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Abstract

In this paper, we study infinitely repeated games with imperfect public moni-

toring and the possibility of monetary transfers. We develop an efficient algorithm

to compute the set of pure strategy public perfect equilibrium payoffs for each dis-

count factor. We also show how all equilibrium payoffs can be implemented with

a simple class of stationary equilibria that use stick-and-carrot punishments.
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1 Introduction

The theory of infinitely repeated games is used to address a wide range of topics

in economics and social sciences, like employment relations, international agree-

ments, or cartels. Results that help to find equilibria in these games and numerical

procedures to quickly calculate examples are therefore of great importance. Al-

though several theoretical breakthroughs on how to compute equilibrium value

sets have been made, so far no exact algorithm exists to generally characterize the

set of sequential equilibrium payoffs in infinitely repeated games, even if attention

is restricted to public monitoring and pure strategies. In this paper, we present

an algorithm to exactly compute the set of pure strategy equilibrium payoffs for

arbitrary discount factors in infinitely repeated games with monetary transfers

and imperfect public monitoring.1

Developing methods to compute the set of equilibrium payoffs for general stage

games and arbitrary discount factors has been the focus of a small literature in-

cluding Abreu, Pearce and Stacchetti (1990, henceforth APS), Judd, Yeltekin and

Conklin (2003, henceforth JYC) as well as Cronshaw and Luenberger (1994) for

strongly symmetric equilibria. APS develop a conceptual algorithm to compute

the payoff sets for repeated games with imperfect monitoring and arbitrary dis-

count factors. They show that the set of perfect public equilibrium payoffs is a

fixed point of a monotone operator applied on candidates for the sets of equilib-

rium payoffs. One can iteratively apply this operator to compute the payoff set.

In each iteration, one has to solve a series of static problems with enforceable

continuation payoffs taken from the current candidate set of equilibrium payoffs.

Yet, as JYC point out, the general method of APS is not directly implementable

on a computer because it requires approximation of arbitrary sets.

JYC analyze the special case of perfect monitoring. In addition, they augment

the stage game by a public randomization device, which allows to restrict attention

to convex sets of continuation payoffs. They develop a method to compute upper

and lower approximations for the set of pure strategy subgame perfect equilibrium

payoffs and to construct strategy profiles that can support payoffs from the lower

approximation. The method of JYC is still limited in so far that finding fine

1A software package, programmed in R, that implements the algorithms is available on the

second author’s website http://www.wiwi.uni-bonn.de/kranz/software.htm

For a description of the software and several examples, see Kranz (2010).
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approximations for the equilibrium payoff sets for several discount factors remains

computationally expensive, it is restricted to games with perfect monitoring, and

does not provide much guidance for finding analytical closed-form solutions.

In the present paper, we allow for actions that can only be imperfectly moni-

tored, but make the assumption that observable monetary transfers can be con-

ducted. Our analysis is therefore only applicable to those economic environments

in which monetary transfers are plausible, which is true for many interactions.

Repeated games with monetary transfers have been used to study employment

relations (Levin 2002, 2003, Malcomson and MacLeod, 1989), sovereign lending

(Atkeson, 1991, Kletzer and Wright, 2000), team production (Doornik 2006, Rayo

2007), cartels2 (Harrington and Skrzypacz, 2007, and also Athey and Bagwell,

2001) or other business to business relationships (Baker, Gibbons and Murphy,

2002).

Most of these articles consider stationary equilibria in which a single action

profile is repeated in every period and any deviation from a required payment

will be punished by an infinite reversion to a Nash equilibrium of the stage game.

Levin (2003) shows that stationay equilibria are indeed optimal in a class of prin-

cipal agent games. Our paper extends this result by showing for a general class of

games that all public perfect equilibrium payoffs can be implemented by station-

ary equilibria that use stick-and-carrot punishments, in which a deviation from a

required monetary transfer is punished by playing a punishment action profile for

one period. We derive this result for the case that money burning is possible. We

also establish a related result for the case that players cannot burn money but use

a public correlation device.

The algorithm to compute the set of public perfect equilibrium payoffs boils

down to finding optimal action profiles for the equilibrium path and for the pun-

ishment of each player. Similar to the algorithms of APS and JYC, our algorithm

solves several static linear optimization problems for all relevant action profiles.

In APS and JYC these optimization problems have to be repeated for different

candidate sets of continuation payoffs and the whole algorithm has to be repeated

for different discount factors. In our framework, we show that a single number,

which has a natural interpretation as the totally available liquidity in a setting

with enforcable payments, already contains all relevant information about the set

2Harrington and Skrzypacz (2007) explain how the Lysine and Citric Acid Cartells imple-

mented monetary transfers via sales between the cartel members.
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of continuation payoffs. Standard re-optimization techniques allow to quickly solve

the static problems for all relevant levels of liquidity. One implication is that our

algorithm directly computes payoff sets for the whole interval of discount factors

and exactly characterizes the critical discount factors at which optimal equilibrium

and punishment action profiles change.

For the special case of perfect monitoring, we obtain closed-form solutions for

all static problems.3 To compute the sets of equilibrium payoffs for all discount

factors, one essentially has to calculate stage-game best-reply payoffs and sort

the stage game action profiles. The resulting characterization of all pure strategy

subgame perfect equilibrium payoffs is almost as simple as the one in Cronshaw and

Luenberger (1994), who provide a characterization of the set of strongly symmetric

subgame perfect equilibria in repeated games with perfect monitoring and a public

randomization device.

For arbitrary games with imperfect public monitoring, there is no general

closed-form solution for the static problems. Yet, we illustrate for a noisy prison-

ers’ dilemma game with a non-degenerate signal structure how analytical solutions

for the set of pure strategy public perfect equilibrium payoffs can be obtained. The

example also illustrates how, due to monitoring imperfections, money burning can

be optimal on the equilibrium path.

Money burning is a very explicit way of modeling inefficiencies that may opti-

mally arise in an equilibrium following a signal that indicates a deviation. Other

forms of inefficient continuation play can of course serve the same function. To

better understand the role of money burning, we characterize the payoff set in

repeated games in which players do not burn money but have access to a public

correlation device. In this framework, every equilibrium payoff can be implemented

by a modification of stationary equilibria: with some probability, which can de-

pend on the realized signal, there will be a transition to a collective punishment

state. We show how the equilibrium payoff set for the case without money burn-

ing can be computed by considering stationary equilibria that allow for money

burning but satisfy an additional constraint on the maximal amount of money

burning. In general, the set of equilibrium payoffs can shrink if money burning

is not possible. If, however, the stage game has a Nash equilibrium that gives

each player her min-max payoff, the possibility of money burning does not enlarge

3See also Kranz and Ohlendorf, (2009), where we derive a related result for two player games

with perfect monitoring in order to study renegotiation-proofness.
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the equilibrium payoff set of the repeated game. For games with perfect moni-

toring, money burning can only be neccesary to implement a Pareto dominated

equilibrium payoff.

The remainder of the paper is organized as follows: Section 2 describes the

model and stationary strategy profiles. Section 3 derives the main results. In

Section 4, we show how the results simplify for games with perfect monitoring and

illustrate the resulting algorithm with a simple Cournot game. Section 5 illustrates

for a noisy prisoners’ dilemma game how closed-form analytical solutions can be

obtained for games with imperfect public monitoring. In Section 6, we explore the

case without money burning. Section 7 briefly concludes.

2 Model and Stationary Strategy Profiles

2.1 The game

We consider an infinitely repeated n-player game with imperfect public monitoring

and common discount factor δ ∈ [0, 1). The timing in each period is as follows:

at the beginning of a period, there is a payment stage in which the players have

the opportunity to make nonnegative monetary transfers to each other or to burn

money. In a subsequent action stage, the players play a simultaneous move stage

game, and then there is again a payment stage in which they can make monetary

transfers.4

The stage game played in the action stage has the following structure. Each

player i has a finite action space Ai.
5 The set of stage game action profiles is

given by A = A1 × ... × An. After an action profile a ∈ A is chosen, nature

draws a commonly observed signal y from a finite signal space Y. The probability

distribution of signals depends on the selected action profile a, and is given by a

function φ(y|a) with

φ(y|a) ≥ 0 for all y ∈ Y, a ∈ A
∑

y∈Y

φ(y|a) = 1 for all a ∈ A

4That we allow two payment stages emphasizes that players can make transfers at any point

in the game, and it simplifies some formulae. However, the set of equilibrium payoffs stays the

same if payments can be made only at the beginning of a period.
5Many of our results extend to action spaces that are compact subsets of Rm.
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Stage game payoffs of player i depend only on the signal y and the action ai

that player i has chosen. They are given by a function ĝi : Y ×Ai → R. Let

gi(a) =
∑

y

ĝi(y, ai)φ(y|a)

denote the expected payoff of player i given an action profile a. The joint payoff

from an action profile a is denoted by

G(a) =
n∑

i=1

gi(a)

The best reply or cheating payoff of player i is denoted by

ci(a) = max
ãi

gi(ãi, a−i).

