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Abstract

Consider a differentiated product market in which all consumers are fully informed

about match value and price at the time they make their purchasing decision. Initially,

consumers become informed about the prices of all products in the market but do not

know the match values. Some consumers have reference-dependent utilities—i.e.,

they form a reference-point distribution with respect to match value and price that

will make them realize gains or losses if their eventually chosen product performs

better or, respectively, worse than their reference point in both dimensions. Loss

aversion in the match-value dimension leads to a less competitive outcome, while

loss aversion in the price dimension leads to a more competitive equilibrium than a

market in which consumers are not subject to reference dependence. Depending on

the weights consumers attach to the price and the match-value dimension, a market

with loss-averse consumers may be more or less competitive than a market with con-

sumers that do not have reference-dependent utilities. We also show that consumer

loss aversion tends to lead to higher prices if the market accommodates a larger num-

ber of firms.
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1 Introduction

In this paper, we introduce loss-averse consumers into a differentiated product market

and investigate the competitive effects of consumer loss aversion and, more generally,

reference-dependent utilities. Our framework applies to inspection goods: Consumers

learn about available products and prices but have to inspect products before knowing the

match value between product characteristics and consumer taste—consumers often face

such a situation because price information can be easily communicated, whereas match

value is more difficult for a consumer to assess.

Reference dependence and loss-aversion in consumer choice is a robust empirical phe-

nomenon that has been documented in a variety of laboratory and field settings starting

with Kahneman and Tversky (1979). Following Koszegi and Rabin (2006), reference

points are expectation-based: A consumer’s reference point is her probabilistic belief

about the relevant consumption outcome held between the time she first begins to contem-

plate the consumption plan and the moment she actually makes the purchase. Consumers

are loss-averse with respect to prices and match value and have self-fulfilling expectations

about equilibrium outcomes to form their reference point, as in Heidhues and Koszegi

(2008).1

Firms compete in prices for differentiated products. Product differentiation is modeled

as in Salop (1979). In addition to the standard business-stealing effect in oligopoly, price

affects reference-dependent utilities. In particular, holding the reference-point distribution

fixed, a price reduction leads to a gain in the price dimension for consumers who buy this

product but to a loss in the price dimension for all consumers who buy the other product.

This implies that, due to reference dependence, a consumer’s realized net utility depends

not only on the price of the product she buys but also on the price of the product she does

not buy. Furthermore, price can be seen as an expectation-management tool, as it affects

the reference-point distribution in the price and in the match-value dimension. Utility

is also affected by the match-value dimension because price changes affect the expected

match quality.

We characterize the equilibrium and establish conditions for equilibrium existence and

uniqueness. Our model allows for clear-cut comparative statics results.

1For evidence that expectation-based counterfactuals can affect the individual’s reaction to outcomes, see

Blinder, Canetti, Lebow, and Rudd (1998), Medvec, Madey, and Gilovich (1995), and Mellers, Schwartz,

and Ritov (1999). The general theory of expectation-based reference points and the notion of personal

equilibrium have been developed by Koszegi and Rabin (2006) and Koszegi and Rabin (2007).
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Our first main result is that, in markets in which consumers’ utility is reference-dependent

and, more specifically, features loss aversion, the competitive effect of such a behavioral

bias depends on the weight of the price dimension relative to the match-value dimension.

In other words, whether the behavioral bias makes the market more or less competitive

depends on how gains and losses in the two dimensions enter consumers’ utility function.

We show that reference dependence with respect to prices leads to lower prices and, thus,

is pro-competitive, whereas reference dependence with respect to match value is anti-

competitive. This holds even if gains and losses enter with the same weights into the

utility function.2

We then focus on the utility specification in which the price and match-value dimensions

enter with the same weights in the utility function. Consider the n-firm oligopoly with

localized competition put forward by Salop (1979). We accommodate loss-averse con-

sumers in this model. In this context, we obtain our second main result: Consider a

setting in which the number of firms would be neutral to competition if consumers’ utility

functions did not feature reference dependence. Then, an increase in the number of firms

leads to higher prices if consumers are loss-averse.

This paper contributes to the analysis of consumer loss aversion in imperfectly compet-

itive markets and complements our companion paper, Karle and Peitz (2010), as well as

Heidhues and Koszegi (2008) and Zhou (2008). More broadly, it contributes to the anal-

ysis of behavioral biases in market settings, as in Eliaz and Spiegler (2006), Gabaix and

Laibson (2006), and Grubb (2009).

Compared to Heidhues and Koszegi (2008), our model has two distinguishing features.

First, firms’ marginal costs are identical and common knowledge. This is in line with a

large part of the industrial organization literature on oligopoly and constitutes a limiting

case of Heidhues and Koszegi (2008). It is approximately satisfied in stationary markets

in which firms are well-informed about the technology of their competitors. Assuming

the same marginal cost amounts to assuming that all firms use the same technology. Sec-

ond and more importantly, we postulate that prices are set before consumers form their

reference point. This property in particular holds in market in which prices are easily

observed but in which consumers need time to evaluate the match value—for an elaborate

discussion see Section 1 of our companion paper, Karle and Peitz (2010). We also allow

for a population mix between consumers with and without reference-dependent utilities,

whereas Heidhues and Koszegi (2008) only allow for the two polar cases.

2Reference dependence includes this case, while loss aversion requires that gains and losses enter with

different weights.
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In independent work, Zhou (2008) predicts a pro-competitive effect of consumers be-

ing loss averse that contrasts with Heidhues and Koszegi (2008). In Zhou’s model and

in ours firms can manage consumers’ reference point by choosing product prices. A

key difference between the two models is that consumers in his model do not use an

expectation-based reference point. Instead, he proposes a history-dependent reference

point: Consumers consider the product visited last as their reference point.

In this paper, we provide a taxonomy of different market environments and find that the

impact of consumer loss aversion on competition depends on the particular specification

of the gain-loss utility: If consumers experience a gain-loss utility in the price dimension

only, the behavioral bias is pro-competitive; if they experience a gain-loss utility in the

match-value dimension only, the behavioral bias is anticompetitive. If both dimensions

enter the utility function symmetrically, the result depends on the presence of consumer

loss aversion: If gains and losses receive the same weights (i.e., no loss aversion), the bias

is competitively neutral; otherwise, with consumer loss aversion, the anti-competitive

effect in the taste dimension dominates.

In Karle and Peitz (2010), we analyze a model of asymmetric duopoly and explore the

effect of cost asymmetry and the share of ex ante available information in the consumer

population on market outcomes. The present paper has a different focus: We analyze

symmetric oligopoly and explore how different weights in the price and match-value di-

mension of the reference-dependent utilities and the number of firms shape competition.

The plan of the paper is as follows. In Section 2, we present the model. In Section 3,

we characterize the duopoly equilibrium. We also compare our findings to those of the

duopoly model with a different timing of events inspired by Heidhues and Koszegi (2008).

In Section 4, we extend our analysis to an n-firm oligopoly. Section 5 concludes. Some

of the proofs are relegated to Appendix A. Equilibrium existence in symmetric n-firm

oligopoly is established in Appendix B.

2 The Model

Consider a market with n firms and a continuum of loss-averse consumers of mass 1.

Firms are located equidistantly on a circle of length L = n. The location of firm i is

denoted by yi = i − 1 for all i ∈ {1, ..., n}. Consumers observe firms’ locations ex ante.

Each firm i announces its price pi to all consumers.
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Consumers are uniformly distributed on the circle. A consumer’s location x, x ∈ [0, n),

represents her taste parameter. Her taste is initially—i.e., before she forms her reference

point—not known to herself.

A fraction (1 − β) of consumers, 0 ≤ β ≤ 1, has reference-dependent utilities. As will be

detailed below, consumers endogenously determine their reference point and then, before

making their purchase decision, observe their taste parameter (which is each consumer’s

private information). At the moment of purchase, all consumers are perfectly informed

about product characteristics, prices, and tastes.

All consumers have the same reservation value v for an ideal variety and have unit de-

mand. Their utility from not buying is −∞, so that the market is fully covered.

We note that the circle model allows for the alternative and equivalent interpretation about

the type of information consumers initially lack: Consumers do not know the location of

the firms; they know only that the two firms are located equidistantly on the circle.

Let the consumer type with standard utilities in [0, 1], who is indifferent between buying

good i and good i + 1, be denoted by x̂i(pi, pi+1). The corresponding indifferent loss-

averse consumer is denoted by ˆ̂x+i (p1, . . . , pn).3 Note that the location of the loss-averse

consumer who is indifferent between two products depends not only on the prices of the

two products she will choose from, but also on the prices of the other products, since they

affect the reference-point distribution in the price and taste dimensions. The firms’ profits

are:

πi(p1, . . . , pn) = (pi − c)

(

β · x̂i(pi, pi+1) − x̂i(pi−1, pi)

n
+ (1 − β) ·

ˆ̂x+
i
(p1, . . . , pn) − ˆ̂x−

i
(p1, . . . , pn)

n

)

.

The timing of events is as follows:

Stage 1) Price-setting stage: Firms simultaneously set prices pi.

Stage 2) Reference-point-formation stage: All consumers observe prices, and consumers

with reference-dependent utilities form reference-point distributions over purchase

price and match value.

Stage 3) Inspection stage: Consumers observe their taste x.

Stage 4) Purchase stage: Consumers decide which product to buy.

3We denote the indifferent loss-averse consumer between buying from firm i and firm i − 1 by
ˆ̂x−
i
(p1, . . . , pn).
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At stage 1, we solve for subgame perfect Nash equilibrium, where firms foresee that

consumers with reference-dependent utilities play a personal equilibrium at stage 2. Con-

sumers with reference-dependent utilities do not know their ideal taste x ex ante and, thus,

are ex ante uncertain as to which product they will buy after they have learned their ideal

taste x. Ex ante, they face uncertainty about purchase price and match value. This leads

to a non-degenerate reference-point distributions in these two dimensions.

Following Koszegi and Rabin (2006) and Heidhues and Koszegi (2008), we assume that

consumers experience gains and losses not with respect to net utilities, but with respect to

each product “characteristic” separately, where price is then treated as a product charac-

teristic. This is in line with much of the experimental evidence on the endowment effect;

for a discussion, see, e.g., Koszegi and Rabin (2006). Following Heidhues and Koszegi

(2008), we also assume that consumers evaluate gains and losses across products. This

appears to be the natural setting for consumers facing a discrete choice problem.

To derive the two-dimensional reference-point distribution of loss-averse consumers, sup-

pose that the price vector p = (p1, . . . , pn) is such that any sub-market between two neigh-

boring firms is served by only these two firms—i.e., the maximum price difference be-

tween any two neighboring firms is not too large in absolute terms.4 The rank order of

the price difference, ∆p+i = pi+1 − pi, and distance between firm i and her indifferent loss-

averse consumer on the right, ˆ̂x+
i
− yi = ˆ̂x+

i
− (i− 1) ∈ [0, 1], are identical.5 This holds true

since the reference comparison induced by reference-dependent utility is, by construc-

tion, rank-order maintaining. For example, if pi = pi+1 (∆pi = 0), then ˆ̂x+
i
− (i − 1) = 1/2

(by symmetry), while ˆ̂x+j − ( j − 1) > 1/2 if p j < p j+1 (∆p j > 0). The reference-point

distribution in the price dimension, F(p), is the probability that the equilibrium purchase

price p∗ is smaller than or equal to p. Recall that due to consumers’ initial taste uncer-

tainty, the equilibrium purchase price is not known when consumers form their reference

point, even though firms’ prices are already disclosed. Buying from a cheap firm is more

likely than buying from an expensive firm, as a cheap firm serves a larger market share in

equilibrium. Utilizing the uniform distribution of x, we derive

F(p) =
∑

i∈{i|pi≤p}

( ˆ̂x+i − ˆ̂x−i )

n
. (1)

We next define the distances z j between an indifferent consumer’s location and the loca-

4The case in which a single firm serves several sub-markets is considered in Section B.2 in the Appendix.
5Note that the index i for ∆p+

i
is modulo n—i.e., ∆p+n = p1 − pn.
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tions of her two neighboring firms,

∀ j ∈ {1, ..., 2n} : z j =






ˆ̂x+i − (i − 1), if j = 2i − 1;

1 − ( ˆ̂x+
i
− (i − 1)), if j = 2i.

