆(p‡) = limp↓p‡ ∆(p). Given my definition of strategies,

there are only finitely many such beliefs p‡, and hence both one-sided limits will exist. By

proceeding as in Klein & Rady (2010), one can show that admissibility has to be defined for

pairs of strategies, i.e. it is impossible to define a player’s set of admissible strategies without

reference to his opponent’s action. Now, a pair of strategies is admissible if, and only if, it

either exhibits no change in sign, or only changes in sign (limp↑p‡ ∆(p), ∆(p‡), limp↓p‡ ∆(p)) of

the following types: (1, 0, 1), (0, 0, 1), (−1, 0, 1), (−1, 0, 0), (−1, 0,−1), (−1, 1, 1), (−1,−1, 1),

(1, 0, 0), (0, 1, 1), (0, 0,−1), (−1,−1, 0), (1, 0,−1).

Each strategy pair (k1, k2) = ((k1,A, k1,B), (k2,A, k2,B)) induces a pair of payoff functions

(u1, u2) with ui given by

ui(p|k1, k2) =

1adm.E

[
∫ ∞

0

re−rt
{

(ki,A(pt)pt + ki,B(pt)(1 − pt))g + [1 − ki,A(pt) − ki,B(pt)]s
}

dt

∣

∣

∣

∣

p0 = p

]

for each i ∈ {1, 2}, where 1adm. is an indicator function that is 1 whenever the strategy pair

is admissible. Thus, non-admissible strategy pairs lead to payoffs of u1 = u2 = 0.

In the subsequent analysis, it will prove useful to make case distinctions based on the

stakes at play, as measured by the ratio of the expected payoff of a good risky arm over

that of a safe arm (g

s
), the players’ impatience (as measured by the discount rate r), and the

Poisson arrival rate of a good risky arm λ, which can be interpreted as the players’ innate

ability at finding out the truth: I say that the stakes are high if g

s
≥ 4(r+λ)

2r+3λ
; stakes are

intermediate if 2r+λ
r+λ

< g

s
<

4(r+λ)
2r+3λ

; stakes are low if g

s
≤ 2r+λ

r+λ
; they are very low if g

s
<

2(r+λ)
r+2λ

.

3 Two Benchmarks

3.1 The Single-Agent Problem

I denote by kA and kB the fraction of the resource that the single agent dedicates to risky

arms A and B, respectively. The law of motion for the state variable is then given by the

following expression:

ṗt = −(kA(pt) − kB(pt))λpt(1 − pt), for a.a. t.
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Straightforward computations show the Bellman equation to be given by13

u(p) = s + max
{(kA,kB)∈[0,1]2:kA+kB≤1}

{kA[BA(p, u) − cA(p)] + kB[BB(p, u) − cB(p)]} ,

where cA(p) := s − pg and cB(p) := s − (1 − p)g measure the myopic opportunity costs

of playing risky arm A (risky arm B) rather than the safe arm BA(p, u) := λ
r
p[g − u(p) −

(1 − p)u′(p)] and BB(p, u) := λ
r
(1 − p)[g − u(p) + pu′(p)], by contrast, measure the value of

information gleaned from playing risky arm A (or risky arm B, respectively).14

Playing risky arm A, e.g., would yield an expected instantaneous payoff of pg rather

than s. Thus, a myopic agent, i.e. one who was only interested in maximizing his current

payoff, would prefer risky arm A over the safe arm if, and only if, p > pm, where pm = s
g

is defined by cA(pm) = 0. By the same token, he would prefer risky arm B over the safe

arm, if, and only if, p < 1 − pm. A far-sighted agent, however, derives a learning benefit

over and above the myopic benefit from using either risky arm. Indeed, as the uncertainty

is about the distribution underlying the risky arms, the only way for the agent to learn is

to play a risky arm. Conceptually, while 1
r

measures the discounting, pλ[g − u(p)] measures

the expected value of a potential jump, as λ is the Poisson arrival rate of a breakthrough on

risky arm A given that the arm is good while p is the probability that it is good; g is the

value the agent jumps to in case of a success, while u(p) is the value he jumps from. The

second component, −λp(1 − p)u′(p) = u′(p) dp, captures the incremental change in value as

a result of the infinitesimal movement in beliefs that is brought about by the agent’s playing

risky if there is no breakthrough.

As the Bellman equation is linear in the agent’s choice variables, it is without loss of

generality for me to restrict my attention to corner solutions, for which it is straightforward

to derive closed-form solutions for the value function:

If the agent sets (kA, kB)(p) = (0, 0), then u(p) = s.

If he sets (kA, kB)(p) = (1, 0), then his value function satisfies the following ODE:

λp(1 − p)u′(p) + (r + λp)u(p) = (r + λ)pg,

which is solved by

u(p) = pg + C(1 − p)Ω(p)
r
λ ,

where C is some constant of integration, and Ω(p) := 1−p

p
is the odds ratio.

13By standard arguments, if a continuously differentiable function solves the Bellman equation, it is the

value function; see also Klein & Rady (2010).
14By the standard principle of smooth pasting, the agent’s payoff function from playing an optimal policy

is once continuously differentiable.
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If he sets (kA, kB)(p) = (0, 1), then his value function satisfies the following ODE:

λp(1 − p)u′(p) − (r + λ(1 − p))u(p) = −(r + λ)(1 − p)g,

which is solved by

u(p) = (1 − p)g + CpΩ(p)−
r
λ .

If at some belief p both (kA, kB)(p) = (1, 0) and (kA, kB)(p) = (0, 1) are optimal, then

so is (kA, kB)(p) = (1
2
, 1

2
), and the agent’s value amounts to u(p) = r+λ

2r+λ
g =: u11.

The optimal policy for the single agent depends on whether the stakes at play, as

measured by the ratio g

s
, exceed the threshold of 2r+λ

r+λ
or not. Note that g

s
≤ 2r+λ

r+λ
if and

only if p∗1 ≥
1
2
, where p∗1 ≡

rs
(r+λ)g−λs

denotes the optimal single-agent cutoff in the standard

two-armed problem with one safe and one risky arm A, and 1 − p∗1 is the corresponding

threshold for the two-armed problem with one safe arm and one risky arm B.15

Proposition 3.1 (Single-Agent Solution for Low Stakes) If g

s
< 2r+λ

r+λ
, the single agent

will optimally play his risky arm B in [0, 1 − p∗1[, his safe arm in [1 − p∗1, p
∗
1], and his risky

arm A in ]p∗1, 1]. His value function is given by

u(p) =















(1 − p)g +
λp∗

1

λp∗
1
+r

(Ω(p)Ω(p∗1))
− r

λ pg if p ≤ 1 − p∗1

s if 1 − p∗1 ≤ p ≤ p∗1

pg +
λp∗

1

λp∗
1
+r

(

Ω(p)
Ω(p∗

1
)

)
r
λ

(1 − p)g if p ≥ p∗1.

This solution continues to be optimal if g

s
= 2r+λ

r+λ
.

The result is illustrated in figure 1. The agent thus optimally behaves as though he

was operating a two-armed bandit with one safe arm and one risky arm of that type that

is initially more likely to be good. With low enough stakes, therefore, the option value of

having an additional risky arm is 0.

As is easily verified, the optimal solution implies incomplete learning. Indeed, let us

suppose that it is risky arm A that is good. Then, if the initial prior p0 is in [0, 1− p∗1[, then

limt→∞ pt = 1 − p∗1 with probability 1. If p0 ∈ [1 − p∗1, p
∗
1], then pt = p0 for all t, since the

agent will always play safe. If p0 ∈]p∗1, 1], it is straightforward to show that the belief will

converge to p∗1 with probability Ω(p0)
Ω(p∗

1
)
, while the truth will be found out (i.e. the belief will

jump to 1) with the counter-probability.