In contrast to the action choices, we assume that all transfers are commonly ob-

servable. All players choose their monetary transfers simultaneously. We also

allow the players to burn money (one can think of the possibility to give money to

charity or any other non-interested third party). To have a bounded action space,

we assume for convenience that there exists an upper bound on a player’s trans-

fers. However, this upper bound shall be sufficiently large, so that we essentially

consider a situation of unlimited liability. Players are risk-neutral and utility is

linear in money and stage game payoffs. Thus, a player’s payoff in a period where

action profile a has been played and signal y has been realized is given by ĝi(y, ai)

minus the sum of the net payments that player i has made in the two payment

stages.

A public history h of the repeated game is a list of all monetary transfers and

public signals that have occurred before a given point in time. A (pure) public

strategy σi of player i in the repeated game maps every public history that ends

before the action stage into an action ai ∈ Ai, and every public history that ends

before a payment stage into a vector of monetary transfers. A public perfect

equilibrium is a profile of public strategies that constitutes mutual best replies

after every public history. We will restrict attention to pure strategies and public

perfect equilibria.6

6The restriction to public perfect equlibria is without loss of generality once mixed strategies

are excluded. The set of pure strategy PPE payoffs is the same as the set of pure strategy

sequential equilibrium payoffs.
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Payoffs and continuation payoffs of the repeated game are defined as average

discounted payoffs, i.e. as the discounted sum of future payoffs multiplied by

(1 − δ). We denote by u0(σ) the vector of payoffs in the repeated game given a

strategy profile σ.

2.2 Stationary strategy profiles

In this section, we introduce a class of stationary strategy profiles that allow a

simple characterization of PPE payoffs for every discount factor. These stationary

strategy profiles have the feature that the same action profile is played in every

period on the equilibrium path and punishments have a simple stick-and-carrot

structure.

While a strategy is supposed to specify gross amounts p̃ij that player i pays

to player j, where j = 0 means that the money is being burned, for convenience

we will describe all monetary transfers in stationary strategy profiles in form of

net payments. For any net payment, i.e. any vector p = (p1, ..., pn) ∈ R
n with

∑n

i=1 pi ≥ 0, one can find corresponding gross monetary transfers p̃ij with

pi =
n∑

j=0

p̃ij −
n∑

j=1

p̃ji,

and with the property that there is no player who at the same time makes and

receives positive monetary transfers.7

A stationary strategy profile is characterized by n+2 states. Play starts in the

up-front payment state, in which players are required to make up-front payments

p0. Afterwards play can be in one of n + 1 states, which we index by k ∈ K =

{e, 1, 2, ..., n}. We call the state k = e the equilibrium state and k = i ∈ {1, ..., n}

the punishment state of player i. A stationary strategy profile specifies for each

state k ∈ K an action profile ak ∈ A that will be played in the action stage.

Furthermore, it specifies for each state k ∈ K a payment function pk : Y → R
n

that maps the signal y from the preceding action stage into a required vector of

7Concretely, we can assume that gross monetary transfers from player i to j are given by

p̃ij =

{
pi

|pj |∑
j∈I

|pj |
if i ∈ I+ and j ∈ I−

0 otherwise.

where I+ = {i | pi > 0} is the set of net payers, I− = {i | pi ≤ 0} ∪ {0} be the set of net

receivers (including the sink for burned money).
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payments. Payments in the beginning of the period only occur in the upfront state

in the first period, but not in the equilibrium state or in a punishment state.

The state transitions are as follows: If no player unilaterally deviates from a

required payment, the new state becomes the equilibrium state: k = e. If player

i unilaterally deviates from a required payment, the new state becomes the pun-

ishment state of player i, i.e. k = i. In all other situations the state does not

change.

A stationary strategy profile σ is completely characterized by a vector of up-

front payments p0, its action plan (ak)k∈K that specifies one action profile for every

state k and its payment plan (pk)k∈K that specifies a payment function for every

state k. For a given discount factor δ, we call a stationary strategy profile σ a

stationary equilibrium if σ constitutes a public perfect equilibrium of the repeated

game. We denote by (ak, pk)k∈K a stationary strategy-profile without up-front

payments and by Σ0 the set of stationary equilibria without up-front payments.

The following definitions are useful for the characterization of stationary equi-

libria. For any payment function p, we let

E[pi|a] =
∑

y

pi(y)φ(y|a)

denote the expected payments of player i if the action profile a is played. For any

stationary strategy profile player i’s payoff at the beginning of a period in the

equilibrium state is

ui(σ) = gi(a
e)− E[pei |a

e].

Whenever the equilibrium in question is clear from the context, we will suppress

the dependence on σ. Similarly, the joint equilibrium state payoff is given by

U(σ) = G(ae)−
n∑

i=1

E[pei |a
e],

where the sum on the right hand side denotes the expected amount of money that

is burned on the equilibrium path. Player i’s continuation payoff at the beginning

of his punishment state is denoted by

vi(σ) = (1− δ)(gi(a
i)−E[pii|a

i]) + δui.

We call vi player i’s punishment payoff. We denote the sum of punishment payoffs

by

V (σ) =
n∑

i=1

vi.
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3 Main results

3.1 Conditions for stationary equilibria

Using the one shot deviation principle, we now establish the constraints that a

stationary strategy profile without up-front payments σ = (ak, pk)k has to satisfy

to be a stationary equilibrium. There are three types of constraints, which we call

payment constraints, budget constraints, and action constraints.

Payment constraints Given that player i has an equilibrium payoff of ui

and a punishment payoff of vi, he is never willing to make a higher payment

than δ
1−δ
(ui−vi). A stationary equilibrium thus must satisfy the following payment

constraints for all states k ∈ K:

pki (y) ≤
δ

1− δ
(ui − vi) for all i, y. (PC-k)

Budget constraints Even though players can burn money, they cannot get

any outside funding. In every state k, the following budget constraints must

therefore be satisfied:
n∑

i=1

pki (y) ≥ 0 for all y (BC-k)

Action constraints There are no incentives to deviate from the prescribed

action profiles in state k ∈ K if and only if

gi(a
k)− E[pki |a

k] ≥ gi(ai, a
k
−i)−E[pki |ai, a

k
−i] for all i and ai ∈ Ai. (AC-k)

Next, we describe how the possibility of up-front payments transforms the set

of feasible payoffs. Up-front payments are incentive compatible if they do not

exceed δ
1−δ
(ui − vi) for any player. Incentive compatible up-front payments allow

any distribution of the joint equilibrium payoff that guarantees every player at

least his punishment payoff. This leads to the following straightforward result:

Proposition 1 If there exists a stationary equilibrium σ with joint equilibrium

payoffs U and punishment payoffs v then every payoff in the simplex

U0(σ) = {u0 ∈ Rn |
n∑

i=1

u0i ≤ U and u0i ≥ vi for all i} (1)

can be achieved by some stationary equilibrium that differs from σ only in the

up-front payments.
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Proof. Straightforward.

Note that the payoffs below the Pareto frontier of U0(σ) can be implemented

by burning some money up-front.

We say a payment plan (pk)k is optimal for a given action plan (ak)k if it

maximizes the difference between joint equilibrium payoffs and total punishment

payoffs, U − V, subject to the equilibrium constraints. An optimal payment plan

thus solves the following linear program:

max
{pk}k∈K

U − V (LP-OPS)

s.t. (PC-k), (BC-k), (AC-k), for all states k ∈ K.

Proposition 2 Every payoff of stationary equilibria with action plan (ak)k can be

implemented by stationary equilibria whose payment plan is optimal for (ak)k. If

the linear program (LP-OPS) has no solution then there does not exist a stationary

equilibrium with action plan (ak)k.