(2)

Note that max{z2i−1, z2i} represents the maximum taste difference consumers located be-

tween firm i and i+1 are willing to accept for given prices. Also note that max j∈{1,...,2n}{z j}
reflects consumers’ maximum acceptable taste difference in the entire market and corre-

sponds to the largest price difference between two neighboring firms. Distances z j can

be ordered by rank. Let z[k] describe the kth smallest distance in {z j}2n
j=1

and #(z[k])

the number of distances of size z[k].6 σ(x) describes consumer x’s purchase decision

(pure-strategy personal equilibrium), which requires that, for given prices, p consumers

correctly anticipate the locations of the indifferent consumers { ˆ̂x+i }ni=1
. The reference-point

distribution in the taste dimension, G(s), is the probability that the equilibrium taste dif-

ference between the consumer’s ideal taste x and the taste of the purchased product yσ(x)

is smaller than a real number s—i.e., G(s) = Prob(|x − yσ(x)| ≤ s). We obtain,

G(s) =






2s, s ∈ [0, z[1]];

2s
2n−#(z[1])

2n
+ a1, s ∈ (z[1], z[2]];

...
...

2s
2n−

∑k
j=1 #(z[ j])

2n
+ ak, s ∈ (z[k], z[k + 1]];

...
...

2s
2n−∑K−1

j=1 ♯(z[ j])

2n
+ aK−1, s ∈ (z[K − 1], z[K]];

aK = 1, s ∈ (z[K], 1].

(3)

with {ak}Kk=1
being the required constants for the kinked cdf. If all prices are the same,

then consumers expect to buy from their closest firm ex post with probability one. The

distribution of the expected taste difference, G(s), is not kinked in this case and approaches

the uniform distribution: K = 1 and G(s) = 2s for s ∈ (0, 1/2]. If there are two or more

different prices pi in the market, then there are at least two different distances z j. For small

realized taste differences, s ∈ [0, z[1]], consumers expect to buy from their closest firm ex

post and, thus, G(s) = 2s. However, for a larger taste difference consumers anticipate that

they will be attracted with positive probability to the more distant, cheaper firm ex post.

For this to happen, given s ∈ (z[1], z[2]], the realization of x must be sufficiently close

to the more expensive firm in the sub-market with the largest price difference. Let, for

6Obviously, if there are no ties between price differences and between distances, then #(z[k]) = 1 for all

k ∈ {1, ...,K} and K = 2n.
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instance, ∆p+i = pi+1− pi be the (unique) maximum price difference for given p. Then, the

indifferent consumer, ˆ̂x+
i
, in this sub-market is more closely located to the expensive firm

i+1 (yi+1 = i). Moreover, the distance between firm i+1 and the indifferent consumer ˆ̂x+i is

the smallest distance in the entire market—i.e., yi+1− ˆ̂x+
i
= i− ˆ̂x+

i
= 1−( ˆ̂x+

i
−(i−1)) = z[1].

Thus, if the realization of x lies in the interval [yi+1 − z[2], ˆ̂x+i ], the consumer will be

attracted by the cheaper firm i. Therefore, the consumer will not buy from her closest

firm in equilibrium. This means that for s ∈ (z[1], z[2]], only 2n − 1 sub-markets are

relevant for the probability of facing s and G(s), therefore, equals 2s(2n − 1)/2n. This

argument carries over to all s ∈ (z[k], z[k + 1]] with 1 ≤ k ≤ K ≤ 2n. G(s) shows up to 2n

kinks if there n distinct price differences in the market.

We next turn to the consumers’ utility function. Using the reference-point distribution

in both dimensions, we can then solve for consumers’ personal equilibria. Consider the

indirect utility functions of a consumer who has learned, after forming her reference-point

distribution given prices, that her ideal taste x lies in the sub-market between firm i and

firm i + 1. Suppose further that this consumer is the indifferent loss-averse consumer on

this sub-market—i.e., x = ˆ̂x+i ∈ [i − 1, i]. The consumer faces a distance of ˆ̂x+i − (i − 1) =

z2i−1 to firm i and 1 − z2i−1 to firm i + 1. Her indirect utility if buying from firm i can be

expressed as

ui(x = ˆ̂x+i , p) =v − tz2i−1 − pi

+ αp

(

− λ
∑

j∈{ j|p j≤pi}

( ˆ̂x+
j
− ˆ̂x−

j
)

n
(pi − p j) +

∑

j∈{ j|p j>pi}

( ˆ̂x+
j
− ˆ̂x−

j
)

n
(p j − pi))

)

+ αm

(

− λt
∫ z2i−1

0

(z2i−1 − s)dG(s) + t

∫ 1

z2i−1

(s − z2i−1)dG(s)

)

,

where the first line describes the consumer’s intrinsic utility from product i. Parameter

v represents the common reservation value for one unit of any product, and t scales the

disutility from distance between ideal and actual taste on the circle. In the second line,

αp ≥ 0 measures the degree of reference dependence in the price dimension.7 The first

term in the second line shows the loss in the price dimension from not facing a lower price

than pi, while the second term in this line shows the gain from not facing a higher price

than pi. The weight on losses is λ > 1, while the weight on gains is normalized to one.

This feature, combined with the reference comparison, implements loss aversion in our

setup.8 In the third line, αm ≥ 0 measures the degree of the reference dependence in the

7αp is equal to 1 for standard reference-dependent preferences that are considered in Heidhues and

Koszegi (2008) and Karle and Peitz (2010).
8For λ→ 1, consumers face no loss aversion but are still reference-dependent.
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match-value dimension, which is equal to 1 in the standard case. The two terms in the

third line correspond to the loss (gain) from not facing a smaller (larger) distance in the

taste dimension than ˆ̂x+i − (i − 1) = z2i−1. If buying from firm i + 1 instead, the indifferent

consumer’s indirect utility equals

ui+1(x = ˆ̂x+i , p) =v − t(1 − z2i−1) − pi+1

+ αp

(

− λ
∑

j∈{ j|p j≤pi+1}

( ˆ̂x+j − ˆ̂x−j )

n
(pi+1 − p j) +

∑

j∈{ j|p j>pi+1}

( ˆ̂x+j − ˆ̂x−j )

n
(p j − pi+1)

)

+ αm

(

− λt
∫ (1−z2i−1)

0

((1 − z2i−1) − s)dG(s) + t

∫ 1

(1−z2i−1)

(s − (1 − z2i−1))dG(s)

)

.

By setting ui−ui+1 = 0 for all i and solving for { ˆ̂x+i }ni=1
, we determine the locations of indif-

ferent loss-averse consumers (consumers’ personal equilibria) for any given p (provided

that a solution exists).

Since the focus of this paper is on symmetric firms and symmetric price equilibria, we

can restrict our attention to prices that are the same for all firms but one. The variation

in the price of one firm is required to determine the symmetric equilibrium price in stage

1 of the game. Let pi , p′ be the price set by firm i and p j = p′, j , i, the price of

any other firm in the market. By symmetry, the location of indifferent consumers in any

sub-market with zero price difference lies exactly in the middle between the two firms on

this sub-market—i.e., ˆ̂x+j − ( j−1) = 1/2. The location of indifferent consumers in the two

sub-markets around firm i is further apart from firm i than 1/2, if firm i has set a lower

price than any neighboring firm—i.e., ˆ̂x+i − (i − 1) = (i − 1) − ˆ̂x−i > 1/2 for pi < p′—and

vice versa if firm i has set a higher price than any neighboring firm. In the following

lemma, we solve for the location of the indifferent consumer ˆ̂x+i as a function of the price

difference ∆p = p′ − pi ≥ 0, conditional on the number of firms n in the market and the

weights αp and αm with respect to the two dimensions of loss aversion.

Lemma 1. Suppose that ˆ̂x+
i
∈ [(i−1)+1/2, i], pi ≤ p′, and p j = p′ for all j , i. Moreover,

λ > 1 and αm > 0. Then ˆ̂x+i , as a function of the price difference ∆p = p′ − pi ∈ [0,∆p̄], is

ˆ̂x+i (∆p) = (i − 1) +

(
2(αm + 1)

αm(λ − 1)(n + 2)
+

3n + 2

n(n + 2)

)

−
2αp · ∆p

αmn(n + 2)t
− 2S (∆p), (4)

where

S (∆p) =

√

α2
p(λ − 1)2 · ∆p2 − (λ − 1)Λt · ∆p + (1 + αmλ)2n2t2

(αm(λ − 1)n(n + 2)t)2
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with Λ =
(

2αpn + αm

(

n(n + 2) + αp

(

2(λ − 1) + (3λ + 1)n + n2
)))

and ∆p̄ being the upper

bound of ∆p for which the square root S (∆p) is defined.9

The proof of Lemma 1 is relegated to Appendix A.1. In the proof, we make use of the

fact that there exist only two indifferent consumers whose locations are different from

1/2, the indifferent consumers to the right and the left of firm i. Since their locations are

symmetric, it suffices to solve a system of one (quadratic) equation and one unknown—

i.e., to solve ui − ui+1 = 0 for ˆ̂x+i . For λ→ 1 or αm → 0, ui − ui+1 = 0 collapses to a linear

equation and ˆ̂x+
i
(∆p) shows a much simpler form.

From the general form of ˆ̂x+i (∆p) in Lemma 1, we can easily derive the demand from loss-

averse consumers of firm i, ˆ̂xi(∆p): Using the uniform distribution of x and symmetry we

obtain

ˆ̂xi(∆p) =
ˆ̂x+

i
(∆p) − ˆ̂x−

i
(∆p)

n
=

2

n

(

ˆ̂x+i (∆p) − (i − 1)

)

=
2

n
z2i−1. (5)

In the next section, we consider duopoly markets varying the weights on the price and

taste dimensions of loss aversion. In Section 4, we set both weights equal to one and

analyze the n-firm oligopoly.

3 Duopoly

In this section, we characterize equilibrium candidates rearranging first-order conditions.

We provide conditions under which an interior equilibrium in a symmetric duopoly exists

and under which it is unique. We start by establishing some properties of market demand

that will be needed below. Initially, we focus on the case αp = αm = 1.

3.1 Properties of market demand

We first consider non-biased consumers who do not have reference-dependent utilities.

