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Abstract

We consider a general class of imperfectly discriminating contests with pri-

vately informed players. We show that findings by Athey (2001) imply the exis-

tence of a Bayesian Nash equilibrium in monotone pure strategies.
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1 Introduction

Models of contests have been used to study a wide range of relevant economic ques-

tions.1 In many contest-like situations players are, at least to some extent, privately

informed about their preferences. Depending on whether the contestant who in-

vested the highest effort wins with certainty or not, one can distinguish between

perfectly and imperfectly discriminating contests. Perfectly discriminating contests

∗Humboldt University of Berlin, Institut für Wirtschaftstheorie I, Spandauer Str. 1, 10178 Berlin,
Germany; email: cedric.wasser@wiwi.hu-berlin.de. Financial support from the Deutsche
Forschungsgemeinschaft through SFB/TR 15 is gratefully acknowledged.

1See, e.g., Konrad (2009) for a recent survey.
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such as the all-pay auction and the war of attrition have been thoroughly stud-

ied under asymmetric information (e.g., Krishna and Morgan, 1997). The literature

on imperfectly discriminating contests, however, has almost exclusively focused on

completely informed contestants. Notable exceptions include Hurley and Shogren

(1998), Malueg and Yates (2004), and Fey (2008) who study contests among two pri-

vately informed players under very specific assumptions concerning the distribution

types are drawn from and the contest success function (CSF).2

The information structure and the CSF we consider in this note are much more

general. We show how a well-known result by Athey (2001) from the theoretical lit-

erature on Bayesian games can be readily applied to imperfectly discriminating con-

tests, ensuring the existence of a pure-strategy equilibrium. An important require-

ment for this approach is that the CSF is everywhere continuous. Apart from that

we make only weak assumptions, allowing for correlated signals and interdependent

valuations. We require a player’s valuation to be increasing in the signal he observes

and his probability of winning to be increasing in his effort. Most notably, no as-

sumptions regarding concavity and convexity, respectively, of the contest success,

valuation, and cost function are needed for the existence result.

We proceed by stating the assumptions and proving the main result. This is fol-

lowed by a short discussion of some examples from the contest literature our result

applies to.

2 Model and Main Result

There are n risk neutral players competing for a single prize in a contest. Before the

contest, each player i privately observes a signal θi ∈ [θ i ,θ i ] ⊂ R. It is common

knowledge among players that the vector of all signals θ := (θ1, . . . ,θn ) is drawn from

the continuous distribution F (θ ) with bounded density f (θ ). The value of the prize

to player i can be expressed as a function vi : [θ 1,θ 1]× · · · × [θ n ,θ n ]→ [v i , v i ] ⊂ R+.

We assume that vi (θ ) is continuous in θ and nondecreasing in θi .

2They consider Tullock lottery contests where a player’s probability of winning is equal to his effort
divided by the sum of all efforts. Types are either drawn from simple discrete distributions or a con-
tinuous uniform distribution. Wasser (2010) extends the analysis to more than two players and more
general continuous distributions. Another branch of the literature considers one-sided asymmetric
information (e.g., Wärneryd, 2003).
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Players compete by simultaneously choosing the amount of effort they invest.

Each player i chooses x i ∈ R+. The probability that i wins the contest (or, alter-

natively, the share of the prize i obtains) depends on the vector of all efforts x :=

(x1, . . . ,xn ). The winning probability is given by the CSF p i : Rn
+
→ [0, 1], where p i (x )

is continuous in x and nondecreasing in x i .

Investing effort is costly. Player i ’s cost of providing effort x i can be described by

a continuous function c i :R+→R+. We assume that c i (0) = 0 and that there exists an

x i ∈R+ such that c i (x i )> v i for all x i > x i .

Let player i ’s ex post payoff be denoted by

u i (x ,θ ) := p i (x )vi (θ )− c i (x i ).

Suppose each of player i ’s opponents j uses a strategy ξj : [θ j ,θ j ] → R+ and let

θ−i be the vector of the signals of i ’s opponents. To simplify the notation we will

use (x i ,ξ−i (θ−i )) to refer to the vector (ξ1(θ1), . . . ,ξi−1(θi−1),x i ,ξi+1(θi+1), . . . ,ξn (θn )).

Then, i ’s objective function, i.e., i ’s interim expected payoff amounts to

Ui (x i ,θi ) :=E
h

u i

�

(x i ,ξ−i (θ−i )),θ
�
�

�θi

i

=

∫

Θ−i

p i

�

x i ,ξ−i (θ−i )
�

vi (θ ) f (θ−i |θi )dθ−i − c i (x i ) (1)

whereΘ−i := [θ 1,θ 1]×· · ·×[θ i−1,θ i−1]×[θ i+1,θ i+1]×· · ·×[θ n ,θ n ] and f (θ−i |θi )denotes

the density of θ−i conditional on θi . We are now ready to prove the main result by

making use of Athey (2001).