If g

s
> 2r+λ

r+λ
, which is the case if and only if u11 > s, the single agent will never avail

himself of the option to play safe. Specifically, we have the following proposition:

15cf. Proposition 3.1. in Keller, Rady, Cripps (2005).

9



s
0

g

1−p∗1 1
2

p∗1 1

Figure 1: The single-agent value function for g

s
< 2r+λ

r+λ
.

Proposition 3.2 (Single-Agent Solution for Intermediate and High Stakes) If g

s
>

2r+λ
r+λ

, the agent will play his risky arm B at all beliefs p < 1
2

and his risky arm A at all beliefs

p > 1
2
. At p = 1

2
, he will split his resources equally between his risky arms. His value function

is given by

u(p) =

{

(1 − p)g + pΩ(p)−
r
λ

λ
2r+λ

g if p ≤ 1
2

pg + (1 − p)Ω(p)
r
λ

λ
2r+λ

g if p ≥ 1
2
.

This solution continues to be optimal if g

s
= 2r+λ

r+λ
.

The result is illustrated in figure 2.

Thus, there now is an option value to having access to the alternative risky project,

as for any p ∈ [0, 1], there is now a positive probability of the agent’s ending up at p = 1
2
,

and thus using the project that initially looked less promising. The single agent’s behavior

at p = 1
2

is dictated by the need to ensure a well-defined time path for the belief.16 Note

that whenever stakes exceed the threshold of 2r+λ
r+λ

, the single agent will make sure learning

is complete, i.e. the truth will be found out with probability 1.

3.2 The Planner’s Problem

I now turn to the investigation of a benevolent utilitarian planner’s solution to the two-

player problem at hand. As the planner does not care about the distribution of surplus,

16cf. also Presman (1990).
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s

u11

0

g

1
2

1

Figure 2: The single agent’s value function for g

s
> 2r+λ

r+λ
.

and both players are equally apt at finding out the truth, all that matters to him is the

sum of resources devoted to both risky arms of type A (B), which I denote by KA (KB).

Straightforward computations show that the planner’s Bellman equation is given by

u(p) = s + max
{(KA,KB)∈[0,2]2:KA+KB≤2}

{

KA

[

BA(p, u) −
cA(p)

2

]

+ KB

[

BB(p, u) −
cB(p)

2

]}

.

Again, the planner’s problem is linear in the choice variables, and we can therefore

without loss of generality restrict our attention to corner solutions.

If KA = KB = 0 is optimal, u(p) = s.

If KA = 2 and KB = 0 is optimal, the Bellman equation is tantamount to the following

ODE:

2λp(1 − p)u′(p) + (2λp + r)u(p) = (2λ + r)pg,

which is solved by

u(p) = pg + C(1 − p)Ω(p)
r
2λ ,

where C is again some constant of integration.

If KA = 0 and KB = 2 is optimal, the Bellman equation amounts to the following ODE:

−2λ(1 − p)pu′(p) + (2λ(1 − p) + r)u(p) = (1 − p)(r + 2λ)g,

which is solved by

u(p) = (1 − p)g + CpΩ(p)−
r
2λ .

11



If (2, 0) and (0, 2), and therefore also (1, 1), are optimal, the planner’s value satisfies

u(p) =
r + 2λ

2(r + λ)
g =: u11.

Which policy is optimal will again depend on the stakes at play, though this time the

relevant threshold is different from the single agent’s problem, namely 2(r+λ)
r+2λ

. Note that
g

s
≤ 2(r+λ)

r+2λ
if and only if p∗2 ≥

1
2
, where p∗2 ≡

rs
(r+2λ)(g−s)+rs

.

Proposition 3.3 (Planner’s Solution for Very Low Stakes) If g

s
<

2(r+λ)
r+2λ

, the plan-

ner will play the same arm on both bandits at all beliefs. Specifically, he will play arm A on

]p∗2, 1], arm B on [0, 1 − p∗2[, and safe on [1 − p∗2, p
∗
2]. The corresponding payoff function is

given by

u(p) =















(1 − p)g +
2λp∗

2

2λp∗
2
+r

p (Ω(p)Ω(p∗2))
− r

2λ g if p ≤ 1 − p∗2,

s if 1 − p∗2 ≤ p ≤ p∗2,

pg +
2λp∗

2

2λp∗
2
+r

(1 − p)
(

Ω(p)
Ω(p∗

2
)

)
r
2λ

g if p ≥ p∗2.

This solution continues to be optimal if g

s
= 2(r+λ)

r+2λ
.

The planner’s solution thus has pretty much the same structure as the single agent’s

solution for low stakes; as the latter, it implies incomplete learning. However, it is a different

cutoff, namely p∗2, that is relevant now. p∗2 is always strictly less than p∗1, and is familiar

from the two-player two-armed bandit problem with perfect positive correlation,17 where

the utilitarian planner will apply the cutoff p∗2. As in the low-stakes single-agent problem,

the value of the risky project that is less likely to be good is so low that it does not play

a role in the optimization problem. The planner is more reluctant, though, completely to

forsake the less auspicious project, simply because, in case of a success, he gets twice the

goodies, so information is more valuable to him than it is to the single agent. This effect is

absent in the negatively correlated two-armed bandit case, which is why in Klein & Rady

(2010) the relevant cutoff continues to be p∗1 for the planner.

Proposition 3.4 (Planner’s Solution for Stakes that Are Not Very Low) If g

s
>

2(r+λ)
r+2λ

,

the planner will play the same arm on both bandits at almost all beliefs. Specifically, he will

play arm A on ]1
2
, 1] and arm B on [0, 1

2
[. At p = 1

2
, he will split his resources equally between

the risky arms. The corresponding payoff function is given by

u(p) =

{

(1 − p)g + λ
r+λ

pΩ(p)−
r
2λ g if p ≤ 1

2
,

pg + λ
λ+r

(1 − p)Ω(p)
r
2λ g if p ≥ 1

2
.

17cf. Keller, Rady, Cripps (2005)
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This solution continues to be optimal if g

s
= 2(r+λ)

r+2λ
.

At the knife-edge case of g

s
= 2(r+λ)

r+2λ
, the planner is indifferent over all three arms at

p = 1
2
. Yet, in order to ensure a well-defined time path of beliefs, he has to set KA(1

2
) =

KB(1
2
) ∈ [0, 1].

Note that if the stakes at play are not very low, the planner’s solution implies complete

learning, i.e. he will make sure the truth will eventually be found out with probability 1. As a

matter of fact, the solution is quite intuitive: As the planner does not care which of the risky

arms is good, the solution is symmetric around p = 1
2
. Furthermore, it is straightforward to

verify that as g

s
≥ 2(r+λ)

r+2λ
, playing risky always dominates the safe arm as u11 ≥ s. However,

on account of the linear structure in the Bellman equation, it is always the case that either

(2, 0) or (0, 2) dominates (1, 1). Therefore, the only candidate for a solution has the planner

switch at p = 1
2
. At the switch point p = 1

2
itself, the planner’s actions are pinned down by

the need to ensure a well-defined law of motion of the state variable.