Proof. Let Ū denote the highest joint payoff and v̄i the lowest punishment

payoff of player i of all stationary equilibria with action plan (ak)k. We will

construct a stationary equilibrium with action plan (ak)k that has joint equilibrium

payoffs Ū and at the same time punishment payoffs v̄i for each player i, which

implies an optimal payment plan. Let σe be a stationary equilibrium with action

plan (ak)k, some payment plan (pk,e)k, and joint equilibrium payoff Ū . Similarly,

let σi be a stationary equilibrium with action plan (ak)k, payment plan (pk,i)k and

punishment payoff v̄i for player i.

We define the payment functions

pe(y) = pe,e(y)

pi(y) = pi,i(y) +
δ

1− δ
(ui(σ

e)− ui(σ
i)) for all i = 1, .., n.

The stationary strategy profile σ ∈ Σ0 defined by action plan (ak)k and payment

plan (pk)k has joint equilibrium payoff Ū and punishment payoffs

vi = (1− δ)(gi(a
i)−E[pi,i|ai])− δ(ui(σ

e)− ui(σ
i)) + δui(σ

e) = v̄i.

It is clear that the action constraints (AC) of σ hold, since all payment functions

pk are only shifted by a constant from pk,k. To show that the budget constraints

hold we use the fact Ū ≥ U(σi), which implies that
∑n

i=1 p
i
i(y) ≥ 0. The payment
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constraints in the equilibrium state have to hold since v̄i ≤ vi(σ
e). The payment

constraints in player i’s punishment state are

pi,i(y) +
δ

1− δ
(ui(σ

e)− ui(σ
i)) ≤

δ

1− δ
(ui(σ

e)− v̄i) ,

which are equivalent to the payment constraints for player i’s punishment state in

σi. Thus, σ is a stationary equilibrium.

We say an action plan (ak)k is optimal for a given discount factor if no other

action plan can achieve a higher value of U−V. An optimal stationary equilibrium

has an optimal action plan and an optimal payment plan. We can now state one

key result:

Theorem 1 All public perfect equilibrium payoffs can be implemented with a set

of optimal stationary equilibria that only differ by their up-front payments.

Proof. We rely on the recursive structure of public perfect equilibria and com-

pactness of the equilibrium value set (see e.g. the result in APS, which straight-

forwardly extend to our setting). Let Ū denote the highest joint payoff that can

be implemented with some PPE and v̄i the lowest payoff for player i that can be

implemented with some PPE. There must exist a PPE σe without payments in

the first payment stage whose joint payoffs are given by

n∑

i=1

u0i (σ
e) = Ū .

Furthermore, for every player i = 1, ..., n, there exists a PPE σi without payments

in the first payment stage that gives player i a payoff of

u0i (σ
i) = v̄i.

For all k ∈ K let ak be the first action profile played on the equilibrium path of

σk. Let wk(y) be the vector of continuation payoffs of σk in the first period after

signal y has been realized (but before the second payment stage), i.e. we have

u0i (σ
k) = (1− δ)gi(a

k) + E[wki |a
k].

We define

pki (y) =
δu0i (σ

e)− wki (y)

1− δ
,
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and will show that the stationary strategy profile σ defined by action plan (ak)k

and payment plan (pk)k is a stationary equilibrium. The budget constraints of σ

are equivalent to

δŪ ≥
n∑

i=1

wki (y),

which holds due to the definition of Ū as the highest possible sum of payoffs and

the fact that the sum of payments cannot be negative. Second, for the action

constraints, we have to show that

gi(a
k)−E[pki |a

k] ≥ gi(a
k
−i, ai)−E[pki |a

k
−i, ai],

for all i ∈ {1, ..., n}, ai ∈ Ai. This condition is equivalent to

gi(a
k)(1− δ) + E[wki |a

k] ≥ gi(a
k
−i, ai)(1− δ) + E[wki |a

k
−i, ai],

which is the incentive constraint for playing ak in the first period of σk. Third,

for the payment constraints we have to show that

pki (y) ≤ δ(gi(a
e)− E[pei |a

e]− gi(a
i) + E[pii|a

i]).

With our definition of payments pki (y) this reads

δu0i (σ
e)− wki (y) ≤ δ(gi(a

e)(1− δ) + E[wei |a
e]− gi(a

i)(1− δ)− E[wii|a
i]),

which is equivalent to

wki (y) ≥ δv̄i.

Because v̄i is the lowest player i payoff in the action stage, this condition obvi-

ously holds if player i receives a net payment after signal y in the corresponding

continuation equilibrium of σi. It also holds for signals which require player i to

make a net transfer, because otherwise player i would have an incentive not to

make the payment and σi would not be a PPE. Player i’s expected payoff in the

stationary equilibrium σ is

gi(a
e)−

1

1− δ
E[δūei − wki (y)|a

e] = ui(σ
e),

and his punishment payoff is

gi(a
i)(1− δ)− E[δūei − wki (y)|a

i] + δūei = v̄i.
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It then follows from Proposition 1 that we can define incentive compatible up-front

payments for σ to implement any PPE equilibrium payoff.

Hence, the essential step to find the set of PPE payoffs is to find an optimal

action plan. For finite stage games, there is a simple brute force algorithm: Go

through all possible (n+1)-tuples of action profiles (ak)k ∈ An+1 and calculate

the corresponding maximum value of U − V by solving the linear program (LP-

OPS). We will now develop a quicker algorithm that relies on an explicit link

of the constraints for stationary equilibria with a series of static problems with

enforceable payments.

3.2 A characterization using static problems with enforce-

able payments

Consider the following static problem. The stage game is played once and there

exist enforceable contracts that specify for each player i = 1, .., .n and every signal

y ∈ Y a vector of gross monetary transfers to other players and an amount of

money burning. From an incentive perspective, only net payments are relevant.

We therefore write an enforceable contract as a payment function p(.) that specifies

the net payments pi(y) of player i if signal y realizes.

The possible payments that player i can make shall be bounded by an exoge-

nously given liquidity constraint λiL ≥ 0, with L ≥ 0, λi ≥ 0 and
∑n

i=1 λi = 1.

This means the totally available liquidity across all players is given by L and λ

denotes the liquidity distribution.

We say that an action profile a ∈ A can be implemented with a payment

function p(.) in the static problem given liquidity allocation λL, if the following

payment, budget and action constraints hold:

pi(y) ≤ λiL for all i, y. (PC)

n∑

i=1

pi(y) ≥ 0 for all y (BC)

gi(a)−E[pi|a] ≥ gi(a
′
i, a−i)−E[pi|a

′
i, a−i] for all i, a′i ∈ Ai. (AC)

Whether an action profile a can be implemented with some payment function

and how much money needs to be burned, does not depend on the liquidity distri-

bution λ, but only on the total liquidity L. More precisely, we have the following

straightforward result:
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Lemma 1 If the payment function p can implement an action profile a for the

liquidity allocation λL then the payment function p̃ with

p̃i(y) = pi(y) +
(
λ̃i − λi

)
L (2)

can implement a for the liquidity allocation λ̃L.

We define the liquidity requirement L(a) of an action profile a as the minimum

total liquidity L that is necessary to implement a in the static problem. Because

of Lemma 1, the liquidity requirement is independent of the actual liquidity dis-

tribution λ, and given as the solution to the following linear program:

L(a) = min
p(.),L≥0

L s.t. (PC), (BC), (AC). (LP-L)

To find closed-form solutions for L(a) in specific examples, it will often be conve-

nient to solve (LP-L) with a liquidity distribution that gives all liquidity to a single

player or distributes liquidity equally across players. The liquidity requirement of

an action profile a is 0 if and only if a is a Nash equilibrium of the stage game.

For a given value of total liquidity L ≥ L(a), we denote by U e(L, a) the maxi-

mum expected joint payoff that can be implemented with action profile a:

Ue(L, a) = max
p(.)

(
G(a)−

n∑

i=1

E[pi|a]

)
s.t. (PC),(BC), (AC). (LP-e)

Lemma 1 implies that the solution to the linear program (LP-e) is independent

of the chosen liquidity distribution λ. Observe that U e(L, a) is bounded, weakly

increasing and concave in L, and since we assumed a finite action space, it is

piece-wise linear with a finite number of kinks.8 Appendix A explains a method

that exploits these attributes in order to quickly compute U e(L, a). We denote by

L̄e(a) the lowest liquidity level for which Ue(L, a) attains its maximum value.

We now define a punishment payoff for player i in the static problem. For any

given action profile a, liquidity L ≥ L(a) and some arbitary liquidity distribution

λ, we define

vi(L, a) = min
p(.)