Such a situation will represent our benchmark. For prices pi and p−i, a non-biased con-

sumer located at x obtains the indirect utility ui(x, pi) = v − t|yi − x| − pi from buying

9For x ∈ [i − 1, i], consumer x’s personal equilibrium (determining her product choice) is described by

σ(x,∆p) =






i if x ∈ [yi, ˆ̂x+
i
(∆p)],

i + 1 if x ∈ ( ˆ̂x+
i
(∆p), yi+1].
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product i. The expression v − t|yi − x| captures the match value of product i for consumer

of type x. Denote the indifferent (non-biased) consumer between buying from firm i and

−i on the first half of the circle by x̂i ∈ [0, 1] and solve for her location given prices. The

indifferent non-biased consumer is given by

x̂i(pi, p−i) =
(t + p−i − pi)

2t
. (6)

Symmetrically, a second indifferent (non-biased) consumer type is located at 2−x̂i(pi, p−i) ∈
[1, 2]. Without loss of generality we focus on demand of consumers between 0 and 1 and

multiply by 2.

We next turn to loss-averse consumers. In duopoly with equal weights of one on both

dimensions of loss aversion, the location of the indifferent consumer of firm i is equal to

ˆ̂x+i (∆p) = (i − 1) +
λ

(λ − 1)
−
∆p

4t
−

√

∆p2

16t2
−

(λ + 2)

2t(λ − 1)
∆p +

(λ + 1)2

4(λ − 1)2

︸                                        ︷︷                                        ︸

≡S (∆p)

. (7)

This expression is valid for ∆p = p−i − pi sufficiently small. The square root, S (∆p) in

(7), is defined for ∆p ∈ [0,∆p̄] with

∆p̄ ≡ 2t

(λ − 1)

(

2(λ + 2) −
√

(2(λ + 2))2 − (λ + 1)2

)

, (8)

which is strictly positive for all λ > 1. It can be shown that, for λ ≥ 3 + 2
√

5 ≈ 7.47,

the indifferent consumer satisfies ˆ̂x+i (∆p) ∈ [1/2, 1] for all ∆p ∈ [0,∆p̄]. If the degree

of loss aversion is smaller, λ < 3 + 2
√

5, ˆ̂x+
i
(∆p̄) rises above one. Therefore, we have to

define another upper bound on the price difference, ∆p̃, with ∆p̃ < ∆p̄ by the solution to

ˆ̂x+
i
(∆p̃) = 1. We can solve explicitly,

∆p̃ =
(λ + 3)t

2(λ + 1)
. (9)

The upper bound for the price difference (which depends on the parameters t and λ), for

which ˆ̂x+
i

is defined as in equation (7), is given by:

∆pmax ≡





∆p̃, if 1 < λ ≤ λ̃;
∆p̄, if λ > λ̃.

(10)
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with λ̃ ≡ 3 + 2
√

5 ≈ 7.47.10

Since x is uniformly distributed on a circle of length L = 2, the demand of firm i from

loss-averse consumers, ˆ̂xi, is equal to ( ˆ̂x+
i
− ˆ̂x−

i
)/2 = 2( ˆ̂x+

i
− (i− 1))/2 = ˆ̂x+

i
− (i− 1). It can

be shown that the derivative of ˆ̂xi(∆p) with respect to ∆p, ˆ̂x′
i
(∆p), is strictly positive for

all ∆p ∈ [0,∆pmax]:

ˆ̂x′i(∆p) = − 1

4t
− 1

2 · S (∆p)
·
(
∆p

8t2
− (λ + 2)

2t(λ − 1)

)

.

Evaluated at ∆p = 0, this becomes

ˆ̂x′i(0) = − 1

4t
+

(λ + 2)

2t(λ + 1)
.

ˆ̂x′
i
(0) is approaching 1/(2t) from below for λ→ 1 and 1/(4t) from above for λ→ ∞. This

implies that, evaluated at ∆p = 0, demand of loss-averse consumers reacts less sensitive

to price changes than demand of non-biased consumers—we return to this property in

the following subsection. Moreover, ˆ̂xi(∆p) is strictly convex for all ∆p ∈ [0,∆pmax], as

illustrated in Figure 1 below.

ˆ̂x′′i (∆p) =
(3 + λ)(5 + 3λ)

64t2 · (S (∆p))3
> 0.

We note that the degree of convexity of ˆ̂xi(∆p) is strictly increasing in λ.

We also note a continuity property. For λ → 1, the indirect utility function of loss-

averse consumers differs from the one of non-biased consumers only by a constant.11 The

equation ui − u−i = 0 collapses to a linear equation, and we obtain ˆ̂xi(∆p) = x̂i(∆p) as

a solution in this case. This means that if consumers put equal weights on gains and

losses, the effect of comparing expectations with realized values exactly cancels out when

a choice between two products is made.

10Note that ∆p̃ ∈
[

t · (
√

5 − 1)/2, t
)

≈
[

0.618t, t
)

for 1 < λ ≤ λ̃ and ∆p̄ ∈
(

t · 2(
√

3 − 2), t · (
√

5 − 1)/2
)

≈
(

0.536t, 0.618t

)

for λ > λ̃.

11This continuity property holds in the present specification where the gain-loss utility in the price and

in the match-value dimension enter with equal weights. This does not hold more generally, see the next

subsection.



Consumer Loss Aversion and Competition in Differentiated ProductMarkets 13

0.0 0.2 0.4 0.6 0.8

0.6

0.7

0.8

0.9

1.0

∆p

x̂i(∆p) : dotted, ˆ̂xi(∆p|λ = 2) : dashed, ˆ̂xi(∆p|λ = 3.83) : solid

Demand of non-biased and loss-averse consumer as a function of ∆p for parameter

values of t = 1, αm = αp = 1; ∆pmax(λ = 2) = 0.8333 and ∆pmax(λ = 3.83) = 0.7070.

Figure 1: Demand of non-biased and loss-averse consumers

We define the upper bound of firm i’s demand of loss-averse consumers as12

ˆ̂xi(∆pmax) ≡





ˆ̂xi(∆p̃) = 1, if 1 < λ ≤ λ̃,
ˆ̂xi(∆p̄) < 1, if λ > λ̃.

(11)

Combining (6) and (7), we obtain the market demand of firm i as the weighted sum of the

demand by non-biased and loss-averse consumers,

qi(∆p; β) = β · x̂i(∆p) + (1 − β) ·





ˆ̂xi(∆p), if 0 ≤ ∆p < ∆pmax

1, if t ≥ ∆p ≥ ∆pmax
(12)

The demand of firm i is a function in the price difference ∆p, which is kinked at ∆pmax.

Furthermore, for ∆pmax = ∆p̄, it is discontinuous at ∆pmax. It approaches one for ∆p =

t.13 Firm −i’s demand is determined analogously by q−i(∆p; β) = 1 − qi(∆p; β). In the

following, we are interested in interior equilibria in which both products are purchased

12 ˆ̂xi(∆p̄) = λ
λ−1
− 2(λ+2)−

√
4(λ+2)2−(λ+1)2

2(λ−1)
∈ (
√

3/2, 1) for λ > λ̃—i.e., ˆ̂xi(∆p̄) is less than one for λ > λ̃.

This leads to a jump in demand of loss-averse consumers at ∆p̄ from ˆ̂xi(∆p̄) to one (see the definition of

qi(∆p; β)), since x̂′un(∆p)→ ∞ for ∆p→ ∆p̄.
13At ∆p = t, firm i serves also all distant non-biased consumers which are harder to attract than distant

loss-averse consumers because the former do not face a loss in the price dimension if buying from the more

expensive firm −i. For ∆p > t demand of firm i shows a second kink. We ignore this region since we are

interested in cases in which both firms face strictly positive demand.
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by a strictly positive share of loss-averse consumers—i.e., ∆p is lower than ∆pmax. This

holds when firms’ prices are not too asymmetric.

We note some properties of the demand of firm i that carry over from ˆ̂x+
i
(∆p):14 For

0 < ∆p < ∆pmax (i.e., for any price pi that is lower than its competitor’s price), the

demand of firm i, qi(∆p; β) is strictly increasing and convex in ∆p. It is concave for a

price above the competitor’s price (for 0 > ∆p). In the remainder, we often refer to qi as

a short-hand notation for qi(∆p; β). The derivative ∂qi/∂∆p is denoted by q′
i
.

3.2 Equilibrium characterization, existence, and uniqueness

We next turn to the equilibrium characterization. At the first stage, firms foresee con-

sumers’ purchase decisions and set prices simultaneously to maximize profits. This yields

first-order conditions

∂πi

∂pi

=qi + (pi − c)(−q′i) = 0 , i = 1, 2 (FOCi)

We refer to a solution characterized by these first-order conditions as an interior solu-

tion. Our framework allows us to explicitly solve for equilibrium markup in symmetric

duopoly, in contrast to Heidhues and Koszegi (2008). The following result characterizes

the symmetric equilibrium.

Lemma 2. Any equilibrium is unique and symmetric. Equilibrium prices are given by

p∗i = c +
t

1 − (1−β)
2

(λ−1)

(λ+1)

, i = 1, 2. (13)

Proof. Rearranging the first-order conditions (FOCi) and using that qi(0; β) = 1/2 for all

β, we obtain

p∗i − c =

1
2

q′
i
(0; β)

, i = 1, 2., (14)

where

q′i(0; β) = −
1

4t
(1 − 3β) −

(1 − β)
2(S (0))

(

0 −
(λ + 2)

2t(λ − 1)

)

14See Appendix A for more details.
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= − 1

4t
(1 − 3β) +

(1 − β)
2 λ+1

2(λ−1)

(

(λ + 2)

2t(λ − 1)

)

= − 1

4t
(1 − 3β) +

(1 − β)(λ + 2)

2t(λ + 1)

=
1

4t(λ + 1)

(

2(λ + 1) − (1 − β)(λ − 1)

)

.

Substituting into equation (14) yields the unique symmetric equilibrium price in (13). �

For any interior solution, concavity of the profit functions would assure that the solution

characterizes an equilibrium.

∂2πA

∂p2
i

= −2q′i + (pi − c)q′′i < 0 (S OCA)

∂2πB

∂p2
−i

= −2q′i − (p−i − c)q′′i < 0. (S OCB)

Given the properties of qi —particularly that qi is strictly increasing and convex in ∆p

for β < 1— S OCB holds globally, while S OCA is not necessarily satisfied. Using that

(pi − c) = qi/q
′
i

by FOCA, S OCA can be expressed as follows

−2(q′i)
2 + qiq

′′
i < 0. (15)

It can be easily shown that (17) is satisfied for small ∆p while it is violated for ∆p→ ∆p̄,

as q′′i goes faster to infinity in ∆p than (q′i)
2.15 This violation of S OCA reflects that firm

i may have an incentive to non-locally undercut prices to gain the entire demand of loss-

averse consumers when ∆p is large. The driving force behind this is that loss aversion in

the price dimension increasingly dominates loss aversion in the taste dimension if price

differences become large. Moreover, excessive losses in the price dimension if buying the

expensive product −i make also nearby consumers of −i more willing to opt for product i.

The proof of equilibrium existence in duopoly is non-standard since the profit function is

not quasi-concave. If firm i sets a much lower price than firm −i (∆p = p−i − pi > 0 and

∆p large), firm i’s profit becomes increasingly convex due to the increasing convexity of

15This implies that πA is not globally concave. It is easy to check that it is neither globally quasi-concave.

Moreover, the non-concavity of πA is increasing in ∆p (resp. −pi) for ∆p ≤ ∆pmax (resp. pi ≥ p−i −∆pmax).
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its demand with loss-averse consumers.