4 Long-Run Equilibrium Learning

Previous literature has noted that with perfectly positively correlated two-armed bandits,

learning is always incomplete, i.e. there is a positive probability that the truth will never be

found out. As a matter of fact, Keller, Rady, and Cripps (2005) find that, on account of free-

riding incentives, the overall amount of experimentation performed over time is inefficiently

low in any equilibrium. On the other hand, Klein & Rady (2010) find that with perfectly

negatively correlated bandits, the amount of experimentation is at efficient levels in any

equilibrium; in particular, learning will be complete in any equilibrium if and only if efficiency

so requires.

The purpose of this section is to derive conditions under which, in our framework,

learning will be complete in any equilibrium in which players’ value functions are continuous.

To this end, I define as u∗
1 the value function of a single agent operating a bandit with only

a safe arm and a risky arm A, while I denote by u∗
2 the value function of a single agent

operating a bandit with only a safe arm and a risky arm B. It is straightforward to verify

that u∗
2(p) = u∗

1(1 − p) for all p and that18

u∗
1(p) =







s if p ≤ p∗1,

pg +
λp∗

1

λp∗
1
+r

(

Ω(p)
Ω(p∗

1
)

)
r
λ

(1 − p)g if p ≥ p∗1
.

18cf. Prop.3.1 in Keller, Rady, Cripps (2005)
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The following lemma tells us that u∗
1 and u∗

2 are both lower bounds on players’ value functions

in any equilibrium with continuous value functions.

Lemma 4.1 (Lower Bound on Equilibrium Payoffs) Let u ∈ C0 be a player’s value

function. Then, u(p) ≥ max{u∗
1(p), u∗

2(p)} for all p ∈ [0, 1].

The intuition for this result is very straightforward. Indeed, there are only informational

externalities, no payoff externalities, in our model. Thus, intuitively, a player can only benefit

from any information his opponent provides him for free; therefore, he should be expected

to do at least as well as if he were by himself, forgoing the use of one of his risky arms to

boot.

Now, if g

s
> 2r+λ

r+λ
, then p∗1 < 1

2
< 1 − p∗1, so at any belief p, we have that u∗

1(p) > s or

u∗
2(p) > s or both. Thus, there cannot exist a p such that (k1,A, k1,B)(p) = (k2,A, k2,B)(p) =

(0, 0) be mutually best responses as this would mean u1(p) = u2(p) = s. This proves the

following proposition:

Proposition 4.2 (Complete learning) If g

s
> 2r+λ

r+λ
, learning will be complete in any

Markov perfect equilibrium with continuous value functions.

It is the same threshold 2r+λ
r+λ

above which complete learning is efficient, and prevails

in any equilibrium, in the perfectly negatively correlated two-armed bandit case.19 In our

setting, however, complete learning is efficient for a larger set of parameters, as we saw in

Proposition 3.4.

Moreover, the planner’s solution is an obvious upper bound on players’ average equilib-

rium payoffs. If g

s
<

2(r+λ)
r+2λ

, we know from Proposition 3.4 that the planner’s value is s on

the non-degenerate interval [1 − p∗2, p
∗
2]. Since there cannot be an open interval on which a

player’s value is less than s, it will be s almost everywhere on [1−p∗2, p
∗
2]. Since either player

can always guarantee himself a payoff of s by playing safe forever, so that s is an obvious

lower bound on either player’s equilibrium payoffs, this means both players’ value must be s

on [1− p∗2, p
∗
2] in any equilibrium. Therefore, in any equilibrium, both players uniquely play

safe almost everywhere in [1 − p∗2, p
∗
2], implying the following proposition:

Proposition 4.3 (Incomplete Learning) If g

s
<

2(r+λ)
r+2λ

, learning will be incomplete in

any equilibrium.

19cf. Klein & Rady (2010).
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5 Strategic Problem

Proceeding as before, I find that the Bellman equation for player i (i 6= j) is given by20

ui(p) = s + kj,ABA(p, ui) + kj,BBB(p, ui)

+ max
{(ki,A,ki,B)∈[0,1]2:ki,A+ki,B≤1}

{ki,A [BA(p, ui) − cA(p)] + ki,B [BB(p, ui) − cB(p)]} .

As players are perfectly symmetric in that they are operating two replicas of the same

bandit, the Bellman equation for player j looks exactly the same. It is noteworthy that a

player only has to bear the opportunity costs of his own experimentation, while the benefits

accrue to both, which indicates the presence of free-riding incentives.

On account of the linear structure of the optimization problem, we can restrict our

attention to the nine pure strategy profiles, along with three indifference cases per player.

Each of these cases leads to a first-order ordinary differential equation (ODE). Details, as

well as closed-form solutions, are provided in Appendix A.

5.1 Necessary Conditions for Best Responses

The linearity of the problem provides us with a powerful tool to derive necessary conditions

for a certain strategy combination ((k1,A, k1,B), (k2,A, k2,B)) to be consistent with mutually

best responses on an open set of beliefs.21 As an example, suppose player 2 is playing (1, 0).

If player 1’s best response is given by (1, 0), it follows immediately from the Bellman equation

that it must be the case that BA(p, u1) ≥ cA(p) and BA(p, u1) − BB(p, u1) ≥ cA(p) − cB(p)

for all p in the open interval in question. Moreover, we know that on the open interval in

question, the player’s value function satisfies

2λp(1 − p)u′
1(p) + (2λp + r)u1(p) = (2λ + r)pg,

20By the smooth pasting principle, player i’s payoff function from playing a best response is once contin-

uously differentiable on any open interval on which (kj,A, kj,B)(p) in continuous. If (kj,A, kj,B)(p) exhibits a

jump at p, u′
i(p), which is contained in the definitions of BA and BB , is to be understood as the one-sided

derivative in the direction implied by the motion of beliefs. In either instance, standard results imply that

if for a certain fixed (kj,A, kj,B), the payoff function generated by the policy (ki,A, ki,B) solves the Bellman

equation, then (ki,A, ki,B) is a best response to (kj,A, kj,B).
21As we keep player j’s strategy (kj,A, kj,B) fixed on an open interval of beliefs, player i’s value function

ui (i 6= j) is of class C1 on that open interval. Therefore, by standard arguments, ui solves the Bellman

equation on the open interval in question.
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which can be plugged into the two inequalities above, yielding a necessary condition for

(k1,A, k1,B) = (1, 0) to be a best response to (k2,A, k2,B) = (1, 0). Proceeding in this manner

for the possible pure-strategy combinations gives us necessary conditions for a certain pure-

strategy combination to be consistent with mutually best responses on an open interval of

beliefs, which I report as an auxiliary result in Appendix A.

5.2 Efficiency

Inefficiency because of free-riding has hitherto been a staple result of the literature on strate-

gic experimentation (cf. Bolton & Harris, 1999, 2000, Keller, Rady, Cripps, 2005, Keller &

Rady, 2010). Introducing negative correlation into the strategic experimentation literature,

Klein & Rady (2010) find that efficient behavior is incentive-compatible if and only if the

stakes are low enough. The essential reason for this is as follows: With the stakes low enough,

it is clear that the more pessimistic player will never play risky; therefore, the more opti-

mistic player, not having an opportunity to free-ride on his opponent’s efforts, will behave

efficiently. As a matter of fact, Klein & Rady’s (2010) efficient equilibrium disappears as soon

as the players’ single-agent cutoffs overlap, and free-riding incentives come into play again.

Here, though, the opposite result prevails: The efficient solution is incentive-compatible if,

and only if, the stakes are high enough, as the following proposition shows.