(gi(a) + λiL− E[pi|a]) s.t. (PC),(BC), (AC). (LP-i)

Again, because of Lemma 1, vi(L, a) is independent of the liquidity distribution

λ. Note that vi(L, a) is the lowest expected payoff that can be imposed on player

i in the static problem if no liquidity is given to player i.

8That Ue(L|a) is weakly increasing and bounded is obvious. Concavity and piece-wise lin-

earity follows from standard results on linear optimization.
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Lemma 2 It holds true that vi(L, a) ≥ ci(a), and if gi(a) = ci(a), then vi(L, a) =

gi(a).

Proof. Since pi(y) ≤ λiL, the action constraint (AC) for player i implies

gi(a) + λiL− E[pi|a] ≥ gi(a
′
i, a−i) for all a

′
i ∈ Ai,

which implies vi(L, a) ≥ ci(a). In the case gi(ai) = ci(ai) one can take λi = 0 and

pi(y) = 0 for all y to implement a.

Similar to U e(L, a), the function vi(L, a) is bounded, weakly decreasing, convex

and piece-wise linear in L (with a finite number of kinks); efficient computation

techniques are also described in Appendix A. We denote by L̄i(a) the lowest liq-

uidity level at which vi(L, a) attains its minimum.

We now show how the solutions of the static problems are linked to stationary

equilibria of the repeated game.

Definition 1 We say that a liquidity L can be generated by action plan (ak)k∈K

given discount factor δ if

max
k∈K

L(ak) ≤ L ≤
δ

1− δ

(
U e(L, ae)−

n∑

i=1

vi(L, ai)

)
. (3)

The left hand side denotes the minimal liquidity that is required to implement

all action profiles of action plan (ak)k∈K in the separate static problems. The right

hand side can be interpreted as the maximum endogenous total liquidity that the

action plan can generate given that liquidity L is available. If some liquidity can

be generated by an action plan (ak)k∈K, there must exist a largest liquidity L∗

that can be generated, and it satisfies

L∗ =
1− δ

δ

(
U e(L∗, ae)−

n∑

i=1

vi(L
∗, ai)

)
. (4)

That is because U e(L, ae)−
∑n

i=1 vi(L, a
i) is bounded, weakly increasing and con-

tinuous in L.

If an action plan (ak)k∈K can generate some liquidity given δ, we say that

(ak)k∈K is regular if the condition vi(L
∗, ai) ≤ vi(L

∗, ae) is satisfied, whereL∗ is

the maximum liquidity that can be generated.

Theorem 2 Fix a discount factor δ. Only if an action plan (ak)k∈K can generate

some liquidity, there exists a stationary equilibrium with action plan (ak)k∈K. If
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(ak)k∈K can generate some liquidity and is also regular, there exists a stationary

equilibrium with action plan (ak)k∈K. Then, if L
∗ denotes the largest generated

liquidity, an optimal payment plan yields joint equilibrium payoffs U e(L∗, ae) and

punishment payoffs vi(L∗, ai).

Proof. First, if there is a stationary equilibrium σ with action plan (ak)k∈K

and optimal payment plan (pk)k∈K, then the scalar L = δ
1−δ
(U(σ) − V (σ)) is a

liquidity that can be generated by (ak)k∈K, since every action profile ak can be

implemented with pk given L and λi =
ui−vi
U−V

.

Let us now assume that there exists a liquidity L generated by (ak)k, and hence

also a largest such liquidity L∗. In the following, we construct a liquidity distri-

bution λ∗ and a stationary equilibrium σ with action plan (ak)k∈K that satisfies

λ∗iL
∗ = δ

1−δ
(ui(σ)−vi(σ)). The payment constraints (PC-k) in σ and the payment

constraints in the static problem (LP-k) given liquidity λ∗ will coincide for all

states k.

Let λ be an arbitrary liquidity distribution and let p̃k be a payment function

that solves the static problem (LP-k) given liquidity allocation λL∗. Consider the

vector λ∗ defined by

λ∗i = δ

(
λi +

gi(a
e)− E[p̃ei |a

e]− vi(L∗, ai)

L∗

)
.

It is straightforward to check that λ∗i is a liquidity distribution if for all players

vi(L∗, ai) ≤ vi(L∗, ae), which holds due to regularity of (ak)k∈K. It follows from

Lemma 1 that the payment function

pk = p̃k + (λ∗ − λ)L∗

then solves the static problem for state k with liquidity distribution λ∗. For the

strategy profile σ ∈ Σ0 defined by action plan (ak)k and payment plan (pk)k it

holds that

λ∗iL
∗ =

δ

1− δ
(ui(σ)− vi(L∗, ai)).

Furthermore, it holds that vi(L∗, ai) = vi(σ) and U e(L∗, ae) = U(σ). By con-

struction the payment, budget and action constraints of σ are satisfied.

While the action and budget constraints are the same in the static problem

of implementing all action profiles ak and the dynamic problem of finding a sta-

tionary equilibrium with action plan (ak)k, the payment constraints differ. In the
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static problem we can choose arbitrary liquidity distributions for every state but in

a stationary equilibrium player i’s maximal payments are limited in every state by

an endogenous bound that depends on equilibrium payoffs ui(σ) and punishment

payoffs vi(σ). In the proof, we construct payments and a particular liquidity dis-

tribution λ∗ such that also the payment constraints coincide in the two problems.

The steps to find an optimal payment structure and corresponding payoffs given

a regular action plan (ak)k∈K are as follows: First, calculate for all states the

liquidity requirements L(ak), as well as U e(L, ae) and all vi(L, ai) using some

convenient liquidity distributions. Second, solve equation (4) to find L∗ (which is

typically unique since U e(L, ae)−
∑n

i=1 v
i(L, ai) is concave in L). We then already

know the joint equilibrium payoffs Ue(L∗, ae) and punishment payoffs vi(L∗, ai)

and can obtain the set of equilibrium payoffs (see Proposition 1). The proof of

Theorem 2 also explains how an optimal payment plan can be derived from the

solutions of the static problems.

The following result establishes an upper bound on the size of required transfers

in an optimal payment plan, which guarantees that payments needed to implement

a given action plan do not go to infinity as the discount factor goes to 1. Note,

however, that in order to achieve every payoff that can be implemented with the

action plan, up-front payments may have to exceed the bound.

Proposition 3 If there exists a stationary equilibrium with action plan (ak)k,

there exists an optimal payment plan in which no player makes payments above

Lo = min{L∗,maxk{L̄
k(ak)}}.

Proof. Similar to the proof of Theorem 2, we take a payment function p̃e that

implements ae with minimal money burning given an arbitrary liquidity allocation

λL0 and define

λ∗i = δ

(
λi +

gi(a
e)− E[p̃ei |a

e]− vi(L∗, ai)

L∗

)
.

It is straightforward to check that λ∗i is a liquidity distribution. We define

pe = p̃e + (λ∗ − λ)Lo.

Because L0 ≤ L∗, it then holds that

λ∗iL
o ≤ δ

(
λ∗iL

o + gi(a
e)− E[pei |a

e]− vi(L∗, ai)
)
,
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hence

λ∗iL
o ≤

δ

1− δ

(
gi(a

e)− E[pei |a
e]− vi(L∗, ai)

)
.

Let pi be the payment function that leads to a punishment payoff vi(Lo, ai) in the

problem (LP-i) given liquidity allocation λ∗L0. Then (pk)k is the payment plan we

were looking for.

3.3 Finding optimal action profiles

There is a natural procedure to find an optimal action plan and the payoff set for

all discount factors. While the results in the previous section took the action plan

as given, we are interested in optimal action profiles and corresponding payoffs in

order to find the set of PPE payoffs. We denote the upper envelope of all U e(L, a)

functions by

Ū e(L) = max
a∈A|L(a)≥L

U e(L, a),

and by āe(L) an optimal action profile that solves this problem given liquidity L.

We denote the lower envelope of player i’s punishment payoffs by

v̄i(L) = min
a∈A|L(a)≥L

vi(L, a),

and a corresponding optimal punishment profile by āi(L). If the stage game is

symmetric then v̄i(L) is identical for all players and optimal punishment profiles

āi(L) are given by the corresponding permutation of ā1(L), i.e. it suffices to

characterize the punishment state for player 1.