∂2πi

∂p2
i

= −2q′i + (pi − c)q′′i , (16)

where q′′i = ∂
2qi(∆p)/∂∆p2 which is positive for ∆p > 0 but negative for ∆p ≤ 0 due

to symmetry (since qi(−|∆p|) = 1 − qi(|∆p|)). Using that (pi − c) = qi/q
′
i

by FOCi, the

second-order condition of firm i can be expressed as

−2(q′i)
2 + qiq

′′
i < 0. (17)

For β < 1, equation (17) is satisfied for ∆p sufficiently small, while it is violated for

∆p→ ∆p̄, as q′′
i

goes faster to infinity in ∆p than (q′
i
)2.

The next proposition clarifies the issue of equilibrium existence. It deals with the non-

concavity of firm i’s profit function by determining critical levels for the degree of loss

aversion such that no firm i has an incentive to non-locally undercut prices. We use that

the convexity of firm i’s profit function is increasing in ∆p which yields that stealing the

entire demand of loss-averse consumers is the uniquely optimal deviation of firm i. We

focus on the most critical case for equilibrium existence, the case in which all consumers

are loss-averse.16

Proposition 1. Suppose that all consumers are loss averse (β = 0) and there are two firms

in the market. A symmetric equilibrium with prices p∗
i

for all i ∈ {1, 2} exists if and only if

1 < λ ≤ λc with λc = 1 + 2
√

2 ≈ 3.828. (18)

The following proposition extends the existence condition analyzing the relationship be-

tween the degree of loss aversion and the share of non-biased consumers on the market.

A critical level of β for symmetric equilibria to exist, βcrit(λ), is derived as a function of λ.

Proposition 2. Suppose that there are two firms in the market. A symmetric equilibrium

with prices p∗
i

for all i ∈ {1, 2} exists if and only if

β ≥ βcrit(λ), (19)

16Adding more non-biased consumers always reduces the non-concavity of firm i’s profit function since

the demand of non-biased consumers is linear. Thus, the upper bound on the degree of loss aversion with

only loss-averse consumers is sufficient for existence with a positive share of non-biased consumers. Cf.

Proposition 2.
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with βcrit(λ) being an increasing function in λ which is expressed by

βcrit(λ) ≡






0, if λ ∈ (1, 1 + 2
√

2],

βcrit
0

(λ), if λ ∈ (1 + 2
√

2, λ̃],

βcrit
1

(λ), if λ > λ̃ ≈ 7.47,

(20)

where βcrit
0

and βcrit
1

are defined in the proof in Appendix A.2

We note that βcrit
0

(λ) ∈ (0, 0.349] and βcrit
1

(λ) ∈ (0.349, 0.577) in the associated ranges for

λ. The proofs of the last two propositions are relegated to Appendix A.2. The critical

share of non-biased consumers for symmetric equilibria to exist, βcrit(λ), is depicted in

Figure 2. If the share of informed consumers is sufficiently large (above 57.7%) symmet-

ric equilibria exist for all λ > 1. The existence proof covering different weights αp and

αm is provided in Appendix B.1.

2 4 6 8 10 12 14

0.1

0.2

0.3

0.4

λ

βcrit(λ)

Non-deviation

Critical share of non-biased consumers, βcrit(λ), for which symmetric equilibria exist

as a function of the degree of loss aversion λ > 1, t = 1. Non-deviation for β ≥ βcrit(λ).

Figure 2: Non-deviation in symmetric duopoly

In the remainder of this section, we disentangle pro- and anti-competitive effects of the

presence of loss-averse consumers. We also relate our findings on the competitive effects

of consumer loss aversion to a setting in which consumers form reference points before

the firms have set their prices, as is also the case in Heidhues and Koszegi (2008).
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3.3 Comparative statics in the basic duopoly model

We define the equilibrium markup as m∗ ≡ p∗−c. Using Lemma 2, we obtain comparative

static results. In particular, as the share of non-biased consumers increases, the firms’

markup decreases. This result follows directly from differentiating (13) with respect to β.

Proposition 3. For λ > 1, equilibrium markup is decreasing in the share of non-biased

consumers β.

In other words, non-biased consumers exert a positive externality on loss-averse con-

sumers. With respect to recent work with behavioral biases, our result is of interest in

the light of claims that non-biased consumers are cross-subsidized at the cost of biased

consumers. This, for instance, holds in Gabaix and Laibson (2006) where only a fraction

of consumers are knowledgeable about their future demand of an “add-on service”, while

other consumers are “naively” unaware of this.

Two additional comparative static results follow immediately from Lemma 2. First, equi-

librium markup is increasing in the degree of loss aversion, λ. For λ → 1, firms receive

the standard Hotelling markup of t. Second, equilibrium markup is increasing in the in-

verse measure of industry competitiveness, t. For t → 0, firms engage in pure Bertrand

competition and markups converge to zero for all levels of loss aversion. This shows that

consumer loss aversion does not affect market outcomes in perfectly competitive envi-

ronments, and our results rely on the interaction of imperfect competition and behavioral

bias.

Table 1: Symmetric Equilibrium: Markups

The table shows the variation of m∗i (β, λ) ≡ p∗i (β, λ) − c for all i ∈ {1, 2}
in β and λ.

β λ 1 2 3 3.8284 5 7 9 ∞
1 1 1 1 1 1 1 1 1

0.8 1 1.03448 1.05263 1.06222 1.07143 1.08108 1.08696 1.11111

0.6 1 1.07143 1.11111 1.1327 1.15385 1.17647 1.19048 1.25

0.4 1 1.11111 1.17647 1.2132 1.25 1.29032 1.31579 -

0.2 1 1.15385 1.25 1.30602 1.36364 - - -

0 1 1.2 1.33333 1.41421 - - - -

Table 1 shows the variation of equilibrium markups in the share of informed consumers

β and the degree of loss aversion λ. We make the following observation: The highest
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markup is reached when all consumers are loss-averse and the degree of loss-aversion

approaches its critical level for existence in symmetric markets λ = 1+2
√

2 ≈ 3.82843—

compare Figure 2.

3.4 Pro- and anti-competitive effects of consumer loss aversion: the

general duopoly model

In symmetric equilibrium, consumers do not experience gains and losses in the price di-

mension. In this situation, loss-averse consumers exclusively experience gains and losses

in the taste dimension. Due to the potential loss in the taste dimension, loss-averse con-

sumers are more willing to buy next door than non-biased consumers—i.e., they are harder

to attract by low prices than their non-biased counterparts and, thus, the demand of loss-

averse consumers shows a lower price elasticity of demand. While this suggests consumer

loss aversion has an anti-competitive effect, a correct understanding is more nuanced.

To this end, we have to disentangle various effects at play; we consider it useful to analyze

the general model in which consumers experience gain-loss utilities in the two dimen-

sions, the price and the match-value dimension, with different weights. We do not see any

a priori reasons to exclude the possibility of different weights in the two dimensions.17

In this case firm i’s demand in duopoly is given by

ˆ̂xi(∆p) =
αm(2λ − 1) + 1

2αm(λ − 1)
−
αp

4αmt
∆p − S (∆p), (21)

where

S (∆p) =

√

α2
p(λ − 1)2∆p2 − 4(λ − 1)(αp + αm(αp(2λ + 1) + 2))t∆p + 4(αmλ + 1)2t2

16α2
m(λ − 1)2t2

(22)

for λ > 1 and αm > 0 and ∆p ≥ 0 and not too large. In Figure 6 in Appendix C,

we illustrate the demand of loss-averse consumers (with different weights on the two

dimensions of reference dependence).

17A real world motivation for different weights could be an extra utility for making a better than expected

pecuniary deal (independent from any budget considerations). This would be represented in our setup by a

relatively higher weight on the price dimension of loss aversion. In a different vein, for household decisions

the preferences of the spouse not directly involved in a purchase decision could be more comparison-based

concerning prices and enter the buyer’s utility function as a positive weight in the price dimension.
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The symmetric equilibrium prices in this general case can be derived analogously to

Lemma 2. Considering only loss-averse consumers (β = 0) we obtain

p∗i = c +
t

1 − 1
2

(2αmλ−αp(λ+1))

(αmλ+1)

, i = 1, 2, (23)

provided an equilibrium exists. In Proposition 6 in Appendix B.1 we show that conditions

for equilibrium existence carry over from the case with α-weights being equal to one.

As one polar case we consider markets in which all consumers are uniformed ex ante and

experience loss-aversion in the price dimension only. As the other polar case we consider

markets in which all consumers are uninformed ex ante and experience loss-aversion in

the match-value dimension only.

First, consider the case that consumers experience a gain-loss utility in the price dimen-

sion only. Since gains relative to the expected price distribution enter positively and

losses negatively the utility function, consumers find lower-priced products relatively

more attractive than higher-priced products. Consequently, the price elasticity of de-

mand is larger and the equilibrium is more competitive than in the standard Hotelling-

Salop model. Formally, the unique symmetric equilibrium (if it exists) is characterized

by p∗p = c + 2t/(3 + λ). This proves that a gain-loss utility in the price dimension has

a pro-competitive effect. To obtain a better understanding, we take a closer look at loss-

averse consumers. Consider a small price decrease by firm i to pi. Consumers observe

the corresponding prices. They expect with some probability 1 − ˆ̂xp to end up buying the

high-price firm. Hence, they have an expected gain of (1 − ˆ̂xp)(p j − pi) when consuming

product i and an expected loss of λ ˆ̂xp(p j − pi) when consuming product j, j , i. This

means that a price decrease yields a stronger utility difference in favor of the low-price

product. This increases the price elasticity of demand and, everything else given, makes

a price cut more attractive. The presence of loss-averse consumers leads to a downward

shift of best-response functions. Consequently (for best-response functions being upward

sloping), the equilibrium is more competitive than in the standard Hotelling-Salop model.

In the special case that λ = 1, we can calculate the indifferent consumer as ˆ̂xp =
1
2
+

2
2t

(p∗p − pi). Hence, ∂ ˆ̂xp/∂pi = −1/t < −1/(2t), where the latter term is the value of

the derivative for informed consumers. More generally, for λ > 1 we can calculate the

indifferent consumer holding beliefs about the likelihood of buying product i at xe fixed.

Considering a lower price for product 1, we have that

v − tx − p1 + (1 − xe)(p2 − p1) = v − t(1 − x) − p2 − λxe(p2 − p1) (24)
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Hence, for given beliefs xe, the indifferent consumer xi is

xi =
1

2
+

1

2t
(p2 − p1) +

1 + (λ − 1)xe

2t
. (25)

We observe that on top of the effect for λ = 1, under consumer loss aversion there is an

additional positive club effect: The more consumers are expected to buy from firm 1, the

better it is for a consumer to buy product 1 instead of 2. Under self-fulfilling expectations

xe = xi = ˆ̂xp we thus see that, due to a positive club effect, the pro-competitive effect in

the price dimension becomes larger as the degree of loss aversion λ increases.

Second, consider the case that consumers experience a gain-loss utility in the match-

value dimension only. Comparing a market with loss-averse to a market with non-biased

consumers reveals that competition is less intense if consumers are loss averse. Straight-

forward computations show that p∗m = c + t(1 + λ) which leads to a less competitive

outcome than in the standard Hotelling-Salop model. A price decrease for firm i implies

that consumers are more likely to buy from firm i than firm −i. This implies that the

marginal consumer more often encounters a worse match from firm i. Since relatively

bad matches enter negatively the gain-loss utility, the price elasticity of demand is lower

and best-response functions are shifted upward. Effectively, competition is less intense

compared to the market populated by non-biased consumers.