Proposition 5.1 (Efficient Equilibrium) There exists an efficient equilibrium if and only

if g

s
≥ 4(r+λ)

2r+3λ
.

Indeed, the mechanism ensuring existence of an efficient equilibrium for low stakes in

Klein & Rady (2010) cannot be at work here, since both players are operating replica bandits.

Therefore, if one player has an incentive to experiment given the other player abstains from

experimentation, then so does the other player, and free-riding motives enter the picture, no

matter how low the stakes might be. One possible intuition for why we here obtain efficiency

for high stakes is as follows: For high enough stakes, players would never consider the safe

option. Moreover, the efficient policy coincides with the single-agent policy, namely, either

implies both players’ playing risky, at full throttle, on the arm that is more likely to be good.

Therefore, for a player to deviate from this policy in equilibrium, he has to be given special

incentives to do so; in the absence of such incentives, e.g. when the other player sticks to

the efficient policy, a player’s best response calls for his doing the efficient thing also, i.e.

there exists an efficient equilibrium. However, for free-riding incentives to be totally eclipsed,

stakes have to exceed a threshold that is higher than the one making sure a single agent

would never play safe. Indeed, as we have seen, stakes higher than this latter threshold
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only ensure that learning will be complete in any equilibrium, i.e. while the experimentation

amount is at efficient levels, the intensity does not reach efficient levels as long as g

s
<

4(r+λ)
2r+3λ

.

While it is not surprising that the utilitarian planner, who now has more options, should

always be doing better than the planner in Klein & Rady (2010), who could not transfer

resources between the two types of risky arm, it may seem somewhat surprising that the

players should now be able to achieve even this higher efficient benchmark, while they could

not achieve the lower benchmark in the perfectly negatively correlated two-armed model in

Klein & Rady (2010). Indeed, with the stakes high enough, free-riding incentives can be

overcome completely in non-cooperative equilibrium.

5.3 Symmetric Equilibrium for Low And Intermediate Stakes

The purpose of this section is to construct a symmetric equilibrium for those parameter

values for which there does not exist an efficient equilibrium. I define symmetry in keeping

with Bolton & Harris (1999) as well as Keller, Rady, Cripps (2005):

Definition An equilibrium is said to be symmetric if equilibrium strategies ((k1,A, k1,B), (k2,A, k2,B))

satisfy (k1,A, k1,B)(p) = (k2,A, k2,B)(p) ∀p ∈ [0, 1].

As a matter of course, in any symmetric equilibrium, u1(p) = u2(p) for all p ∈ [0, 1]. I

shall denote the players’ common value function by u.

5.3.1 Low Stakes

Recall that the stakes are low if, and only if, the single-agent cutoffs for the two risky arms

do not overlap. It can be shown that in this case the symmetric equilibrium in Keller, Rady,

and Cripps (Prop. 5.1, 2005) will survive in the sense that there exists an equilibrium that

is essentially two copies of the Keller, Rady, and Cripps equilibrium, mirrored at the p = 1
2

axis. Specifically, we have the following proposition:

Proposition 5.2 (Symmetric MPE for Low Stakes) If g

s
≤ 2r+λ

r+λ
, there exists a sym-

metric equilibrium where both players exclusively use the safe arm on [1 − p∗1, p
∗
1], the risky

arm A above the belief p̂ > p∗1, and the risky arm B at beliefs below 1− p̂, where p̂ is defined

implicitly by

Ω(pm)−1 − Ω(p̂)−1 =
r + λ

λ

[

1

1 − p̂
−

1

1 − p∗1
− Ω(p∗1)

−1 ln

(

Ω(p∗1)

Ω(p̂)

)]

.
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In [p∗1, p̂], the fraction kA(p) = u(p)−s

cA(p)
is allocated to risky arm A, while 1− kA(p) is allocated

to the safe arm; in [1 − p̂, 1 − p∗1], the fraction kB(p) = u(p)−s

cB(p)
is allocated to risky arm B,

while 1 − kB(p) is allocated to the safe arm.

Let Vh(p) := pg + Ch(1 − p)Ω(p)
r
2λ , and Vl(p) := (1 − p)g + ClpΩ(p)−

r
2λ . Then, the

players’ value function is given by u(p) = W (p) if 1 − p̂ ≤ p ≤ p̂, where W (p) is defined by

W (p) :=















s + r
λ
s
[

Ω(p∗1)
−1

(

1 − p

p∗
1

)

− p ln
(

Ω(p)
Ω(p∗

1
)

)]

if 1 − p̂ ≤ p ≤ 1 − p∗1

s if 1 − p∗1 ≤ p ≤ p∗1

s + r
λ
s
[

Ω(p∗1)
(

1 − 1−p

1−p∗
1

)

− (1 − p) ln
(

Ω(p∗
1
)

Ω(p)

)]

if p∗1 ≤ p ≤ p̂

;

u(p) = Vh(p) if p̂ ≤ p, while u(p) = Vl(p) if p ≤ 1− p̂, where the constants of integration Ch

and Cl are determined by Vh(p̂) = W (p̂) and Vl(1 − p̂) = W (1 − p̂), respectively.

Thus, in this equilibrium, even though either player knows that one of his risky arms

is good, whenever the uncertainty is greatest, the safe option is attractive to the point that

he cannot be bothered to find out which one it is. When players are relatively certain which

risky arm is good, they invest all their resources in that arm. When the uncertainty is

of medium intensity, the equilibrium has the flavor of a mixed-strategy equilibrium, with

players devoting a uniquely determined fraction of their resources to the risky arm they

deem more likely to be good, with the rest being invested in the safe option. As a matter

of fact, the experimentation intensity decreases continuously from kA(p̂) = 1 to kA(p∗1) = 0

(from kB(1− p̂) = 1 to kB(1−p∗1) = 0). Even though players’ Bellman equations are linear in

the strategy variable, the equilibrium requires them to use interior levels of experimentation.

Intuitively, the situation is very much reminiscent of the classical Battle of the Sexes game:

If one’s partner experiments, one would like to free-ride on his efforts; if one’s partner plays

safe, though, one would rather do the experimentation himself than give up on finding out

the truth. Now, in symmetric equilibrium, the experimentation intensities are chosen in

exactly such a manner as to render the other player indifferent between experimenting and

playing safe, thus making him willing to mix over both his options.

Having seen that there exists an equilibrium implying incomplete learning, and exhibit-

ing continuous value functions, for g

s
≤ 2r+λ

r+λ
, we are now in a position to strengthen our

result on complete learning:

Corollary 5.3 (Complete Learning) Learning will be complete in any Markov Perfect

equilibrium with continuous value functions if and only if g

s
> 2r+λ

r+λ
.

For perfect negative correlation, Klein & Rady (2010) found that with the possible

exception of the knife-edge case where g

s
= 2r+λ

r+λ
, learning was going to be complete in any
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equilibrium if and only if complete learning was efficient. While complete learning obtains

in any equilibrium with continuous value functions for the exact same parameter set in both

models, here, by contrast, we find that if 2(r+λ)
r+2λ

< g

s
≤ 2r+λ

r+λ
, efficiency uniquely calls for

complete learning, yet there exists an equilibrium entailing incomplete learning. This is

because with three-armed bandits information is more valuable to the planner, as in case of

a success he gets the full payoff of a good risky arm. With negatively correlated two-armed

bandits, however, the planner cannot shift resources between the two types of risky arm;

thus, his payoff in case of a success is just g+s

2
.

5.3.2 Intermediate Stakes

For intermediate stakes, the equilibrium I construct is essentially of the same structure as

the previous one: It is symmetric and it requires players to mix on some interval of beliefs.