To determine these envelopes and optimal action profiles, it is often not nec-

essary to calculate the values U e(L, a) and vi(L, a) for all action profiles a. For

example, if the joint equilibrium payoff G(a) of an action profile a is lower than

the joint payoff of a stage game Nash equilibrium, a is clearly not an optimal

equilibrium state profile and we can dismiss it without any further calculation. In

Appendix A, we discuss several heuristics that speed up the calculation of Ū e(L)

and v̄i(L).

We define the largest liquidity that can be generated with any action plan for

a given discount factor δ as

L̄(δ) = max{L | L =
δ

1− δ

(
Ū e(L)−

n∑

i=1

v̄i(L)

)
}.
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The liquidity L̄(δ) can be generated by the action plan (āk(L̄(δ)))k and it follows

from Theorem 2 that (āk(L̄(δ)))k is an optimal action plan given δ. Together with

Theorem 1 this implies

Corollary 1 Given discount factor δ, the set of public perfect payoffs is given by

U0(δ) = {u0 ∈ Rn |
n∑

i=1

u0i ≤ Ū e(L̄(δ)) and u0i ≥ v̄i(L̄(δ))}. (5)

To calculate closed-form solutions for L̄(δ) and to determine the critical discount

factors δ where Ū e(L̄(δ)) and v̄i(L̄(δ)) have a kink or jump, it is often convenient

to work with discount rates r = 1−δ
δ
. We denote by

r∗(L) =

Ū e(L)−
n∑

i=1

v̄i(L)

L
(6)

and δ∗(L) = 1
1+r∗(L)

the discount rate and discount factor that correspond to some

liquidity level L.9 The numerator on the right hand side of (6) is a piece-wise

linear function in L and by piece-wise inverting this function, we can obtain the

largest liquidities L̄(δ) that can be generated for any discount factor. We illustrate

this procedure in Sections 4 and 5.

4 Perfect monitoring

With perfect monitoring, the played action profile is perfectly observable by all

players. This means that we have a game with perfect monitoring if the signal

space is equal to the action space, i.e. Y = A and the signal distribution is

φ(y|a) =

{
1 if y = a

0 if y 
= a
.

To implement an action profile a in the static problem, one can use a payment

function p̂ that requires each player i to pay ci(a) − gi(a) following any signal

(a′i, a−i) with a′i 
= ai, and to pay nothing otherwise. The liquidity requirement is

given by

L(a) =
n∑

i=1

(ci(a)− gi(a)) . (7)

9We define r∗(L) =∞ if L = 0.
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That this liquidity suffices to implement a can be seen by considering the liq-

uidity distribution λi =
ci(a)−gi(a)

L(a)
. That this liquidity is necessary follows from

summing up the action and payment constraints over all players.

With the payment function p̂, no money will be burned on the equilibrium path.

Thus, for all L ≥ L(a) we find that the maximal implementable joint payoffs are

equal to the joint stage game payoffs:

U e(L, a) = G(a).

To calculate the minimal punishment payoffs vi(L, a) for player i and an action

profile a, consider a liquidity distribution λ that gives no liquidity to player i,

i.e. λi = 0. It follows from Lemma 1 that a can then be implemented with the

payment function p+ λL(a)− (c(a)− g(a)). We thus find that

vi(L, a) = ci(a),

i.e., player i’s minimal punishment payoff is always equal to his stage game cheating

payoff under his punishment profile ai. Given the derived closed-form solutions

for U e(L, a) and v(L, a), Theorem 2 translates into the following result:

Proposition 4 Under perfect monitoring there exist a stationary equilibrium with

action plan (ak)k∈K if and only if for every state k ∈ K

(1− δ)
n∑

i=1

(
ci(a

k)− gi(a
k)
)
≤ δ

(
G(ae)−

n∑

i=1

ci(a
i)

)
(PM-k)

Optimal payment structures then implement joint equilibrium payoff G(ae) and for

each player i a punishment payoff ci(a
i).

4.1 Finding optimal action structures for every discount

rate

We now describe a simple and quick algorithm that finds optimal action plans

for every discount factor if the stage game has finitely many action profiles. We

illustrate the algorithm for a simplified Cournot game taken from Abreu (1988).

Two firms simultaneously choose either low (L), medium (M), or high (H) output
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and stage game payoffs are given by the following matrix:

Firm 2

L M H

L 10, 10 3, 15 0, 7

Firm 1 M 15, 3 7, 7 −4, 5

H 7, 0 5,−4 −15,−15

The algorithm consists of different steps.

Step 1: The first step is to create a list of candidates for optimal equilibrium

action profiles. We order all action profiles a ∈ A decreasingly in their joint payoff

G(a) and break ties by putting action profiles with a lower liquidity requirement

L(a) first. Then we remove all action profiles from the list that do not have a

strictly lower liquidity requirement than all earlier action profiles in the list. In

the example, we get the following list:

No. ae G(ae) L(ae)

1. (L,L) 20 10

2. (L,M)10 18 4

3. (M,M) 14 0

.

Note that if the stage game has at least one Nash equilibrium then the last profile

of the list is always the Nash equilibrium with the highest joint payoffs.

Step 2: In a similar way, we create for each punishment state i = 1, ..., n a list

of action profiles. We order action profiles increasingly in player i’s cheating payoff

ci(a). We break ties by putting those profiles with a lower liquidity requirement

L(a) first. We remove action profiles that do not have a strictly lower liquidity

requirement than all earlier action profiles. In the example, we get the following

list for the punishment state of player 1:

No. a1 c1(a
1) L(a1)

1. (M,H) 0 6

2. (M,M) 7 0

If the stage game is symmetric, as in our example, the lists of punishment profiles

for the other players will simply consist of the correspondingly permuted action

profiles.

10Alternatively, we could pick the profile (M,L) as second element of the list.
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Step 3: The first action profiles in each list form our initial action plan. In the

example, we have (ae = (L,L), a1 = (M,H), a2 = (H,M)). Proposition 4 allows

us to find the minimal discount factor for which a stationary equilibrium with this

action plan exists. As noted in the end of Section 3, it is convenient to reformulate

those conditions as a single condition on the discount rate r = 1−δ
δ
: There exists

a stationary equilibrium with an action plan (ak)k∈K if and only if the discount

rate r satisfies

r ≤ r∗ ≡
G(ae)−

∑n

i=1 ci(a
i)

maxk{L(ak)}
. (8)

where we assume r∗ = ∞ if all action profiles are Nash equilibria of the stage

game. The critical discount rate in our example is given by

r∗ =
20

max{10, 6}
= 200%.

This corresponds to a critical discount factor of δ∗ = 1
1+r∗

= 1
3
. Thus, by varying

the up-front payments, we can implement for every discount factor δ ∈ [1
3
; 1] every

(weakly) individually rational distribution of the maximum joint stage game payoff

of 20 as sequential equilibrium payoff of the repeated game.

It is straightforward that for any finite stage game, the minimal discount factor

δ∗ for which every individually rational distribution of the maximum joint stage

game payoff can be implemented is always strictly below 1. This result is a folk

theorem for games with side payments. For games without side payments, it

generally only holds true that every feasible and strictly individually rational payoff

can be implemented for sufficiently large discount factors.11

Step 4: In the next step, we replace the action profile ak that has the highest

liquidity requirement L(ak) by the next action profile in the list for state k. If

several action profiles of the action plan have the highest liquidity requirement, we

replace all those action profiles. In our example, we replace the equilibrium action

profile ae, so that the new action plan becomes ae = (L,M), a1 = (M,H), a2 =

(H,M). Using again formula (8), we find that this action plan can be implemented

whenever

r ≤ r∗ =
18

max{4, 6}
= 300%.

11Furthermore, in games with more than 2 players, the folk theorem without side payments

only holds under a regularity condition. See Fudenberg and Maskin (1986).
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Correspondingly, for every discount rate δ ∈ [1
4
, 1
3
) the actual action plan is optimal

and the set of subgame perfect equilibrium payoffs is given by all (u1, u2) with

u1 + u2 ≤ 18 and u1, u2 ≥ 0.

We repeat step 4 until we reach the end of the list of action profiles in every

state k. The final action plan only consists of Nash equilibria of the stage game.