The following remark summarizes the insights obtained above.

Remark 1. If consumers experience a gain-loss utility in the price dimension only, mar-

kets with loss-averse consumer are more competitive than markets with non-biased con-

sumers. By contrast, if consumers experience a gain-loss utility in the match-value di-

mension only, markets with loss-averse consumers are less competitive than markets with

non-biased consumers.

This insight holds more generally; in particular, it does not rely on the assumption that

taste parameters are uniformly distributed and that utility depends linearly on match value,

defined as the distance between consumer and product. These assumptions are mainly

made for computational reasons.

We note that this result does not rely on losses entering the utility function with a differ-

ent weight than gains; what matters is that the consumers’ utility function is reference-

dependent. In other words, the result remains to hold true if λ = 1.

Let us now consider intermediate cases between the two polar cases. In our baseline

model, both dimensions entered with equal weights, αp = αm. For this case we obtain
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Figure 3: Pro- and anti-competitive effects of loss aversion

that the taste dimension dominates the price dimension (as follows from equation (13)) if

consumers are loss-averse.

Remark 2. Suppose that losses have a larger weight than gains and that the gain-loss

utility enter with the same weights in the price and the match-value dimension. Markets

with loss-averse consumers are less competitive than markets with non-biased consumers.

Depending on the degree of loss aversion λ, there is a critical relationship of gains and

losses in the price dimension relative to the match-value dimension such that pro-competitive

and anti-competitive effects cancel out each other. This critical relationship is given by

α̃p(αm; λ) =
2λ

λ + 1
· αm, (26)

which turns out to be simply a ratio of weights on the price and match-value dimension

αp and αm for given λ.18 This ratio is depicted in Figure 3 for λ = 1 and λ = 3. It

shows the competitiveness of price equilibria (relative to the benchmark with non-biased

consumers) for different weights in the two dimensions of loss aversion. It can be seen that

for any positive degree of loss aversion (λ > 1), markets are anti-competitive if weights

are identical on the price and match-value dimension. If the degree of loss aversion is

increased, a relatively higher weight on the price dimension is required to balance the

18This critical ratio can be derived by setting the symmetric equilibrium price with gain/loss utility and

flexible weights equal to the one with intrinsic utility only. In the latter case the symmetric equilibrium

price is given by p∗
i
= c + t, the standard Hotelling result. In the former case it is represented by (23).
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anti- and the pro-competitive effect. The figure reveals that even when gains and losses

are weighted equally (λ = 1; so that the utility function features reference dependence but

not loss aversion), markets become anti- (resp. pro-) competitive if reference-dependent

consumers, for a certain product category, put a relatively higher (resp. lower) weight on

the match-value dimension than on the price dimension.

3.5 Comparison to a model in which price information is not avail-

able ex ante

In this subsection, we discuss the outcome of the modified model in which consumers

do not observe prices before forming their reference point—i.e., firms set prices after

consumers form their stochastic reference point. This model is the limit case of Heidhues

and Koszegi (2008), when the cost uncertainty has vanished. Since consumers do not

observe prices when forming their reference point, deviations from the equilibrium do

not affect the consumers’ reference-point distribution. To simplify the analysis, we set the

share of non-biased consumers equal to zero, β = 0.

Consider the model in which consumers do not observe price at the time they form their

reference-point distribution. If consumers are loss-averse only in the price dimension,

there is a continuum of equilibria: any price in the interval [c + t/(λ + 1), c + t/2] for all

λ > 1. The unique equilibrium price in the setting in which prices are observed ex ante lies

within this interval.19 We note that a market with reference-dependent consumers features

a more competitive price under both informational assumptions than a market with non-

biased consumers. Also note that, for λ = 1 the equilibrium under both informational

assumption is the same and p∗ = c + t/2.

If consumers are loss-averse only in the match-value dimension, there is a unique equi-

librium p∗ = c + t(λ + 1).20 This price is the same that prevails if consumers learn prices

before the reference point is formed and thus the timing of the price setting is immaterial

to the outcome. The reason is that a local price deviation has only a second-order effect

that is induced by consumer loss aversion; the price elasticity of demand remains locally

19To derive this result the reference-point distribution in the price dimension has to be adjusted to the

simpler form of F(p∗) = 1 and zero for p < p∗. This leads to a kinked demand curve and a continuum of

equilibria.
20This price can be derived by adjusting the reference-point distribution in the taste dimension to G(s) =

2s, i.e. all consumers expect to buy from their closest firm ex post. This yields a smooth demand function

and a single equilibrium price.
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unaffected so that we obtain the same solution to the system of first-order conditions of

profit maximization.

If consumers are loss-averse in both dimensions, any price in the interval [c + t/(λ +

1), c+ (t/2)(λ+1)] constitutes an equilibrium. The unique equilibrium price in the setting

in which prices are observed ex ante lies within this interval.

More generally, whenever there is a positive weight on the gain-loss utility in the price

dimension (αp > 0), there is a continuum of prices that can be supported in symmetric

equilibrium. We summarize our observations in the following remark.

Remark 3. If consumers form reference points before observing price, there is a con-

tinuum of equilibria, whenever the weight on the gain-loss utility in the price dimension

is strictly positive. The equilibrium price set contains the unique equilibrium price that

prevails if consumers observe price ex ante.

4 n-Firm Oligopoly and Comparative Statics in the Num-

ber of Firms

In this section, we analyze an n-firm oligopoly for the case of two-dimensional consumer

loss aversion. Suppose that the length of the circle is L = n (while the consumer mass

is equal to 1); this implies that the equilibrium markup in the model with non-biased

consumers (as in Salop (1979)) are independent of the number of firms. Here, we restrict

attention to the case αp = αm = 1.

4.1 Market demand in oligopoly

Firm i’s demand can be expressed by 21

ˆ̂xi(∆p) =

(
4

(λ − 1)(n + 2)
+

3n + 2

n(n + 2)

)

− 2∆p

n(n + 2)t
− 2S (∆p), (27)

where

S (∆p) =

√

∆p2(λ − 1)2 − (λ − 1)(λ(3n + 2) + n(2n + 5) − 2)t∆p + (1 + λ)2n2t2

(λ − 1)2
(

2n + n2
)2

t2
(28)

21Cf. the general representation of the indifferent loss-averse consumer in (4).
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for λ > 1 and ∆p ≥ 0 and sufficiently small. Figure 7 in Appendix C illustrates the

demand of non-biased and loss-averse consumers in a market with more than two firms.

4.2 Equilibrium existence and uniqueness

Establishing equilibrium existence in n-firm oligopoly is rather involved, since in our

setup there might arise profitable non-local deviations by stealing consumers in distant

sub-markets. Although for large n conditions for equilibrium existence carry over from

the duopoly case, stricter conditions are required in markets with a small number of firms.

The next proposition reports these conditions, which are derived in detail in Appendix

B.2. The equilibrium markup m∗(n) is determined in the next subsection.

Proposition 4. A unique symmetric equilibrium with n firms and prices p∗(n) = m∗(n) +

c = ((1 + λ)nt)/(λ − 1 + 2n) + c exists

1. ∀λ ∈ (1, λc] with λc = 1 + 2
√

2 ≈ 3.828 if n = 2 or n > 6,

2. ∀λ ∈ (1, λcc] with λcc = 1/4
(

1 +
√

57
)

≈ 2.137 if n ∈ {3, 4, 5}.

4.3 The intensity of competition and the number of firms

In this subsection we will show that the equilibrium mark-up positively depends on the

number of firms, whereas in the model with non-biased consumers it does not. The intu-

ition for this non-neutrality result is straightforward. In the duopoly model, consumers ex-

pect that they are likely to be affected by a price deviation and thus adjust their reference-

point distribution accordingly, while, given a larger number of firms, the reference-point

distribution reacts less sensitive to one firm’s deviation from the equilibrium strategy.

Before turning to some special cases, we analyze the general case αm and αp > 0. Analo-

gously to Lemma 2, we can derive firm i’s symmetric equilibrium markup for loss-averse

consumers (β = 0). Using firm i’s demand function in (27) and that ˆ̂xi(0) = 1/n yields

m∗(n|αm, αp) =
(1 + αmλ)nt

αp(λ − 1 + n) + n
. (29)

We now turn to some special cases. First, consider the case that consumers are loss-averse

only in the price dimension—i.e., αm = 0, αp = 1. The equilibrium markup is

m∗p(n) =
nt

(λ − 1) + 2n
, (30)
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which is illustrated in Figure 4.
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Figure 4: Markups with loss aversion in price dimension only

We find that the equilibrium markup is increasing in the number of firms. This confirms

the general insight that, given a larger number of firms, the reference-point distribution re-

acts less sensitive to individual price deviations. The intuition for this result is that a price

change in a market with few firms is more effective in changing the consumers’ reference-

point distribution. For a small variation of the model in which the circle becomes more

crowded if the number of firm increases, by continuity, this implies that consumers may

be better off in a market with a small number of firms if they are loss averse, whereas the

opposite may hold if they do not have reference-dependent utilities.

For n → ∞, the markup converges to m∗p(∞) = t/2—this is the upper bound on prices

in the duopoly setting in which consumers form their reference-point distribution before

observing prices.22

Second, consider the case that consumers are loss-averse in both dimensions—i.e., αm =

1, αp = 1. The equilibrium markup is

m∗(n) =
(λ + 1)nt

(λ − 1) + 2n
, (31)

22The set of equilibrium prices would not be affected by the number of firms if consumers did not observe

prices ex ante. Formally, treating n as a continuous variable, the equilibrium correspondence is not lower-

hemicontinuous in the limit.
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which is illustrated in Figure 5. Again, we find that the equilibrium price is increasing in

the number of firms because the reference price distribution reacts less sensitive to a price

change after an increase of the number of firms. Consequently, the market becomes less

competitive. For n → ∞, this markup converges to m∗ = (λ + 1)t/2—this is the upper

bound on prices in the duopoly setting in which consumers form their reference-point

distribution before observing prices.

Third, consider the case that consumers are loss-averse only in the match-value dimension—

i.e., αm = 1, αp = 0. The equilibrium markup is m∗m(n) = (λ + 1)t and is independent of

n. This holds true because the distance between two neighboring firms, which determines

the loss aversion in the taste dimension, is kept constant here.
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Figure 5: Markups with loss aversion in both dimensions

We summarize our findings as follows:

Proposition 5. In the Salop model with L = n and non-biased consumers, the number of

firms does not affect competition. By contrast, with loss-averse consumers the equilibrium

price is increasing in the number of firms. For n → ∞ and αp > 0, the equilibrium price

p∗(∞) ≡ limn→∞ p∗(n) is the upper bound of the equilibrium set that results in the model in

which consumers do not observe price before forming their reference-point distribution.

In this sense, our model provides a rationale for selecting the upper bound in the equilib-

rium set under the alternative timing.
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5 Conclusion

This paper has explored the impact of consumer loss aversion on market outcomes in sym-

metric imperfectly competitive markets. We did so in a Hotelling-Salop setting, which is

a standard work horse in the modern industrial organization literature. Consumer loss

aversion only makes a difference compared to a market in which consumers lack this be-

havioral bias if they are uncertain about product characteristics or associated match value

at an initial stage at which they form their reference-point distribution. Since price infor-

mation is readily available, firms can use price to manage the reference-point distribution

of consumers in the price and match-value dimensions.