However, there does not exist an interval where both players play safe, so that players will

always eventually find out the true state of the world, even though they do so inefficiently

slowly.

Proposition 5.4 (Symmetric MPE for Intermediate Stakes) If 2r+λ
r+λ

< g

s
<

4(r+λ)
2r+3λ

,

there exists a symmetric equilibrium. Let p̌ := λ+r
λ

(2pm − 1), and W(p) be defined by

W(p) :=

{

s + r+λ
λ

(g − s) − r
λ
ps (2 + ln(Ω(p))) if p ≤ 1

2

s + r+λ
λ

(g − s) − r
λ
(1 − p)s (2 − ln(Ω(p))) if p ≥ 1

2

Now, let p
†
1 > 1

2
and p

†
2 > 1

2
be defined by W(p†1) =

λ+r(1−p
†
1
)

λ+r
g and W(p†2) = 2s − p

†
2g,

respectively. Then, let p† ≡ p
†
1 if p

†
1 ≥ p̌; otherwise, let p† ≡ p

†
2.

In equilibrium, both players will exclusively use their risky arm A in [p†, 1], and their

risky arm B in [0, 1 − p†]. In ]1
2
, p†], the fraction kA(p) = W(p)−s

cA(p)
is allocated to risky arm

A, while 1 − kA(p) is allocated to the safe arm; in [p†, 1
2
[, the fraction kB(p) = W(p)−s

cB(p)
is

allocated to risky arm B, while 1−kB(p) is allocated to the safe arm. At p = 1
2
, a fraction of

kA(1
2
) = kB(1

2
) = (λ+r)g−(2r+λ)s

λ(2s−g)
is allocated to either risky arm, with the rest being allocated

to the safe arm.

Let Vh(p) := pg + Ch(1 − p)Ω(p)
r
2λ , and Vl(p) := (1 − p)g + ClpΩ(p)−

r
2λ . Then, the

players’ value function is given by u(p) = W(p) in [1− p†, p†], by u(p) = Vh(p) in [p†, 1], and

u(p) = Vl(p) in [0, 1 − p†], with the constants of integration Ch and Cl being determined by

Vh(p
†) = W(p†) and Vl(1 − p†) = W(1 − p†).

Thus, no matter what initial prior players start out from, there is a positive probability

beliefs will end up at p = 1
2
, and hence they will try the risky project that looked initially
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less auspicious. Therefore, in contrast to the equilibrium for low stakes, there is a positive

value attached to the option of having access to the second risky project.

6 Conclusion

I have analyzed a game of strategic experimentation with three-armed bandits, where the two

risky arms are perfectly negatively correlated. In so doing, I have constructed a symmetric

equilibrium for all parameter values. Furthermore, we have seen that any equilibrium is inef-

ficient if stakes are below a certain threshold, and that any equilibrium with continuous value

functions involves complete learning if stakes are above a certain threshold. In particular, if

the stakes are high, there exists an efficient equilibrium and learning will be complete in any

equilibrium with continuous value functions. If stakes are intermediate in size, all equilibria

are inefficient, though they involve complete learning (provided there are no discontinuities

in the value functions), as required by efficiency. If the stakes are low but not very low, all

equilibria are inefficient; there exists an equilibrium that involves incomplete learning, while

efficiency requires complete learning. If the stakes are very low, the efficient solution implies

incomplete learning; all equilibria involve incomplete learning and are inefficient.

While I have only investigated the case of perfect negative correlation, the impact of

general pessimism à la Klein & Rady (2010) on the existence of an efficient equilibrium

might constitute an interesting object of further investigation. It seems clear that, in this

problem, the planner’s solution would feature (0, 0) on [0, p∗2]
2, (2, 0) for pA > max{pB, p∗2},

(0, 2) for pB > max{pA, p∗2}, and (1, 1) for pA = pB > p∗2. One would have to expect that

((1, 0), (1, 0)) could not be sustained in equilibrium for pA > max{pB, p∗2} and pA close to p∗2

for the same reasons as in the present paper. However, ((1, 0), (1, 0)) would clearly prevail

in a neighborhood of (pA, pB) = (1, 0). As is easy to see from the appertaining laws of

motion,
pB,t

1−pA,t
would remain constant in this neighborhood. One might now expect that

if the ratio of initial beliefs
pB,0

1−pA,0
was close enough to 1, ((1, 0), (1, 0)) could be sustained

along the ray pB,t = (1 − pA,t)
pB,0

1−pA,0
all the way to the hyperplane pA,t = pB,t. Once this

hyperplane is reached, admissibility considerations should guarantee the implementability of

((1
2
, 1

2
), (1

2
, 1

2
)) for all pA,t = pB,t ∈ [p∗2,

1
2
]. This would imply that the efficient solution was

incentive compatible if, and only if, both hypotheses’ being wrong was initially very unlikely.

I leave a full exploration of these conjectures for future work.

Furthermore, it could be interesting to explore the additional trade-offs arising when

players differed with respect to their innate learning abilities, as parameterized by the Poisson

arrival rate of breakthroughs. Analyzing these additional trade-offs that would appear, if,
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say, player 1 was able to learn faster on risky arm A, while player 2 was faster with risky

arm B might yield insights into conditions under which there is excessive, or insufficient,

specialization in equilibrium. I intend to explore these questions in future research.
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Appendix

A Closed-Form Solutions And An Auxiliary Result

If ((0, 0), (0, 0)) is played, it is easy to see that u1(p) = u2(p) = s.

If ((1, 0), (1, 0)) is played, both players’ value functions satisfy the following ODE:

2λp(1 − p)u′(p) + (2λp + r)u(p) = (2λ + r)pg,

which is solved by

u(p) = pg + C(1 − p)Ω(p)
r
2λ ,

where C is some constant of integration.

If ((0, 1), (0, 1)) is played, both players’ value functions satisfy the following ODE:

−2λp(1 − p)u′(p) + (2λ(1 − p) + r)u(p) = (2λ + r)(1 − p)g,

which is solved by

u(p) = (1 − p)g + CpΩ(p)−
r
2λ .

If ((0, 1), (1, 0)) is played, player 1’s value function is linear:

u1(p) =
λ + r(1 − p)

λ + r
g.

By the same token, player 2’s value is also linear,

u2(p) =
λ + rp

λ + r
g.

Symmetrically, if ((1, 0), (0, 1)) is played we have:

u1(p) =
λ + rp

λ + r
g,

and

u2(p) =
λ + r(1 − p)

λ + r
g.

If ((0, 0), (1, 0)) is played, player 1’s value satisfies the following ODE:

λp(1 − p)u′(p) + (λp + r)u(p) = rs + λpg,

which is solved by

u1(p) = s +
λ

λ + r
p(g − s) + C(1 − p)Ω(p)

r
λ ,

while player 2’s value satisfies

λp(1 − p)u′(p) + (λp + r)u(p) = (λ + r)pg,

which is solved by

u2(p) = pg + C(1 − p)Ω(p)
r
λ .
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Symmetrically, if ((1, 0), (0, 0)) is played, player 1’s value satisfies the following ODE:

λp(1 − p)u′(p) + (λp + r)u(p) = (λ + r)pg,

which is solved by

u1(p) = pg + C(1 − p)Ω(p)
r
λ .

Meanwhile, player 2’s value satisfies:

λp(1 − p)u′(p) + (λp + r)u(p) = rs + λpg,

which is solved by

u2(p) = s +
λ

λ + r
p(g − s) + C(1 − p)Ω(p)

r
λ .