In the example, we find the following critical discount factors, payoffs and action

plans:

Step δ∗ U e v1 v2 ae, a1, a2

1 1/3 20 0 0 (L,L),(M,H),(H,M)

2 1/4 18 0 0 (L,M),(M,H),(H,M)

*3 1/2 18 7 7 (L,M),(M,M),(M,M)

4 0 14 7 7 (M,M),(M,M),(M,M)

Note that the critical discount factor δ∗ does not necessarily decrease in every

step. If δ∗ it is not lower than in all previous steps, we simply ignore the corre-

sponding action plan. This is the case in step 3 of our example.

The algorithm always delivers a list of all critical discount factors, corresponding

payoff sets and optimal action structures. When using a heap sort algorithm to

create the n + 1 ordered lists, which each have a maximal length of |A| action

profiles, the computational complexity of our algorithm in terms of elementary

calculations and comparisons is of just log-linear order O(n|A| log |A|). Even large

stage games with more than a 100000 action profiles can be solved in less than a

second.

Kranz (2010) explains how to use the software implementation of our algorithm

and gives several examples. It is also illustrated how methods of adaptive grid

refinement and random sampling of action profiles allow to effectively compute

inner approximations to the sets of SPE payoffs for continuos stage games with

high dimensional action spaces (like oligopolies with 10 or more firms).12

12For games with perfect monitoring, Theorem 1 and Proposition 4 will also hold for stage

games with compact action spaces A ⊂ Rm and continous payoff functions. If one can provide

closed-form solutions of the cheating payoffs of the continous stage game, one can calculate the

liquidity requirement L(a) for any action profile a ∈ A.

To compute inner approximations of the sets of SPE payoffs, we can draw a finite random

sample of action profiles in order to calculate lower bounds of the functions Ūe(L) and v̄i(L)

in a similar way we calculated the step functions above. As the sample size grows large, these

lower bounds converge in probability to the true functions.
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In comparison, we can note that allowing for monetary transfers allows much

faster computation of the set of equilibrium payoffs than in the framework studied

by Judd, Yeltekin and Conklin (2003) with public randomization. That is because

without monetary transfers no general closed-form solutions for the static problems

could be obtained, and in each iteration the algorithm of JYC has to solve several

linear programs.13

5 A Noisy Prisoners’ Dilemma game

In this example we derive closed form solutions for the set of pure strategy PPE

payoffs in a repeated noisy prisoners’ dilemma game with imperfect public moni-

toring. There are two players. In the stage game, a player can either cooperate C

or defect D. Expected payoffs g(a) are given by the following normalized payoff

matrix:
C D

C 1, 1 −s, 1 + d

D 1 + d,−s 0, 0

with d, s > 0 and d− s < 1. Players do not publicly observe the played action

profile, but only a realized signal y that can take four different values: yC , yD, y1

and y2. The signal distribution is as follows:

φ(y|a) CC CD DC DD

yC 1− αA − 2αP 1− αA − βA − 2αP − βP 1− αA − βA − 2αP − βA 0

yD αA αA + βA αA + βA 1

y1 αP αP αP + βP 0

y2 αP αP + βP αP 0

with 0 < αA ≤ αA+ βA and 0 < αP ≤ αP + βP and 1−αA− βA− 2αP − βP ≥ 0.

To interpret the signal structure, assume that mutual cooperation CC shall be

implemented.14 The signal yD is an anonymous indicator for defection: yD becomes

The practical issue is to sample action profiles in a way that achieves relatively quick conver-

gence for most stage games. Different methods are implemented in the software package and

work well in examples.
13JYC report a computation time of almost 45 minutes (on a Pentium 500Mhz, PC) for the

finest considered approximation for the payoff set of a discretized repeated Cournot duopoly

with 15 x 15 action profiles and a given discount factor of δ = 0.8
14For notational convenience, we abbreviate action profiles (a1, a2) by a1a2.
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more likely if some player unilaterally defects but its probability distribution does

not depend on the identity of the deviator. The parameter αA can be interpreted

as the probability of a type-one error, i.e. the probability that yD is observed even

if no player defected. The parameter βA measures by how much the likelihood of

yD increases if some player unilaterally deviates.

The signal yi is an indicator for unilateral defection by player i. Like αA, the

parameter αP can be interpreted as the probability of a type-one error, i.e. the

probability to wrongly get a signal for unilateral defection of player i. Similar

to βA, the parameter βP measures by how much the likelihood of yi increases if

player i unilaterally deviates from mutual cooperation.

To calculate the required liquidity to implement mutual cooperation in the

static problem, consider an equal liquidity distribution λ1 = λ2 =
1
2
. Clearly,

incentives to deviate for each player i are minimized if he is required to make the

maximal payments 1
2
L after signals yD and yi. Since the problem is symmetric, it

is disadvantageous to impose on some player a payment after signal yC. Whether

player i has to make a payment or receives a payment after signal y−i has no effect

on his incentives to deviate in the static problem. Mutual cooperation can thus

be implemented with total liquidity L if and only if

0 ≥ d− (βA + βP )
1

2
L,

which yields a liquidity requirement of

L(CC) =
2d

βA + βP
.

This formula is quite intuitive. If actions could be perfectly monitored, the liquid-

ity requirement would be 2d. This value is divided by the increase in the likelihood

to get a signal yi or yD if player i defects.

To minimize the amount of money burning, it is optimal that after signal y1

player 1 transfers all of his liquidity to player 2, and vice versa. Money burning can

only be optimal after signal yD. We find that for L ≥ 2d
βP

, mutual cooperation can

be implemented without any money burning and that for L ∈ [L(CC), 2d
βP
), a total

amount of 2d−βPL
βA

must be burned after signal yD. The maximal implementable

joint payoffs are thus given by

U e(L,CC) =

{
2 if L ≥ 2d

βP

2(1− αA
βA

d) + αA
βA

βPL if 2d
βA+βP

≤ L ≤ 2d
βP

. (9)
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Let us now consider the asymmetric action profile CD. Its liquidity requirement

can be most easily calculated by assuming that the whole liquidity is allocated

to player 1. The minimal required payment p1(yD) after signal yD that removes

player 1’s incentives to defect satisfies

s+ (αA + βA)p1(yD) = p1(yD).

If after signal yD player 1 makes that payment p1(yD) to player 2 and no other

payments are made, no player has an incentive to deviate and no money is burned.

We thus find

L(CD) =
s

1− αA − βA

and

Ue(L,CD) = G(CD) = 1 + d− s.

For the action profile DC the same results hold and for the stage game Nash

equilibrium it is true that L(DD) = 0 and U e(L,DD) = 0.

For every level of total liquidity L, the profile DD is an optimal punishment

profile for both players, since the Nash equilibrium payoffs are min-max payoffs

for both players. Hence, we find vi(L) = 0 for all L ≥ 0.

Recall that in games with perfect monitoring, U
e
(L) − V (L) is always a step

function. The algorithm for perfect monitoring calculates the critical discount

rate r∗(L) at every jump point. With imperfect monitoring, U
e
(L) − V (L) is in

general an increasing piece-wise linear function with jumps. Figure 2 illustrates

the function U
e
(L)−V (L) for the noisy prisoners’ dilemma game for a parameter

constellation that satisfies βP > 0 and 0 < G(CD) < U e(L(CC), CC).

The graph has a kink P1 and two jump points P2 and P3. We can calculate the

critical discount rate at every jump point, kink and increasing linear segment of

U
e
(L)− V (L) by using the formula

r∗(L) =
U
e
(L)− V

e
(L)

L
. (10)

For the points P1 and P2, we find

r∗
(
2d

βP

)
=

d

βP

and

r∗
(

2d

βA + βP

)
=

βP + βA − dαA
d

.
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Figure 1: Optimal action profiles and payoffs of the noisy prisoners’ dilemma game

On the line segment between the two points, i.e. for L ∈ [ 2d
βA+βP

; 2d
βP
], the maximal

discount rate is given by

r∗(L) =
2(1− αA

βA
d)

L
+

αA
βA

βP .

Money burning facilitates the implementation of CC if the maximal discount

rate increases when moving from P1 to P2. This is the case if and only if d ≤ βA
αA

.

Given a plot of U
e
(L) − V (L), as in Figure 1, there is a simple graphical rule

to find out whether the maximal discount rate increases or decreases along a line

segment. Consider the intercept at L = 0 of the line going through P1 and P2.

The critical discount rate increases from P1 to P2 if and only if this intercept is

positive. With a sharp glance, one can establish that this is indeed the case in

Figure 1.