Our paper provides a nuanced view on the competitive effects of consumer loss aversion

in differentiated product markets. Loss aversion, and more generally, a gain-loss utility,

in the price dimension leads to more competitive outcomes, while the reverse holds in the

match-value dimension. It is the interplay between this pro- and anti-competitive effect

that determines whether the market is more or less competitive compared to the standard

Hotelling-Salop world. Empirical work may want to uncover the relative strength of those

two effects.

In our modeling effort we followed Heidhues and Koszegi (2008) and Karle and Peitz

(2010). Consumers learn posted prices before they form their reference points, whereas

in Heidhues and Koszegi (2008) consumers form their reference points before knowing

posted prices. This means that in our model a price change is observed and, thus, changes

the consumers’ reference-point distribution. The sensitivity of the reference-point distri-

bution to price changes is particularly pronounced in duopoly. We show that increasing

the number of firms in a way that does not affect equilibrium prices in the standard model

makes the market less competitive. In the limit, prices converge to the upper bound of the

equilibrium set for the model with the timing that consumers form their reference-point

distribution before observing prices.
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Appendix

A Relegated Proofs

A.1 Relegated proofs of Section 2

Proof of Lemma 1. In this proof we first use that the more symmetric price structure sim-

plifies the reference-point distributions in (1) and (3). We then update the indirect utility

functions for the indifferent consumer to the right of firm i and solve for her location

(personal equilibrium).

Since the price differences in the sub-market between firm i − 1 and firm i and in the one

between firm i and firm i + 1 are the same, the taste differences which the two indifferent

consumers of firm i face are the same, i.e. ˆ̂x+
i
− (i − 1) = (i − 1) − ˆ̂x−

i
. We therefore can

simplify ˆ̂x+
i
− ˆ̂x−

i
in F(p) to 2( ˆ̂x+

i
− (i − 1)) or equivalently to 2z2 j−1. Furthermore using

that p j = p′ for all j , i, we receive

F(p) =






2z2 j−1

n
if p ∈ [pi, p

′)

1 if p ≥ p′.

pi < p′ implies that ˆ̂x+i − (i − 1) = z2 j−1 > 1/2. Thus, the smallest critical taste distance

in the market exists between ˆ̂x+
i

and firm i + 1 (and resp. between ˆ̂x−
i

and firm i − 1).

This distance is equal to 1 − z2 j−1. The next larger critical taste distance is the one in

sub-markets with symmetric prices. It is equal to 1/2. Finally, only the consumers that

will be attracted by firm i ex post face up to the maximum critical taste distance which is

z2 j−1. Hence, G(s) can be rewritten as

G(s) =






2s if s ∈ [0, 1 − z2 j−1]

2s n−1
n
+ a1 if s ∈ (1 − z2 j−1,

1
2
]

2s 1
n
+ a2 if s ∈ (1

2
, z2 j−1],

where a1 =
1−2z2 j−1

n
and a2 = (1 − 2z2 j−1

n
). Using the properties of the reference-point

distributions, we rewrite the indirect utility functions of consumers buying from firm i or

i + 1,

ui(x = ˆ̂xi, p) =v − tz2i−1 − pi + αp(1 − 2z2i−1

n
)(p′ − pi) +

αmλt

4n

(

8z2
2i−1 − 4(2 + n)z2i−1 + 2 + n

)
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ui+1(x = ˆ̂xi, p) =v − t(1 − z2i−1) − p′ − αpλ
2z2i−1

n
(p′ − pi)

+
αmt

4n

(

n
(

(2z2i−1 − 1)2 − 4λ(z2i−1 − 1)2
)

+ 2(2z2i−1 − 1)2
)

.

If buying from firm i, the indifferent consumer only faces a gain in the price dimension

(there is no λ in the price dimension term) because pi is the lowest price in the market.

For the same reason she faces a pure loss in the price dimension when buying from firm

i + 1. On the other hand, the indifferent consumer experiences a pure loss in the taste

dimension if she purchases the cheap product i.

Next, we determine the location of the indifferent loss-averse consumer by setting ui =

ui+1. Rearranging leads to the following quadratic equation in z2 j−1,

4αm(λ − 1)(n + 2)t · z2
2i−1 +

(

8αp(λ − 1)∆p − 4(2n + αm(2(λ − 1) + (3λ − 1)n))t

)

· z2i−1

+

(

4(1 + αp)n∆p + 2αm(λ − 1)t + (4 + αm(5λ − 1))nt

)

= 0

Solving this quadratic equation w.r.t. z2 j−1 and adding (i − 1) leads to ˆ̂x+
i
(∆p), the expres-

sion given in the lemma. The second solution to the quadratic equation can be ruled out

because does not lie in the interval [1/2, 1]. �

A.2 Relegated material of Section 3

Properties of firm i’s demand in duopoly:

q′i =
∂qi(∆p; β)

∂∆p
= −∂qi(∆p; β)

∂pi

= −∂q−i(∆p; β)

∂∆p
= −∂q−i(∆p; β)

∂p−i

= β · x̂′in(∆p) + (1 − β) · x̂′un(∆p)

= −
1

4t
(1 − 3β) −

(1 − β)
2(S (∆p))

(

∆p

8t2
−

(λ + 2)

2t(λ − 1)

)

︸                ︷︷                ︸

⊖

> 0

q′
i
> 0 ∀∆p feasible and ∀β. At the boundaries we have

q′i(0; β) = − 1

4t
(1 − 3β) + (1 − β) (λ + 2)

2t(λ − 1)
> 0

lim
∆p↑∆ p̄

q′i(∆; β) = ∞ for β < 1 since S (∆̄p) = 0.
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For 0 ≤ ∆p < ∆pmax the demand of i is convex in ∆p.

q′′i (∆p; β) = (1 − β) · ˆ̂x′′i (∆p) = (1 − β) ·
(3 + λ)(5 + 3λ)

64t2 · (S (∆p))3
≥ 0

q′′
i
> 0 ∀∆p feasible and ∀β < 1 since S (∆p) ≥ 0. At the boundaries we have

q′′i (0; β) = (1 − β) ·
(3 + λ)(5 + 3λ)

32t2 · (λ+1)3

(λ−1)3

> 0

lim
∆p↑∆ p̄

q′′i (∆p; β) = ∞ for β < 1.

It can be also show that q′′i (∆p; β, λ) is increasing in ∆p and λ).

Equilibrium existence in duopoly with constant weights equal to one:

Proof of Proposition 1. In this proof we rule out non-local deviations from symmetric

price equilibrium in the duopoly case, i.e. when firms only compete in their neighboring

sub-markets.23 Let firm i be the deviating firm. It is shown above that firm i’s profit

is concave if the price difference ∆p = p−i − pi is sufficiently low, i.e. ∆p is negative

or not too positive. Therefore non-local price increases are never profitable. Since the

convexity of firm i’s profit increases in ∆p, firm i’s most profitable price deviation is a

price reduction stealing the entire demand of loss-averse consumers. The intuition behind

this result is that for sufficiently large price differences loss-averse consumers excessively

avoid to buy the more expensive product. Furthermore, this avoidance is the larger the

higher the degree of loss aversion. This holds true because the convexity of firm i’s

demand increases in the degree of loss aversion, i.e. ∂q′′i /∂λ > 0.

We next derive the critical upper bound of the degree of loss aversion for which stealing

the entire demand of loss-averse consumers is no longer profitable. For stealing the entire

market firm i sets a deviation price pd
i

s.t. ∆pd = ∆pmax, i.e. pd
i
= p∗−i−∆pmax = p∗−∆pmax.

For β = 0 the firm i’s deviation profit, πd
i
, can be expressed as follows,

πd
i = (pd

i − c) · 1

= (p∗ − c) − ∆pmax (32)

Firm i’s profit in symmetric equilibrium is equal to

π∗i = (p∗i − c) · qi(0)

23Compare the equilibrium existence proof for n-firm oligopoly in Proposition 4.
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=
(p∗ − c)

2
(33)

Thus, a deviation from symmetric equilibrium is not profitable if and only if

π∗i (λ) ≥ πd
i (λ)

∆pmax(λ) ≥ p∗(λ) − c

2
by (32) and (33)

(λ + 3)t

2(λ + 1)
≥ t

2 − (λ−1)

(λ+1)

by (10) and (13)

(λ + 3)2 ≥ 2(λ + 1)2

λ S 1 ± 2
√

2.

Since λ > 1, we receive the unique solution λ ≤ λc ≡ 1 + 2
√

2. �

Proof of Proposition 2. For β > 0, firm i’s demand from setting the uniquely optimal

deviation price pd
i

extents to qi(∆pmax) = (1 − β) + β(1/2 + ∆pmax/(2t)).24 Therefore, her

deviation profit becomes,

πd
i (λ, β) =

(

(p∗(λ, β) − c) − ∆pmax(λ)
)(

(1 − β) + β(1

2
+
∆pmax(λ)

2t
)

)

, (34)

where p∗(λ, β) is given by (13) and ∆pmax(λ) by (10). Moreover, firm i’s profit in sym-

metric equilibrium is equal to π∗
i
(λ, β) = (p∗(λ, β) − c)/2. This yields the following non-

deviation condition in λ > 1 and β ∈ [0, 1),

π∗i (λ, β) ≥ πd
i (λ, β)

∆pmax(λ)
(

1 +
β

2
(
∆pmax(λ)

t
− 1)

)

≥ p∗(λ, β) − c

2

(

1 + β(
∆pmax(λ)

t
− 1)

)

Solving for βcrit as a function of λ such that π∗
i
(λ, β) ≥ πd

i
(λ, β) for β ≥ βcrit, leads to the

following result:

1. for λ ∈ (1, 1 + 2
√

2]

π∗i (λ, β) > πd
i (λ, β) for all β ≥ 0,

24Since qi is a convex combination of ˆ̂xi and x̂i, pd
i
= p∗ − ∆pmax remains the uniquely optimal deviation

for β < 1. Cf. the proof of Proposition 1.
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2. for λ ∈ (1 + 2
√

2, λ̃], (i.e. ∆pmax = ∆p̃)

βcrit
0 (λ) ≡ 1 − −λ(5λ + 14) +

√
(3λ + 5)(λ(11λ(λ + 5) + 113) + 77) − 13

2(λ − 1)(λ + 3)
, (35)

3. for λ > λ̃, (i.e. ∆pmax = ∆p̄)

βcrit
1 (λ) ≡ 1 − 37λ3 − 21Γλ2 + 177λ2 − 54Γλ + 247λ − 21Γ −Ω + 83

2
(

12λ3 − 7Γλ2 + 46λ2 − 10Γλ + 8λ + 17Γ − 66
) (36)

withΩ ≡ (4λ6−2Γλ5+1596λ5−918Γλ4+19848λ4−9316Γλ3+91384λ3−31228Γλ2+

197268λ2 − 42618Γλ + 201868λ − 20366Γ + 78880)1/2 and Γ ≡
√

3λ2 + 14λ + 15.

For λ→ ∞ it holds that βcrit
1

(λ)→ 1 − −37+21
√

3+

√
4−2
√

3

−24+14
√

3
≈ 0.577.