If ((0, 0), (0, 1)) is played, player 1’s value satisfies the following ODE:

λp(1 − p)u′(p) − (r + λ(1 − p))u(p) = −rs − λ(1 − p)g,

which admits of the solution

u1(p) = s +
λ

r
g +

λ

r
p[

λ

r
g − (g − s)] + CpΩ(p)−

r
λ .

As for player 2, his value evolves according to:

λp(1 − p)u′(p) − (r + λ(1 − p))u(p) = −(1 − p)(r + λ)g,

which is solved by

u2(p) = (1 − p)g + CpΩ(p)−
r
λ .

Symmetrically, if ((0, 1), (0, 0)) is played, player 1’s value satisfies the following ODE:

λp(1 − p)u′(p) − (r + λ(1 − p))u(p) = −(1 − p)(r + λ)g,

which is solved by

u1(p) = (1 − p)g + CpΩ(p)−
r
λ .

Player 2’s value, by contrast, satisfies

λp(1 − p)u′(p) − (r + λ(1 − p))u(p) = −rs − λ(1 − p)g,

which admits of the solution

u2(p) = s +
λ

r
g +

λ

r
p[

λ

r
g − (g − s)] + CpΩ(p)−

r
λ .

Moreover, there are three indifference cases for player i: He might be indifferent between his

risky arm A and his safe arm, between his risky arm B and his safe arm, or between his two risky

arms of opposite types.
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If player i is indifferent between his safe arm and his risky arm A, his value function satisfies

the following ODE:

λp(1 − p)u′(p) + λpu(p) = (λ + r)pg − rs,

which is solved by

ui(p) = s +
r + λ

λ
(g − s) +

r

λ
s(1 − p) ln [Ω(p)] + C(1 − p).

If player i is indifferent between his safe arm and his risky arm B, his value function satisfies

the following ODE:

λp(1 − p)u′(p) − λ(1 − p)u(p) = rs − (r + λ)(1 − p)g,

which is solved by

ui(p) = s +
r + λ

λ
(g − s) −

r

λ
sp ln [Ω(p)] + Cp.

If player i is indifferent between both his risky arms, his value function satisfies the following

ODE:

2λp(1 − p)u′(p) + λ(2p − 1)u(p) = (λ + r)(2p − 1)g,

which is solved by

ui(p) =
r + λ

λ
g + C

√

p(1 − p).

An Auxiliary Result

The logic we discussed in section 5.1 of the main text gives us the following auxiliary result, which

will be useful in the proofs of Propositions 4.3, 5.1, and 5.4.

Lemma A.1 Let P ⊂]0, 1[ be an open interval of beliefs in which the action profile remains con-

stant, and let p ∈ P.

Let kj(p) = (0, 0). Then the following statements hold:

• If player i’s best response is given by ki(p) = (0, 0), then ui(p) = s.

• If player i’s best response is given by ki(p) = (1, 0) or ki(p) = (0, 1), then ui(p) ≥ max{s, r+λ
2r+λ

g}.

Let kj(p) = (1, 0). Then the following statements hold:

• If player i’s best response is given by ki(p) = (0, 0), then
λ+r(1−p)

λ+r
g ≤ ui(p) ≤ 2s − pg.

• If player i’s best response is given by ki(p) = (1, 0), then ui(p) ≥ max{λ+r(1−p)
λ+r

g, 2s − pg}.

• If player i’s best response is given by ki(p) = (0, 1), then ui(p) = λ+r(1−p)
λ+r

g and p ≤ min{1−

pm, r+λ
2r+3λ

}.

Let kj(p) = (0, 1). Then the following statements hold:

• If player i’s best response is given by ki(p) = (0, 0), then λ+rp
λ+r

g ≤ ui(p) ≤ 2s − (1 − p)g.
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• If player i’s best response is given by ki(p) = (1, 0), then ui(p) = λ+rp
λ+r

g and p ≥ max{pm, r+2λ
2r+3λ

}.

• If player i’s best response is given by ki(p) = (0, 1), then ui(p) ≥ max{λ+rp
λ+r

g, 2s− (1− p)g}.

As r+λ
2r+3λ

< 1
2 < r+2λ

2r+3λ
, the lemma immediately implies that in no equilibrium ((1, 0), (0, 1)) or

((0, 1), (1, 0)) can arise on an open interval. If furthermore g
s
≥ 2, and hence 2s − pg ≤ λ+r(1−p)

λ+r
g

for all p ∈ [0, 1], then ((1, 0), (0, 0)), ((0, 0), (1, 0)), ((0, 1), (0, 0)) and ((0, 0), (0, 1)) cannot arise on

an open interval either.

B Proofs

Proof of Proposition 3.1

The policy (kA, kB) implies a well-defined law of motion for the posterior belief. The function u

satisfies value matching and smooth pasting at p∗1 and 1 − p∗1, hence is of class C1. It is strictly

decreasing on ]0, 1− p∗[ and strictly increasing on ]p∗, 1[. Moreover, u = s + BB − cB on [0, 1− p∗],

u = s on [1 − p∗, p∗], and u = s + BA − cA on [p∗, 1] (I drop the arguments for simplicity), which

shows that u is indeed the planner’s payoff function from (k1, k2).

To show that u and this policy (kA, kB) solve the agent’s Bellman equation, and hence that

(k1, k2) is optimal, it is enough to establish that BA < cA and BB > cB on ]0, 1 − p∗[ , BA < cA

and BB < cB on ]1 − p∗, p∗[ , and BA > cA and BB < cB on ]p∗, 1[ . Consider this last interval.

There, u = s + BA − cA and u > s (by monotonicity of u) immediately imply BA > cA. It remains

to be shown that BA − cA > BB − cB. Using the appertaining differential equation, we have that

BA − BB = 2(u − pg) − λ
r
(g − u). It is now straightforward to show that BA − BB > cA − cB if

and only if u > r+λ
2r+λ

g. By the afore-mentioned monotonicity properties, we know that u > s; yet,
r+λ
2r+λ

g ≤ s if and only if g
s
≤ 2r+λ

r+λ
, i.e. if and only if the stakes are low. The other intervals are

dealt with in similar fashion.

Proof of Proposition 3.2

The policy (kA, kB) implies a well-defined law of motion for the posterior belief. The function u

satisfies value matching and smooth pasting at p = 1
2 , hence is of class C1. It is strictly decreasing

on ]0, 1
2 [ and strictly increasing on ]12 , 1[. Moreover, u = s + BB − cB on [0, 1

2 ] and u = s + BA − cA

on [12 , 1], which shows that u is indeed the agent’s payoff function from (k1, k2).

Note that on account of u11 ≥ s, it can never be the case that 0 > max{BA − cA, BB − cB}.

Thus, all that remains to be shown is that BB − cB > BA − cA on ]0, 1
2 [ and BA − cA > BB − cB on

]12 , 1[. Consider this last interval. Plugging in the relevant ODE, we have that BA−cA = u−s, and

BB − cB = (1 + λ
r
)(g − u)− s; hence BA − cA > BB − cB is equivalent to u > r+λ

2r+λ
g = u11 = u(1

2),

which is satisfied on account of the afore-mentioned monotonicity properties. The other interval is

dealt with in a similar way.
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Proof of Proposition 3.3

The policy (KA,KB) implies a well-defined law of motion for the posterior belief. The function u

satisfies value matching and smooth pasting at p∗2 and 1 − p∗2, hence is of class C1. It is strictly

decreasing on [0, 1−p∗2] and strictly increasing on [p∗2, 1]. Moreover, u = s+2BB − cB on [0, 1−p∗2],

u = s on [1 − p∗2, p
∗
2], and u = s + 2BA − cA on [p∗2, 1], which shows that u is indeed the planner’s

payoff function from (k1, k2).