Similarly, one can check graphically whether the maximal discount rate is higher

in point P3 than in point P2. In Figure 1, the intercept of the line through P2

and P3 is negative. This means that in the depicted case there is no discount

rate for which CD or DC are optimal equilibrium state profiles: playing CC
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with appropriate amounts of money burning yields higher payoffs and can be

implemented for a larger range of discount factors.

By solving equation (10) for L and plugging into the formula for U
e
(L), one

can find the maximal joint equilibrium payoff U e(r) as a function of the discount

rate r. For the case depicted in Figure 1, we find:

U e(r) =





2 if r ≤ d
βP

2(1− αA
βA

d)
[
1 + αA

rβP βA−αA

]
if d
βP
≤ r ≤ βP+βA−dαA

d

0 otherwise

. (11)

Together with the fact that always zero punishment payoffs can be implemented,

condition (11) characterizes the set of pure strategy sequential equilibrium payoffs

for the considered case. Alternative cases, e.g. parameter constellations where CD

is an optimal equilibrium state profile for some discount rates, can be characterized

in a similar fashion.

6 Repeated games without money burning

In this section we explore what can be achieved in a repeated game with side-

payments if money burning is not allowed. In particular, we investigate the ques-

tion to what extent money burning can be replaced by the use of a public corre-

lation device. We consider a variant of the previous set-up in which payments are

required to add up to zero, and in which players observe the outcome of a public

correlation device at the beginning of each period.

To characterize the set of PPE payoffs in this class of games, we extend ac-

tion and payment plans by a collective punishment state, indexed with k = b.

The public correlation device allows strategies that implement positive transition

probabilities between states. The proof of Theorem 3 below shows that all PPE

payoffs can be implemented by a class of stationary equilibria that put a posi-

tive probability on a transition to the collective punishment state instead of the

equilibrium state if all payments are conducted.

We will develop a more convenient characterization of equilibrium payoffs by

considering stationary equilibria that have an endogenous restriction on the amount

of money burning. Consider a stationary strategy σ of the game with money burn-

ing, which is described by states k with action profile ak and payment function pk.

We add a collective punishment state k = b with action profile ab and payment
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function pb that define an additional constraint on the amount of money burning

n∑

i=0

pki (y) ≤
δ

(1− δ)

(
U(σ)− U b

)
for all y (MBC-k)

with U b =
n∑

i=1

ubi and

ubi = (1− δ)(gi(a
b)−E[pbi |a

b]) + δui(σ).

Then we consider the following maximization problem over action plans and pay-

ment plans that are extended in this way

max
(ak,pk)k=e,b,1,...,n

U − V − U b (LP-OPS-LMB)

s.t. (PC-k),(AC-k),(BC-k) and (MBC-k) for all k = e, b, 1, ..., n.

Theorem 3 If LP-OPS-LMB is solved by a stationary equilibrium σ of the game

with money burning and collective punishment state action profile ab and payment

function pb, it holds that the set of PPE payoffs in the game without money burning

is given by {
u0 ∈ Rn|U b ≤

n∑

i=1

u0i ≤ U(σ), u0i ≥ vi(σ)

}
(12)

Proof. First we show that the set described in (12) is a subset of the set of

PPE payoffs without money burning.

Let (ak, pk)k=e,b,1,...,n be a solution of LP-OPS-LMB. The profile σ = (ak, pk)k∈K

is a stationary equilibrium in the game with money burning with joint equilibrium

payoff U and punishment payoffs vi. It is augmented by a collective punishment

state with joint payoff U b. We now connect σ to the collective punishment state

to get a PPE σ̃ without money burning but with the same payoffs as σ. This

is done by replacing the money burning by an appropriate choice of transition

probabilities between the equilibrium state and the collective punishment state.

That is, the structure of the strategy σ̃ differs from the one of σ only in so far as

that if in state k = e, b, 1, ...n signal y has been realized and no player deviated

from the required payments pk(y), the state changes with a probability βkP (y) to

the collective punishment state and with probability 1− βkP (y) to the equilibrium

state. We define this probability as

βkP (y) =
1− δ

δ

∑n

i=1 p
k
i (y)

U − U b
. (13)
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Constraints (BC-k) and (MBC-k) tell us that βkP (y) indeed is a probability. Note

that on the equilibrium path of σ̃ there can be repeated stochastic transitions

between the equilibrium state and the collective punishment state.

We define the payment function of the strategy σ̃ in state k = e, b, 1, ..., n by

p̃ki (y) = pki (y)−
δ

1− δ
βkP (y)(ui − ubi).

Up-front transfers are set to zero. The probabilities βkP (y) have been chosen such

that the payments p̃ki (y), i = 1, ..., n add up to zero. With this definition of

payments we have that

ui(σ̃) = (1− δ)(gi(a
e)− E[p̃e(y)|a]) + δui(σ̃) + δE[βeP |a

e](ubi(σ̃)− ui(σ̃))

ubi(σ̃) = (1− δ)(gi(a
b)−E[p̃b(y)|a]) + δui(σ̃) + δE[βbP |a

b](ubi(σ̃)− ui(σ̃))

reduces to

ui(σ̃) = ui and ubi(σ̃) = ubi .

After signal y in state k, continuation payoffs in σ̃ are equal to

−(1− δ)pki (y) + δui(σ).

Hence, actions in σ̃ are incentive compatible and the individual punishment payoffs

of σ̃ are equal to vi(σ). It is also straightforward to show that payments are

incentive compatible. By varying the up-front payments in σ̃ all divisions of the

surplus U(σ̃) in which each player gets at least vi can be achieved. Moreover, the

correlation device can be used in the up-front payment state to achieve all joint

payoffs between U and U b.

Second, we show that the set of PPE payoffs without money burning is a subset

of the set defined in (12).

Let Ū and Ū b denote the highest and lowest joint payoff that can be imple-

mented with some PPE in the repeated game without money burning. Similarly,

let v̄i denote the lowest payoff for player i that can be implemented with some

PPE. Let σe be a PPE with U(σe) = Ū , σb a PPE with U(σb) = Ū b and for every

player i, let σi denote a PPE with ui(σ
i) = v̄i. For all k = e, b, 1, ..., n let ak be

the first action profile played on the equilibrium path of σk. Note that it always

holds true that

G(ab) ≤ Ū b and Ū ≤ G(ae).
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Let wk(y) denote the vector of continuation payoffs after signal y has been realized

in the first period according to σ̃k and define

pki (y) =
δui(σ

e)− wki (y)

1− δ
.

That the action, payment and budget constraints are satisfied follows as in the

proof of Theorem 1. To see that money burning constraints (MBC-k) are satisfied

note that
n∑

i=1

pki (y) =
δŪ −

∑n

i=1w
k
i (y)

1− δ
≤

δ

1− δ

(
U − U b

)
.

Hence, (ak, pk)k=e,b,1,...,n solves LP-OPS-LMB with value Ū − Σni=1v̄i − Ū b.

6.1 Characterization based on static problems with en-

forceable payments

We can derive similar links to static problems than in games with unlimited money

burning. Consider the static problem of Section 3.2, with the extra restriction that

there is an upper bound B ≥ 0 on the amount of money that is allowed to be

burned after any signal y. We denote by L(a,B) the liquidity requirement of an

action profile with that upper bound on money burning:

L(a,B) = min
p(.)

L s.t. (PC), (AC), (BC) and (LP-B-L)

n∑

i=0

pi(y) ≤ B for all y ∈ Y (MBC)

Similarly, we define for all L ≥ L(a,B) and 0 ≤ B ≤ L the highest joint equilib-

rium payoff in the static problem by

U e(L,B, a) = max
p(.)

(
G(a)−

n∑

i=1

E[pi|a]

)
(LP-B-e)

s.t. (PC),(BC), (AC), (MBC),

the lowest collective punishment payoff by

U b(L,B, a) = min
p(.)

(
G(a)−

n∑

i=1

E[pi|a]

)
(LP-B-b)

s.t. (PC),(BC), (AC), (MBC),
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and player i’s punishment payoff by

vi(L,B, a) = min
p(.)

(
gi(a) + λiL−

n∑

i=1

E[pi|a]

)
(LP—B-i)

s.t. (PC),(BC), (AC) and (MBC).

The corresponding upper and lower envelopes over all action profiles are denoted

by

Ū e(L,B) = max
a∈A

Ue(L,B, a),

Ū b(L,B) = min
a∈A

U b(L,B, a),

vi(L,B) = min
a∈A

vi(L,B, a).