�

B Equilibrium Existence

B.1 Equilibrium Existence in Duopoly with Varying Weights

Proposition 6 (Existence in duopoly with varying weights). Suppose that there are two

firms in the market and all consumers are loss averse (β = 0) with varying weights on the

two dimensions of loss aversion (1 ≥ αp, αm > 0). A symmetric equilibrium with prices

p∗i = c +
t

1 − 1
2

(2αmλ−αp(λ+1))

(αmλ+1)

for all i ∈ {1, 2} exists if and only if 1 < λ ≤ λc(αp, αm) with

λc(αp, αm) = 1 +

√
2(1 + αm)(1 + αp)

√

αm(1 + αm)αp(1 + αp)
. (37)

Moreover, λc(αp, αm) ≥ λc(1, 1) = λc = 1 + 2
√

2.

Proof of Proposition 6. Analogously to the proof of Proposition 1, a deviation from sym-

metric equilibrium is not profitable if and only if

π∗i (λ, αp, αm) ≥ πd
i (λ, αp, αm)
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∆pmax(λ, αp, αm) ≥
p∗i (λ, αp, αm) − c

2
by (32) and (33)

(2 + αm + αmλ)t

2 + 2αpλ
≥

t

2 − (2αmλ−αp(λ+1))

(αmλ+1)

λ S 1 ±
√

2(1 + αm)(1 + αp)
√

αm(1 + αm)αp(1 + αp)
.

The unique solution equals λ ≤ λc(αp, αm) ≡ 1+(
√

2(1+αm)(1+αp))/
√

αm(1 + αm)αp(1 + αp).

�

B.2 Equilibrium Existence in n-Firm Oligopoly

In n-firm oligopoly there might arise profitable non-local deviations by stealing consumers

in distant sub-markets. We next establish existence of symmetric equilibria in this setup.

Although conditions for existence carry over from the duopoly case for n sufficiently

large, there might arise additional existence problems in markets with a small number of

firms when consumers are loss averse up to the level that constitutes the upper bound of

the duopoly case. As mentioned before, in contast to Heidhues and Koszegi (2008), in

our setup consumers observe prices ex ante and adjust their reference-point distributions

to price deviations. Therefore, a large observed price deviation increases the probability

of buying from the deviating firm.

In this subsection, we restrict the analysis to the most demanding case: All consumers

are loss-averse (β = 0). Divide the circle of length L = n into 2n sub-markets of length

1/2. Thus, there are n sub-markets on each half of a circle and 2 between each pair of

neighboring firms. In a symmetric equilibrium , a firm located at yi serves all consumers

on the left and the right neighboring sub-market—i.e., all consumers x within [yi−1/2; yi+

1/2].25 Due to symmetry, it suffices to consider deviations on one half of the circle only.

Suppose firm i located at yi = 0 deviates from the symmetric equilibrium by lowering its

price. If it attracts consumers up to the mth sub-market (on the first half of the circle),

firm i’s (right) indifferent consumer is located at ˆ̂x ∈ [
(m−1)

2
, m

2
] with 2 ≤ m ≤ n. Its

total demand equals 2 ˆ̂x/n due to the uniform distribution of x. Loss-averse consumers

who expect ˆ̂x to be located in the mth sub-market for given prices, form the following

reference-point distribution with respect to the match-value dimension,

25Since the set of consumers is restricted to mass one and x is uniformly distributed on [0; n], the demand

of firm i on [yi − 1/2; yi + 1/2] is equal to 1/n.
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• for even m:

Gm(s|n) =






2
n
(n − (m − 2))s, s ∈ [0, 1 − ( ˆ̂x − m−2

2
)];

2
n
(n − (m − 1))s + a( ˆ̂x,m, n), s ∈ (1 − ( ˆ̂x − m−2

2
), 1

2
];

2
n
s + b( ˆ̂x,m, n), s ∈ (1

2
, ˆ̂x].

with a( ˆ̂x,m, n) = (m − 1)/n − 2 ˆ̂x/n and b( ˆ̂x,m, n) = 1 − 2 ˆ̂x/n being the required

constants for the kinked cdf.

• for odd m:

Gm(s|n) =






2
n
(n − (m − 1))s, s ∈ [0, ˆ̂x − m−1

2
];

2
n
(n − (m − 2))s + ã( ˆ̂x,m, n), s ∈ ( ˆ̂x − m−1

2
, 1

2
];

2
n
s + b̃( ˆ̂x,m, n), s ∈ (1

2
, ˆ̂x].

It can be easily seen that both distributions coincide for ˆ̂x reaching the boundaries between

two neighboring sub-markets: e.g., for ˆ̂x = 1 G2(s|n) = G3(s|n) and for ˆ̂x = 3/2 G3(s|n) =

G4(s|n) and so on. For n = m = 2, we are back in the duopoly case.

To see how the reference-point distributions can be derived, consider the case of m = 3 and

n ≥ 3: ˆ̂x ∈ [1; 3/2] means that the deviating firm i steals all consumers up to the location

of its right neighbor (firm i + 1 located at yi+1 = 1) and some even in the neighbor’s

backyard market. Therefore, an equilibrium taste difference s within [0; ˆ̂x − 1] ⊆ [0; 1/2]

can be expected by consumers on each of the n sub-markets on the first half of the circle,

except for the two sub-markets neighboring firm i + 1 (m = 2, 3). This holds true since

consumers who turn out to be located in these two sub-markets, will be attracted by the

deviating firm i which is located further apart, while consumers on all other sub-markets

will buy from the firm closest by. The resulting probability of facing a taste difference

in this interval equals (2/n)(n − 2)s. An equilibrium taste difference s ∈ ( ˆ̂x − 1; 1/2] can

be expected on n − 1 sub-markets (on the first half of the circle) since also consumers on

sub-market m = 3 with x ∈ ( ˆ̂x; 3/2] will be buying from their closest firm, which is firm

i + 1 located at yi+1 = 1. Thus, G3(s|n) is equal to 2/n(n − 1)s plus a constant in this

interval. Facing an equilibrium taste difference s ∈ (1/2; ˆ̂x − 1] = (1/2; 1] ∪ (1; ˆ̂x − 1],

there is each time one particular sub-market consumers expect to be located in: m = 2 for

s ∈ (1/2; 1] and m = 3 for s ∈ (1; ˆ̂x−1]. Hence, the probability of s ∈ (1/2; ˆ̂x−1] is equal

to 2/n · s plus a constant.

From the functional form of Gm(s|n) it follows directly that, for given n, a distribution with

a higher m first-order stochastically dominates the ones with lower m. This is because
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consumers expect to be attracted by the deviating firm with a higher probability when it

steals a large market share. Therefore, buying from the closest firm becomes less likely:

Consumers put less weight on taste differences less than 1/2 and positive weight on taste

differences greater than 1/2.26 An increase in the number of firms has exactly the opposite

effect to an increase in the number of stolen sub-markets by the deviating firm: For a

given m, the reference-point distribution puts more mass on small taste differences if the

number of firms n increases. Here, the chance of being affected by a price cut of a single

firm simply washes out if the total number of firms increases without bound.

The probability of buying from the deviating firm i (=probability of facing purchase price

pi) is ˆ̂x in the duopoly and generalizes to 2 ˆ̂x/n in the n-firm case. The intuition for this

mirrors the one just given above: If the number of firms rises, any firm is less likely to be

affected by a price cut of a single firm. Using the generalized reference-point distribution

in both dimensions, we can derive a generalized demand function for symmetric markets

with n firms. Consider, for instance, the indirect utility functions of a consumer x who has

learned to be located in sub-market m (with m even) which is the sub-market consumers

ex ante expected the indifferent loss-averse consumer to be located in,27 given prices

(pi < p−i = p∗). Moreover, suppose this consumer is the indifferent loss-averse consumer

on this side of the circle, x = ˆ̂x ∈ [(m − 1)/2; m/2]. Then, her indirect utility if buying

from the deviating firm i can be expressed as follows,28

ui(x = ˆ̂x, pi, p
∗) =v − t ˆ̂x − pi +

(

1 −
2 ˆ̂x

n

)

(p∗ − pi)

− λt
( ∫ 1−( ˆ̂x− (m−2)

2
)

0

( ˆ̂x − s)
2

n
(n − (m − 2))ds

+

∫ 1/2

1−( ˆ̂x− (m−2)
2

)

( ˆ̂x − s)
2

n
(n − (m − 1))ds +

∫ ˆ̂x

1/2

( ˆ̂x − s)
2

n
ds

)

=v − t ˆ̂x − pi +

(

1 − 2 ˆ̂x

n

)

− λt
4n

(

−8 ˆ̂x2 + 4(m + n) ˆ̂x − ((m − 1)m + n)
)

.

It can be seen that the indifferent loss-averse consumer faces only a gain in the price

dimension (last term in the first line) when purchasing the product of the deviating firm.

26For this updating behavior the observability of prices is crucial. In contrast to this, consumers in

Heidhues and Koszegi (2008) cannot adjust their reference point to price deviations because prices become

observable only after forming their reference point.
27We use this latter condition here, since, as we show later, the mapping from ∆p = p∗ − pi ∈ R+0 into

m ∈ [2, 3, ..., n− 1, n] is not a function but a correspondence—i.e., for given price difference ∆p, there may

exist several personal equilibria ˆ̂x within different sub-markets.
28Compare the indirect utility function for m = 2 in the proof of Lemma 1 and consult Section 2 for a

detailed description of the utility function with reference dependence.
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In the taste dimension she faces the maximum loss (second and third line). If buying from

firm i + m/2 instead, her indirect utility equals

ui+m/2(x = ˆ̂x, pi, p
∗) =v − t(1 − ( ˆ̂x −

(m − 2)

2
)) − p∗ − λ

(

2 ˆ̂x

n

)

(p∗ − pi)

− λt
∫ 1−( ˆ̂x− (m−2)

2 )

0

(1 − ( ˆ̂x − (m − 2)

2
) − s)

2

n
(n − (m − 2))ds

+ t

( ∫ 1/2

1−( ˆ̂x− (m−2)
2

)

(s − (1 − ( ˆ̂x −
(m − 2)

2
)))

2

n
(n − (m − 1))ds

+

∫ ˆ̂x

1/2

(s − (1 − ( ˆ̂x −
(m − 2)

2
)))

2

n
ds

)

=v − t(1 − ( ˆ̂x − (m − 2)

2
)) − p∗ − λ

(

2 ˆ̂x

n

)

(p∗ − pi)

+
t

4n

(

4(2 − (λ − 1)n̄) ˆ̂x2 + 4(((λ − 1)n̄ − 1)m + n) ˆ̂x

+ ((1 − (λ − 1)n̄)m − 2n − 1)m + n

)

,

with n̄ = ((n −m) + 2). Here, the indifferent loss-averse consumer only faces a loss in the

price dimension but losses and gains in the taste dimension.29 By setting ui = ui+m/2, we

can solve the consumers’ personal equilibrium and determine ˆ̂x for given n and given that

ex ante consumers expect ˆ̂x ∈ [(m − 1)/2; m/2] for given prices.30 Firm i’s demand from

loss-averse consumers in even sub-market m, qi(∆p|m, n, β = 0), is then characterized by

2 ˆ̂x/n. Firm i’s demand for odd sub-markets m can be derived analogously.

To analyze whether deviations to sub-markets m, m ≥ 3, are profitable, we first consider

consumers located on the boundaries of the sub-markets, ˆ̂x = 1, 3/2, ..., (n − 1)/2, n/2.