To show that u and this policy (KA,KB) solve the planner’s Bellman equation, it is enough to

establish that BB − cB

2 > max{0, BA− cA

2 } on ]0, 1−p∗2[, 0 > max{BA− cA

2 , BB − cB

2 } on ]1−p∗2, p
∗
2[,

BA − cA

2 > max{0, BB − cB

2 } on ]p∗2, 1[. Consider this last interval. There, u = s + 2BA − cA and

u > s (by monotonicity of u) immediately imply 2BA − cA > 0. It remains to be shown that

2BA − cA > 2BB − cB. Using the appertaining differential equation, we have that BA − BB =

u−pg− λ
r
(g−u). It is now straightforward to show that BA−BB > cA−cB

2 if and only if u > 2λ+r
2(r+λ)g.

By the afore-mentioned monotonicity properties, we know that u > s; yet, s ≥ 2λ+r
2(r+λ)g if and only

if g
s
≤ 2(r+λ)

2λ+r
, i.e. if and only if the stakes are very low. The other intervals are dealt with in similar

fashion.

Proof of Proposition 3.4

The policy (KA,KB) implies a well-defined law of motion for the posterior belief. The function u

satisfies value matching and smooth pasting at p = 1
2 , hence is of class C1. It is strictly decreasing

on ]0, 1
2 [ and strictly increasing on ]12 , 1[. Moreover, u = s+2BB−cB on [0, 1

2 ] and u = s+2BA−cA

on [12 , 1], which shows that u is indeed the planner’s payoff function from (KA,KB).

To show that u and this policy (KA,KB) solve the planner’s Bellman equation, it is enough to

establish that BB − cB

2 > max{0, BA − cA

2 } on ]0, 1
2 [, and BA − cA

2 > max{0, BB − cB

2 } on ]12 , 1[. To

start out, note that on account of u11 ≥ s, it can never be the case that 0 > max{BA− cA

2 , BB− cB

2 }.

Thus, all that remains to be shown is that BB − cB

2 > BA − cA

2 on ]0, 1
2 [ and BA − cA

2 > BB − cB

2

on ]12 , 1[. Consider this last interval. Using the appertaining differential equation, we have that

BA −BB = u−pg− λ
r
(g−u). It is now straightforward to show that BA −BB > cA−cB

2 if and only

if u > 2λ+r
2(r+λ)g = u11, which is satisfied on account of the afore-mentioned monotonicity properties

and the fact that u(1
2) = u11. The other interval is treated in a similar fashion.

Proof of Lemma 4.1

I shall first prove that u∗
1 is a lower bound on player i’s value function u, writing B∗

A(p) = BA(p, u∗
1),

and B∗
B(p) = BB(p, u∗

1). Henceforth, I shall suppress arguments whenever this is convenient. Since

p∗1 is the single-agent cutoff belief for player 1, we have u∗
1 = s for p ≤ p∗1 and u∗

1 = s+b∗1−c1 = pg+b∗1

for p > p∗1. Thus, if p < p∗1, the claim holds by continuity, because on any open interval between

any two points of discontinuity in his opponent’s strategy,22, a player can always guarantee himself

22Note that, on account of my definition of strategies, there can be only finitely many such points of

discontinuity.
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a payoff of at least s by playing (0, 0).

Now, let p ≥ p∗1. Then, noting that B∗
A = u∗

1 − pg, we have B∗
B = λ

r
[g − u∗

1]− (u∗
1 − gp). Thus,

B∗
B ≥ 0 if and only if u∗

1 ≤ λ+rp
λ+r

g =: w1(p). Let p̃ be defined by w1(p̃) = s; it is straightforward to

show that p̃ < p∗1. Noting furthermore that u∗
1(p

∗
1) = s, w1(1) = u∗

1(1) = g, and that w1 is linear

whereas u∗
1 is strictly convex in p, we conclude that u∗

1 < w1 and hence B∗
B > 0 on [p∗1, 1[ . As a

consequence, we have u∗
1 = pg + B∗

A ≤ pg + k2,BB∗
B + B∗

A on [p∗, 1].

Now, suppose u1 < u∗
1 at some belief. Since s is a lower bound on u1, this, by continuity,

implies the existence of a belief strictly greater than p∗1 where u1 < u∗
1 and u′

1 ≤ (u∗
1)

′. This

immediately yields BA > B∗
A > cA, as well as

kj,ABA + kj,BBB + max{BA − cA, BB − cB, 0} < max{B∗
A − cA, 0},

which, as B∗
A ≥ 0 (cf. Keller, Rady, Cripps, 2005), in turn implies BB < 0 and kj,B = 1. If ki,B = 1,

then u would amount to (1 − p)g + 2BB < (1 − p)g, a contradiction. Therefore, we have ki,A = 1,

and u = pg + BB + BA at the belief in question. But now,

u1 − u∗
1 ≥ pg + BB + BA − (pg + B∗

B + B∗
A) =

λ

r
(u∗

1 − u1) > 0,

a contradiction.

An analogous argument applies for u∗
2.

Proof of Proposition 4.3

First, I note that 2s − p∗2g = 2s − rsg
(r+2λ)(g−s)+rs

and
λ+r(1−p∗

2
)

λ+r
g = g − r

r+λ
rsg

(r+2λ)(g−s)+rs
are

strictly bigger than s. As p 7→ 2s − pg and p 7→ λ+r(1−p)
λ+r

g are both strictly decreasing in p, this

implies that either player i’s payoff function satisfies ui < min{2s − pg,
λ+r(1−p)

λ+r
g} on the entire

interval ]1 − p∗2, p
∗
2[. By Lemma A.1, this rules out ((1, 0), (1, 0)), ((0, 1), (0, 1)), ((0, 0), (1, 0)) and

((1, 0), (0, 0)) on any open subinterval. Noting that p 7→ 2s − (1 − p)g and p 7→ λ+rp
λ+r

g are both

strictly increasing in p, the same calculations rule out ((0, 1), (0, 0)) and ((0, 0), (0, 1)). Therefore,

((0, 0), (0, 0)) uniquely prevails almost everywhere on ]1 − p∗2, p
∗
2[.

Proof of Proposition 5.1

Suppose g
s
≥ 4(r+λ)

2r+3λ
. What is to be shown is that the action profiles ((1, 0), (1, 0)) and ((0, 1), (0, 1))

are mutually best responses on ]12 , 1], and [0, 1
2 [, respectively. At p = 1

2 , admissibility uniquely pins

down a player’s response to the other player’s action. By the characterization of efficiency (cf.

Proposition 3.4), both players’ respective value function if efficiency prevails is given by:

u(p) =

{

(1 − p)g + pΩ(p)−
r
2λ

λ
r+λ

g if p ≤ 1
2

pg + (1 − p)Ω(p)
r
2λ

λ
r+λ

g if p ≥ 1
2 .

Now, by Lemma A.1, it is sufficient to show that u(p) > max{λ+r(1−p)
λ+r

g, 2s − pg} on ]12 , 1], and

u(p) > max{λ+rp
λ+r

g, 2s−(1−p)g} on [0, 1
2 [. I shall only consider the former interval, as the argument

pertaining to the latter is perfectly symmetric.
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Simple algebra shows that if g
s
≥ 4(r+λ)

2r+3λ
, w(p) := λ+r(1−p)

λ+r
g ≥ 2s − pg everywhere in [12 , 1].