The profiles at which these values are attained are denoted by ak(L,B). We say

a pair (L,B) of liquidity and bound on money burning can be generated by a

discount factor δ if

max
k=e,0,1,...,n

L(ak(L,B), B) ≤ L ≤
δ

1− δ
(U e(L,B)− V (L,B)) ,

B ≤
δ

1− δ

(
U e(L,B)− U b(L,B)

)
.

Let (L∗, B∗) denote the (element-wise) largest pair of liquidity and bound on

money burning that can be generated. If some pair (L,B) can be generated, a

largest such pair must always exists, since larger levels of B allow larger consistent

levels of L and vice versa.

Proposition 5 Let (L∗, B∗) be the largest consistent liquidity and bound on money

burning given discount factor δ. The set of equilibrium payoffs that can then be

implemented are

{
u ∈ Rn | Ū b(L∗, B∗) ≤

n∑

i=1

ui ≤ Ū e(L∗, B∗) and ui ≥ vi(L∗, B∗) for all i

}
.

(14)

Proof. The proof proceeds similarly as the proof of Theorem 2 and is therefore

omitted.

To compute the functions Ue(L,B, a), U b(L,B, a) and vi(L,B, a) for all L ≥

L(a,B) and B ≤ L one can exploit the fact that their surface is described by
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a finite number of planar segments, which can be characterized by methods of

parametric linear programming and sensitivity analysis (see, e.g., Gal and Nedoma,

1972). The computations can take considerably longer than computing the one-

dimensional functions for the case of unlimited money burning. Still, one may be

able to obtain closed-form solutions for simple signal structures.15 Once Ū e(L,B)

and vi(L,B) are fully characterized, optimal action structures for all discount

factors can be very quickly obtained.

A sufficient condition for the equilibrium payoff set not to be affected by the

possibility to burn money, is that a single stage game Nash equilibrium ab is

an optimal punishment profile for all players. Both the collective punishment

payoff U b and the sum of individual punishment payoffs V are then equal to G(ab)

and the payment constraints imply the money burning constraints. Hence, our

characterization of the payoff sets in the noisy prisoners’ dilemma game remains

valid even if no money burning is allowed. In addition, we have already found that

the restriction not to burn money does not shift the Pareto frontier of the set of

equilibrium payoffs in games with perfect monitoring.

7 Conclusion

In this paper, we presented a characterization of equilibrium payoff sets for infi-

nitely repeated games with public monitoring and monetary transfers. Monetary

transfers are a realistic assumption and at the same time greatly simplify the

analysis. Our results can be used to numerically compute the equilibrium payoff

sets for any finite stage game and they also facilitate the finding of closed-form

analytical solutions.

One interesting direction for future work is to study to which extend monetary

transfers, in conjunction with communication, allow a tractable characterization

of payoff sets for games with private monitoring or for the set of mixed strategy

equilibrium payoffs in games with public monitoring. The problem becomes con-

siderably more complicated, since it is not necessarily optimal to use a payment

plan that induces full information revelation in every period (see, e.g. Fuchs, 2007,

for an analysis in a principal agent framework).

Another direction for future research is to study optimal renegotiation-proof

15For example, in the noisy prisoner’s dilemma game and the action profile a = CC, we find

L(a,B) = 1

βP
(2d−BβA) and U

e(L,B, a) is given as in equation (9).
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equilibria in a framework with monetary transfers and imperfect public monitor-

ing. If we would only consider stationary equilibria, a natural, minimal renegotiation-

proofness requirement is that after no history there shall be money burning. An

interesting question is whether there is a concept of renegotiation-proofness for

which every renegotiation-proof payoff can be implemented with a stationary equi-

librium without money burning.
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Appendix A: Computing U e(L, a) and U
e
(L)

This appendix illustrates how U e(L, a) and U
e
(L) can be exactly computed and

describes heuristics to reduce computation time. Similar methods can be applied

to the computation of vi(L, a) and vi(L).
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Figure 2: Constructing U e(L|a)

Calculating Ue(L, a) Assume that we have calculated Ue(L, a) at two different

levels L0 < L1 illustrated by the points P0 and P1 in Figure 2. We describe a

procedure that fully computes U e(L, a) on the interval [L0, L1]. From the dual

values of the solution of the problem (LP-e) we can get the slope of U e(L, a) at L0

and L1.
16 Figure 2 illustrates the corresponding tangents. The two tangents either

coincide or have a cut point Pc = (Lc, Uc) with L0 < Lc < L1 and U0 < Uc < U2.

In the first case, Ue(L, a) is given on the interval [L0, L1] by the line P0P1. In

the second case the line P0PcP1 constitutes an upper bound on U e(L, a). We

calculate Ue(Lc, a). If Ue(Lc, a) = Uc then U e(L, a) coincides with this upper

bound P0PcP1. Otherwise, we proceed recursively by calculating U e(L, a) on the

two intervals [L0, Lc] and [Lc, L1]. If there are nk ≥ 2 kinks between L0 and L1,

this procedure fully characterizes the function U e(L, a) on the interval by solving

16If Ue(L|a) has a kink at L, it depends on the way the linear program is set up, whether the

dual values delivers the right hand or left hand slope. It is no problem to calculate, the correct

slope, however.
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at most 2 (nk − 1)+1 times the linear program (LB-e). To quickly solve (LP-e) at

different levels of L, one can use standard re-optimization techniques, e.g. based

on the dual simplex algorithm.17

The lowest possible level of L is given by the liquidity requirement L(a). The

right hand starting point of our procedure is given by the minimal liquidity L
e
(a)

above which Ue(L, a) does not anymore increase in L. We can calculate L
e
(a) by

adding a restriction on the maximal allowed expected amount of money burning

in the problem (LP-L).18

Calculating the upper envelope U
e
(L) For the calculation of the upper

envelope U
e
(L), let us define by

Ue(L, Ã) = max
a∈Ã

Ue(L, a)

the upper envelope with respect to a subset of action profiles Ã ⊆ A. Hence, we

have

Ue(L, Ã ∪ {a}) = max{U e(L, Ã), Ue(L, a)}.

We can calculate U
e
(L) by subsequently adding all action profiles to the set Ã. To

calculate the new envelope U e(L, Ã∪{a}), it is often not necessary to compute the

whole function U e(L, a). Recall, that the method to calculate Ue(L, a) delivers in

each step an upper bound on Ue(L, a). It suffices to proceed the calculation of

U e(L, a) only for those values of L where the upper bound exceeds U e(L, Ã).

If an upper bound of U e(L, a) lies everywhere below U e(L, Ã), we can immedi-

ately dismiss the action profile a. Since U e(L, a) is bounded by G(a), a sufficient

condition to dismiss a is that G(a) ≤ Ue(L(a), Ã). A weaker sufficient condition

is G(a) ≤ Ue(L̃(a), Ã), where L̃(a) ≡
∑n

i=1 (ci(a)− gi(a)) is the liquidity require-

ment under perfect monitoring, which always satisfies L̃(a) ≤ L(a). The last

17Moreover, using a simplex algorithm, the case Ue(Lc, a) = Uc can sometimes be veri-

fied without the need of solving the linear program (LP-e) at Lc. A sufficient condition for

Ue(Lc, a) = Uc is that the the optimal (dual) basis of the solved problem at L0 (or L1) remains

an optimal basis at Lc. This condition can be checked with standard formulas used to calculate

sensitivity bounds. However, it can happen that the optimal basis changes between L0 and Lc

even though the function Ue(L|a) has no kink between L0 and Lc.
18If the full-dimensionality condition of the folk theorem by Maskin, Fudenberg and Levine

(1994) holds we must impose zero money burning to calculate L. Otherwise, we first have to

solve the problem (LB-e) with unlimited liquidity to calculate the minimally required amount

of money burning.

37



condition can be checked very quickly since no linear program has to be solved for

a.

The order in which action profiles are added to Ã can influence the total com-

putation time, because action profiles can be more quickly dismissed if U e(L, Ã)

is already large. One should first add all Nash equilibria of the stage game, which

satisfy U e(L, a) = G(a) for all L ≥ 0. An educated guess about which optimal

action profiles are likely to be optimal, e.g. symmetric ones, can be furthermore

helpful.

Punishment states Similar methods can be used to calculate vi(L, a) and

vi(L). For the computation of vi(L), it is helpful to first add to Ã all those

action profiles a where ai is a best-reply to a−i, since these action profiles satisfy

vi(L, a) = gi(a) for all L ≥ L(a).
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