Theorem 1. The contest has a pure-strategy Bayesian Nash equilibrium where each

player i uses a nondecreasing strategy ξi (θi ).

Proof. In order to prove the result we apply Corollary 2.1 in Athey (2001). In the fol-

lowing, we will verify that our model meets all the requirements of Athey’s corol-

lary. First note that our assumptions are consistent with Athey’s assumption A1: f is

bounded and atomless and the integral in (1) exists since u i is continuous in all of its
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arguments. Because p i (x ) is nondecreasing in x i and vi (θ ) is nondecreasing in θi ,

p i (x
L
i

,x−i )
�

vi (θ
H
i

,θ−i )− vi (θ
L

i
,θ−i )
�

> (≥) 0

⇒ p i (x
H
i

,x−i )
�

vi (θ
H
i

,θ−i )− vi (θ
L

i
,θ−i )
�

> (≥) 0

for all x H
i > x L

i and θH
i >θ

L
i . Consequently,

Ui (x
H
i

,θ L
i
)−Ui (x

L
i

,θ L
i
)> (≥) 0⇒U (x H

i
,θH

i
)−U (x L

i
,θH

i
)> (≥) 0

and therefore Athey’s Single Crossing Condition for games of incomplete information

is satisfied. Now, observe that u i (x ,θ )≤ vi (θ )−c i (x i )≤ v i−c i (x i ). For x i > x i we have

u i (x ,θ )< 0 while with x i = 0 a player can guarantee himself u i (x ,θ )≥ 0. Effort levels

x i > x i are clearly dominated. Thus, we can restrict players’ actions to x i ∈ [0,x i ] for

all i – a closed interval as assumed by Athey. Moreover, u i (x ,θ ) is continuous in x

for all i . Existence of a pure-strategy Bayesian Nash equilibrium in nondecreasing

strategies hence directly follows from Corollary 2.1 in Athey (2001).

3 Discussion

Our existence result applies to asymmetric information versions of many contests

considered in the literature. Under complete information, much attention is devoted

to contests with a CSF that takes the form

p i (x ) =
g i (x i )
∑n

j=1 g j (x j )
(2)

where each g i (x i ) is an increasing function. Most importantly, Skaperdas (1996) pro-

vides an axiomatization for the symmetric case where g i = g for all i . Under the

condition that g i (0)> 0, Theorem 1 implies existence of a pure-strategy equilibrium

if such a contest is held among privately informed contestants.3 A related CSF The-

orem 1 also applies to is p i (x ) = h i (x i )
.�

1+
∑n

j=1 h j (x j )
�

with h i strictly increasing.

3A popular specification, proposed by Tullock (1980), is g (x ) = x R for some R > 0. Theorem 1 does
not apply because this CSF exhibits a discontinuity at x = (0, . . . , 0). However, if each player’s action is
restricted to a finite set, Theorem 1 in Athey (2001) implies existence of a pure-strategy equilibrium.
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This CSF is, e.g., considered by Dasgupta and Nti (1998) and an axiomatization is

provided by Blavatskyy (2010).

Under complete information contests with a CSF as in (2) are known to have only

mixed-strategy equilibria if g i is too convex (e.g., Cornes and Hartley, 2005). In con-

trast, Theorem 1 shows that under asymmetric information there is always a pure-

strategy equilibrium. This echoes a well-known property of the perfectly discrim-

inating all-pay auction, having a pure-strategy equilibrium under asymmetric but

not under complete information. Indeed, the all-pay auction can be obtained as the

limit of a sequence of contests with increasingly convex g i . Although not needed

for equilibrium existence under asymmetric information, assuming g i to be concave

usually simplifies the analysis, especially since it allows for the equilibrium strategies

to be characterized by first-order conditions.4

Hirshleifer (1989) proposes a symmetric specification of (2) where g (x i ) = e k x i

with k > 0. If n = 2, this is at the same time also a special case of the class of contests

introduced by Lazear and Rosen (1981). They assume that the player i with the high-

est x i + ǫi wins the contest, where ǫi is a randomly distributed noise term realized

only after efforts have been chosen. Denoting the distribution function of ǫj − ǫi by

L i , the corresponding CSF becomes p i (x ) = L i (x i−x j ). For continuous L i Theorem 1

ensures existence of a pure-strategy equilibrium if players have private information.5

Establishing the existence of a pure-strategy equilibrium, we make a first step

towards a better understanding of imperfectly discriminating contests under asym-

metric information. Studying the properties of such equilibria seems to be a promis-

ing direction for future research.
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