For ˆ̂x being an integer, firm i attracts consumers up to the location of a competing firm,

while for ˆ̂x = j + 1/2, j ∈ N, it also attracts the entire backyard market of competitor

j. As is known from the standard Salop oligopoly, the price differences for ˆ̂x = j and

ˆ̂x = j + 1/2 coincide. This means that firm i’s demand has a discontinuous jump of size

29Cf. the proof of Lemma 1 where m = 2.
300 = ui − ui+m/2 is equivalent to

0 =

(

(n − m) + 4

)

(λ − 1)t · ˆ̂x2 −
(

(((λ − 1)m + λ + 3)n − (λ − 1)(m − 3)m) t − 2(λ − 1)∆p

)

· ˆ̂x

+
1

4

(

8n∆p + nt
(

(λ − 1)m2 + λ + 4m − 1
)

− (λ − 1)m((m − 3)m + 1)t

)

.

We do not present the functional form of ˆ̂xi(∆p|m, n) here for two reasons. First of all, it is lengthy and

tedious to derive, as ui − ui+m/2 = 0 describes a quadratic equation in ˆ̂x. Secondly, since we are mainly

interested in deviations to the boundaries of a sub-market m, we can fix ˆ̂x at (m − 1/2) or m/2 and solve for

the corresponding price difference ∆p. This is much simpler as ui − ui+m/2 = 0 describes a linear equation

in ∆p.
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1/2 · 2/n = 1/n at this price difference. It can be shown, however, that despite this feature

non-local deviation are never profitable in the standard Salop model. To check this in

a world with loss-averse consumers, we next derive the deviation price differences for

ˆ̂x = 1, 3/2, ..., (n − 1)/2, n/2. For a deviation covering an even number of sub-markets m

(resp. an odd number of sub-markets m′ = m − 1), replace ˆ̂x in ui − ui+m/2 = 0 by m/2

(resp. (m − 1)/2) and solve for ∆p.

∆peven(m, n) =

(

2(λ + 1)m − (λ − 1)

)

n + (λ − 1)(m − 1)m

4(λ − 1)m + 8n
t, m even and n ≥ m ≥ 2,

∆podd(m′, n) =

(

2(λ + 1)n − (λ − 1)(m′ − 1)

)

(m′ − 1)

4(λ − 1)m′ + 8n
t, m′ odd and n ≥ m′ ≥ 3.

It can be shown that both deviation price differences are increasing in m and n. The first

implication of this is very intuitive: For a given number of firms n, attracting consumers

on more sub-markets m requires a larger price difference—i.e., a larger price cut by the

deviating firm. Secondly and more interestingly, if the number of firms n increases, a

larger price cut is necessary to steal a given number of sub-markets m. The intuition for

this is that, for a larger number of firms, consumers expect to be less often affected by a

certain price cut of a single firm and, therefore, expect their equilibrium taste difference

to be low. This increases the loss in the taste dimension for those consumers who ex post

happen to buy from the more distant deviating firm, and this makes it more difficult for

the deviating firm to steal a large share of the market. Consider for example two markets

with n = 3 and 5, (λ = 3, t = 1): ∆peven(2, 3) = 19/20 < ∆peven(2, 5) = 33/28 <

∆peven(4, 5) = 7/4. Similarly, ∆podd(3, 3) = 5/6 < ∆podd(3, 5) = 9/8 < ∆podd(5, 5) = 8/5.

It can also be seen here that the price difference necessary to steal the entire backyard

sub-market of a competitor is lower than the one necessary to steal consumers up to the

location of this competitor—i.e., ∆podd(m + 1, n) < ∆peven(m, n). This demonstrates a

violation of the law of demand which is caused by the fact that consumer’s indirect utility

functions if buying the cheap or the most-liked product are decreasing in consumer’s

location x on odd sub-markets. Hence, to describe a personal equilibrium, ˆ̂x must be

decreasing in ∆p on odd sub-markets. This makes deviations under which the deviating

firm steals an odd number of sub-markets particularly profitable, as will be shown in the

next paragraph. In the example, the demand of the deviating firm is given by m/2 · 2/n =
m/n and the corresponding markup in symmetric equilibrium equals m∗(3) = 3/2 and

m∗(5) = 5/3. This illustrates that the deviation price difference might become larger than

the equilibrium markup if the number of firms n and the number of deviations m become

sufficiently large: In the example we find m∗(5) = 5/3 < ∆peven(4, 5) = 7/4. Therefore,
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Table 2: Deviation profits with n firms

The table shows the variation of πodd(m, n)/t and πeven(m, n)/t in n and

m for λ = λc = 1 + 2
√

2 (and β = 0).

n m 2 3 4 5 6 7 8

2 0.7071

3 0.4676 0.8360

4 0.3400 0.5877 0.3694

5 0.2624 0.4373 0.1444 0.3506

6 0.2111 0.3388 0.0096 0.1418 -0.1676

7 0.1751 0.2705 -0.0750 0.0060 -0.3607 -0.2384

8 0.1486 0.2211 -0.1296 -0.0851 -0.4861 -0.4151 -0.7769

those kind of deviations generate losses for the deviating and are, therefore, never optimal.

We next evaluate whether there exist profitable deviations from the symmetric equilibrium

with n > 2 firms and λ ≤ λc = 1 + 2
√

2 ≈ 3.828 (compare Prop. 1). The equilibrium

profit, π∗(n), can be expressed by

π∗(n) = m∗(n) · 1

n
=

(1 + λ)t

(λ − 1 + 2n)
,

with equilibrium markup, m∗(n), derived in Section 4.31 The deviation profits for even

and odd deviations are equal to

πeven(m, n) =

(

m∗(n) − ∆peven(m, n)

)

· m

n

πodd(m′, n) =

(

m∗(n) − ∆podd(m′, n)

)

·
m′

n
.

Deviation profits change monotonously in n and m: πodd(m, n) and πeven(m, n) are monotonously

decreasing in n and m. This is shown in Table 2, where we restrict attention to λ = λc,

the highest level of loss aversion at which a symmetric equilibrium exists for n = 2.32

The table demonstrates that deviating becomes less profitable if the number of firms n in

the market increases33 and that within the class of odd (resp. even) deviations stealing a

small number of sub-markets m is preferable to stealing a larger number of sub-markets.

Moreover, it is depicted that for a given number of firms n stealing an odd number of

31Cf. equation (31).
32For smaller levels of loss aversion λ > 1 deviating is less profitable, but the monotonicity in n and m is

preserved.
33This also implies that non-local deviations in the home market (m = 2), as considered in the duopoly

case, are less profitable if n raises.
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Table 3: Extra profit from deviating

The table shows the variation of (πodd(m, n)− π∗(n))/t and (πeven(m, n)−
π∗(n))/t in n and m for λ = λc = 1 + 2

√
2 (and β = 0).

n m 2 3 4 5 6 7 8

2 0

3 -0.0793 0.2891

4 -0.1059 0.1418 -0.0765

5 -0.1139 0.0610 -0.2320 -0.0258

6 -0.1145 0.0131 -0.3160 -0.1839 -0.4932

7 -0.1118 -0.0165 -0.3619 -0.2809 -0.6476 -0.5253

8 -0.1078 -0.0354 -0.3860 -0.3415 -0.7426 -0.6715 -1.033

sub-markets m′ = m + 1 is more profitable than stealing an even number of sub-markets

m. Thus, the deviation profit is highest in a three-firm oligopoly when the deviating firm

steals the entire market (m = 3).34

To identify the deviations that are the most critical for existence, the difference between

deviation and equilibrium profit are presented in Table 3.35 It can be seen that there exist

profitable deviations from symmetric equilibrium for λ = λc. However, only deviations

stealing m = 3 sub-markets are profitable if the number of firms is not too large—i.e.,

n ∈ {3, 4, 5, 6}. More generally, this can be shown by solving for the critical number of

firms nodd(m, λ) in πodd(m, n) − π∗(n) = 0.36

nodd(m, λ) = (λ − 1)
(λ + m)m +

√(

mλ2 + 2(3(m − 2)m + 4)λ + (m − 2)(m + 6)m + 8
)

m

4(λ + 1)(m − 2)

Deviating is profitable for given λ, m, and n if n < nodd(m, λ) and m ≤ n. Moreover,

nodd(m, λ) is strictly decreasing in m for nodd(m, λ) > m and strictly increasing in λ. There-

fore, m = 3 is the most critical deviation and profitable for n < nodd(3, λc) ≈ 6.3890.37

To rule out deviations from symmetric equilibrium for all n ≥ 2, the maximum degree of

loss aversion λ has to be reduced below λc = 1 + 2
√

2 ≈ 3.828.

Before stating the conditions for symmetric equilibrium to exist, we return to the issue of

multiple personal equilibria for given prices. Since ∆podd(3, n) < ∆peven(2, n), consumers

34m = 1 can be excluded since ∆podd(1, n) coincides with ∆p∗(n) = 0, the symmetric equilibrium .
35By construction πeven(2, 2) = π∗(2) at λ = λc (cf. Prop. 1).
36nodd(m, λ) being the only positive solution.
37A critical n can be derived for even deviations analogously. We skip this step here since even deviations

are dominated by odd ones in any case.
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facing a price difference ∆p = ∆podd(3, n) between the deviating firm and non-deviating

firms could expect ˆ̂x to be located either on the second or the third sub-market (on the

first half of the circle). Expecting m = 3 rather than m = 2 given ∆p = ∆podd(3, n) is

preferable for the deviating firm because it receives a strictly larger market share but is

not necessarily preferable for consumers. For instance, consumers who do not buy the

lower-priced product will ex post experience a higher loss in the price dimension since

the probability of low purchase price increases in ˆ̂x.38 Therefore the deviations considered

above use the most conservative personal equilibrium and deliver the strictest conditions

for an equilibrium to exist.

Lemma 3. A unique symmetric equilibrium with n firms and prices p∗(n) = m∗(n) + c =

((1 + λ)nt)/(λ − 1 + 2n) + c exists if n ≥ nodd(3, λ) with λ > 1.

The derivation of nodd(m, λ) and the relevance of nodd(3, λ) is provided in the text. We

finally provide a proof of Proposition 4.

Proof of Proposition 4. nodd(3, λc) ≈ 6.3890. Thus, n = 2 or n > 6 suffice for existence

at λ = λc.39 Equilibrium existence holds for 1 < λ < λc since nodd(3, λ) is increasing

in λ. Existence for n ∈ {3, 4, 5, 6} follows from the same property: nodd(3, λ) = 3 for

λ = λcc = 1/4
(

1 +
√

57
)

≈ 2.137. �

Hence, existence in the duopoly case carries over to the n-firm oligopoly case in the limit.

For symmetric markets with a small number of firms, however, equilibrium might fail to

exist for intermediate values of λ (λ < λc).

C Figures

38Cf. the concept of (consumer’s) preferred personal equilibrium of Koszegi and Rabin (2006) and

Koszegi and Rabin (2007).
39The former case is proofed in Prop. 1.
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Duopoly demand of non-biased and loss-averse consumers as a function of ∆p for

parameter values of t = 1, λ = 3, αm = 1, and αp = 0.5.

Figure 6: Demand of non-biased and loss-averse consumers (αp = 0.5)
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Oligopoly demand of non-biased and loss-averse consumer as a function of ∆p for

parameter values of t = 1, λ = 3, αm = αp = 1, and n = 8.

Figure 7: Demand of non-biased and loss-averse consumers (n = 8)
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