Since u(1
2) = w(1

2), and u is strictly increasing while w is strictly decreasing in ]12 , 1[, the claim

follows.

Suppose 2(r+λ)
r+2λ

≤ g
s

<
4(r+λ)
2r+3λ

, and define w̃(p) := 2s − pg. It is now straightforward to show

that w̃(1
2) > w(1

2) = u(1
2), and, therefore, by Lemma A.1, there exists a neighborhood to the right

of p = 1
2 in which (1, 0) is not a best response to (1, 0).

Suppose that the stakes are very low, i.e. g
s

<
2(r+λ)
r+2λ

. From our characterization of the efficient

solution (cf. Proposition 3.3), we know that BA(p∗2, u) =
cA(p∗

2
)

2 , and that the players’ value function

is given by

u(p) =















(1 − p)g +
2λp∗

2

2λp∗
2
+r

p (Ω(p)Ω(p∗2))
− r

2λ g if p ≤ 1 − p∗2,

s if 1 − p∗2 ≤ p ≤ p∗2,

pg +
2λp∗

2

2λp∗
2
+r

(1 − p)
(

Ω(p)
Ω(p∗

2
)

)
r
2λ

if p ≥ p∗2.

For the efficient actions to be incentive-compatible, it is necessary that BA ≥ cA on ]p∗2, 1]. Yet,

since u is of class C1, we have that limp↓p∗
2
BA(p, u) =

cA(p∗
2
)

2 < cA(p∗2), as p∗2 < pm.

Proof of Proposition 5.2

First, I show that p̂ as defined in the proposition indeed exists and is unique in ]p∗1, 1[. It is

immediate to verify that the left-hand side of the defining equation is decreasing, while the right-

hand side is increasing in p̂. Moreover, for p̂ = p∗1, the left-hand side is strictly positive, while the

right-hand side is zero. Now, for p̂ ↑ 1, the left-hand side tends to −∞, while the right-hand side

is positive. The claim thus follows by continuity.

The proposed policies imply a well-defined law of motion for the posterior belief. The function

u satisfies value matching and smooth pasting at p∗1 and 1 − p∗1, hence is of class C1. It is strictly

decreasing on ]0, 1− p∗1] and strictly increasing on ]p∗1, 1[. Moreover, u = s + 2BB − cB on [0, 1− p̂],

u = s+ kBBB on [1− p̂, 1− p∗1], u = s on [1− p∗1, p
∗
1], u = s+ kABA on [p∗1, p̂] and u = s+2BA − cA

on [p̂, 1], which shows that u is indeed the players’ payoff function from ((kA, kB), (kA, kB)).

Consider first the interval ]1− p∗1, p
∗
1[. It has to be shown that BA − cA < 0 and BB − cB < 0.

On ]1 − p∗1, p
∗
1[, we have that u = s and u′ = 0, and therefore BA − cA = λ+r

r
(pg − s). This

is strictly negative if and only if p < pm, which is verified as p∗1 < pm. By the same token,

BB − cB = λ+r
r

((1 − p)g − s). This is strictly negative if and only if p > 1 − pm, which is verified

as 1 − pm < 1 − p∗1.

Now, consider the interval ]p∗1, p̂[. Here, BA = cA by construction, as kA is determined by

the indifference condition and symmetry. It remains to be shown that BB ≤ cB here. Using the

relevant differential equation, I find that BB = λ
r
(g−u)+pg−s. This is less than cB = s− (1−p)g

if and only if u ≥ λ+r
λ

g − 2r
λ

s. Yet, λ+r
λ

g − 2r
λ

s ≤ s if and only if g
s
≤ 2r+λ

r+λ
, so that the relevant

inequality is satisfied. The interval ]1 − p̂, 1 − p∗1[ is treated in an analogous way.

Finally, consider the interval ]p̂, 1[. Plugging in the relevant differential equation yields BA −

BB = u − pg − λ
r
(g − u). This exceeds cA − cB = (1 − 2p)g if and only if u ≥ λ+r(1−p)

λ+r
g, which is
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satisfied as p 7→ λ+r(1−p)
λ+r

g is decreasing and
λ+r(1−p∗

1
)

λ+r
g < s whenever 1 − p∗1 < pm. The interval

]0, 1 − p̂[ is dealt with in similar fashion.

Proof of Proposition 5.4

The proposed policies imply a well-defined law of motion for the posterior belief. u is strictly

decreasing on ]0, 1
2 [ and strictly increasing on ]12 , 1[. Furthermore, as lim

p↑
1
2

u′(p) = lim
p↓

1
2

u′(p) = 0,

the function u is of class C1. Moreover, u = s+2BB −cB on [0, 1−p†], u = s+kBBB on [1−p†, 1
2 ],

u = s + kABA on [12 , p†] and u = s + 2BA − cA on [p†, 1], which shows that u is indeed the players’

payoff function from ((kA, kB), (kA, kB)).

To establish existence and uniqueness of p†, note that p 7→ λ+r(1−p)
λ+r

g and p 7→ 2s − pg are

strictly decreasing in p, whereas W is strictly increasing in p on ]12 , 1[. Now, W(1
2) = r+λ

λ
g − 2r

λ
s.

This is strictly less than
λ+ r

2

λ+r
g and 2s − g

2 whenever g
s

<
4(r+λ)
2r+3λ

. Moreover, W(1
2) strictly exceeds

λ+r(1−pm)
λ+r

g = g − r
r+λ

s and 2s− pmg = s whenever g
s

> 2r+λ
r+λ

. Thus, I have established uniqueness

and existence of p† and that p† ∈]12 , pm[.

By construction, u > max{λ+r(1−p)
λ+r

g, 2s − pg} in ]p†, 1], which, by Lemma A.1, implies that

((1, 0), (1, 0)) are mutually best responses in this region; by the same token, u > max{λ+rp
λ+r

g, 2s −

(1−p)g} in [0, 1−p†[, which, by Lemma A.1, implies that ((0, 1), (0, 1)) are mutually best responses

in that region.

Now, consider the interval ]12 , p†]. Here, BA = cA by construction, so all that remains to be

shown is BB ≤ cB. By plugging in the indifference condition on u′, I get BB = λ
r
(g − u) + pg − s.

This is less than cB = s− (1− p)g if and only if u ≥ λ+r
λ

g − 2r
λ

s = W(1
2) = u(1

2), which is satisfied

by the monotonicity properties of u. An analogous argument establishes BA ≤ cA on [1−p†, 1
2 [.
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paper, University of Tel Aviv, archived at http://arxiv.org/abs/0906.0835v1.

Holmström, B. (1982): “Moral Hazard in Teams,” Bell Journal of Economics, 13, 324–40.

Keller, G. and S. Rady (2010): “Strategic Experimentation with Poisson Bandits,”

30



Theoretical Economics, 5, 275–311.

Keller, G., S. Rady and M. Cripps (2005): “Strategic Experimentation with Exponen-

tial Bandits,” Econometrica, 73, 39–68.

Klein, N. and S. Rady (2010): “Negatively Correlated Bandits,” Review of Economic

Studies, forthcoming.

Klein, N. (2010): “The Importance of Being Honest,” working paper, University of Munich.

Manso, G. (2010): “Motivating Innovation,” working paper, MIT Sloan School of Manage-

ment.
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