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1 Introduction

Contest theory studies the interaction between agents who spend resources in order
to increase their chances of winning a prize. A large number of economic environ-
ments can fruitfully be analyzed as contests - e.g. advertising of firms, patent races,
rent-seeking and lobbying, political campaigning, or litigation. In many of these
environments, the competitors do not know exactly what value they would derive
from winning, or how costly it is to expend effort. They may, however, be willing
to invest a significant amount of time or money in order to find out about the prize
that is at stake, or about the cost of competing. Such investments in information
have important implications on the interaction in the contest, both on the amount of
resources spent and on allocative efficiency. Moreover, as a consequence of informa-
tion acquisition, contestants may differ in the quality of the information they have
about their own or their competitors’ valuations.

Asymmetries with regard to the information the contestants possess are a feature
of many contests. These asymmetries can arise from decisions on information acqui-
sition prior to the conflict. In other cases, they are features of the environment the
contestants compete in. If an incumbent competes with a newcomer, as in regulated
markets or in election races, then there is typically more public information avail-
able about the incumbent than about the newcomer. Such one-sided asymmetric
information can also describe environmental conflicts between firms and individuals
where a firm’s profit might be known, but the individuals’ utility is unobservable
(Hurley and Shogren 1998a).!

Private information of the contestants, however, often results from information
acquisition. A firm entering a market will try to find out about the market conditions
and the potential gains before competing with an incumbent. Moreover, in resource

conflicts such as the conflict over arctic energy reserves, uncertainty in various dimen-

! As an example, consider the conflict over the Brent Spar oil rig that the owners, Royal Dutch
Shell and Exxon, wanted to sink in the Atlantic Ocean. Following a worldwide campaign organized
by the environmental group Greenpeace, they abandoned this plan. While there were publicly
accessible estimations of the cost of the on-shore dismantling of Brent Spar, there was very little
public information about the value Greenpeace placed on the prevention of the deep sea disposal.



sions leads to an incentive for investments in information to obtain a better estimate
of cost and value of competing. In addition to the direct benefit of being able to
adjust the own contest expenditures, there can be a strategic value of information
acquisition if it can be used to precommit to the behavior in the contest.

In this paper, we study incentives to invest in information ahead of conflicts.
Whereas contest theory typically focuses on inefficiencies caused by wasteful contest
efforts and allocative inefficiencies, our approach allows us to identify an additional
source of inefficiency in conflicts: inefficient investment in information acquisition.
Moreover, we show that studying information acquisition is important for the pre-
diction of actual contest behavior.

To be more specific, we first study one-sided asymmetric information in a perfectly
discriminating contest or all-pay auction between two risk neutral players. The all-
pay auction has been used to model a number of contests such as rent-seeking contests
and lobbying (Hillman and Riley 1989, Ellingsen 1991, Baye et al. 1993, Polborn
2006), election campaigns (Che and Gale 1998), and also R&D races (Dasgupta
1986); see Konrad (2009) for a recent survey. The all-pay auction has proved to be
an important framework to analyze contests where exogenous noise does not play a
decisive role in determining the outcome of the contest.?> We characterize the (unique)
equilibrium of the all-pay auction between two contestants, where the valuation of
one contestant is common knowledge, whereas the valuation of the other contestant is
drawn from a continuous distribution and is his private information. In equilibrium,
the player whose valuation is commonly known randomizes continuously, whereas
the player with private information plays a pure strategy.

We then analyze information acquisition ahead of conflicts and the players’ incen-
tives for such investments. Suppose each player initially only knows that valuations
are independent draws from the same commonly known distribution, but can learn
his true valuation by investing some amount. We distinguish between three differ-
ent cases depending on how much the opponent can observe if a player invests: (i)

the opponent can observe whether a player has invested in information, but not the

2Che and Gale (2000) and Alcalde and Dahm (2010) show that many of the properties of the
all-pay auction persist in contests with small exogenous noise.



realized valuation of the opponent in case the player invests, (ii) the opponent can
observe the outcome of information acquisition (open information acquisition), (iii)
the opponent cannot observe at all whether a player has acquired information (covert
information acquisition).

In case (i), if no player invests in information, the resulting contest is similar to
an all-pay auction with complete information where, by risk neutrality, the benefit
of winning is the expected valuation. If both players acquire information, the all-pay
auction turns into the well-known framework with private information. If exactly
one player invests in information, then the ensuing contest has one-sided asymmetric
information: there are common beliefs about the type of one player, while the type of
the other player is his private information. In this setting, information acquisition has
a strategic effect on the behavior of the opponent in the contest. We show that players
are willing to spend a considerable amount on information. There exists cut-off values
of the cost of information such that, for intermediate cost of information acquisition,
only one player will invest. To be more precise, for intermediate cost of information,
there are two asymmetric equilibria where exactly one player invests, and there is also
a symmetric equilibrium where both players randomize their investment decision.
Thus, the case of one-sided asymmetric information can arise endogenously in an
equilibrium of the game with information acquisition. Rent dissipation is incomplete,
although players are symmetric ex ante.

We then use our results to compare equilibrium information acquisition with
first best information acquisition. To characterize the first best, we consider the
problem of a welfare maximizing social planner who directly controls all relevant
decisions: contest efforts, investments in information, and the allocation of the prize.
As is standard in the literature on conflict and rent-seeking, we assume that contest
efforts are wasteful. The first best investments in information depend on the cost of
information acquisition, and we show that, in case (i), the cut-off values of the cost
of information that the social planner would employ are lower than the cut-off values
that determine equilibrium information acquisition. Thus, compared with the first
best, information acquisition is excessive in case (i).

In cases (ii) and (iii) (open and covert information acquisition), the players’ equi-



librium investments are again guided by cut-off values of the information cost that
determine the number of players investing in information. We show that in cases (ii)
and (iii), however, these cut-off values are exactly equal to the cut-off values for first
best investments. Since in case (i), the cut-off values are higher and thus the players’
willingness to pay for information is higher, this suggests that there is a strategic
value of information acquisition if the players’ decisions are observable, but not the
information itself.

The paper is related to several studies of the all-pay auction under different as-
sumptions on the information available to the contestants. Hillman and Riley (1989)
study the all-pay auction for the two benchmark cases: complete information and
private information about the individual valuations. Baye et al. (1996) characterize
the set of equilibria of the all-pay auction with N players and complete information.
Amann and Leininger (1996) show uniqueness of the equilibrium with two-sided
asymmetric information and two ex ante asymmetric players. For several standard
auctions, Morath and Miinster (2008) compare bidders’ payoffs and seller’s revenue
under private and under complete information. They find that for the all-pay auc-
tion, revenue is smaller under complete information, while bidders’ ex ante expected
payoffs are the same in the two information structures. Krishna and Morgan (1997)
consider the case where the players’ signals are affiliated. The all-pay auction with
multiple prizes is studied by Moldovanu and Sela (2001) in a framework with private
information, and by Clark and Riis (1998) and Barut and Kovenock (1998) with
complete information.

Closely related to our work are papers that study one-sided asymmetric informa-
tion in auctions and contests. One-sided asymmetric information in common value
first-price auctions has been studied by Engelbrecht-Wiggans et al. (1983) and Kim
(2008), among others. The setup in these papers is related to the first part of our
paper since only one bidder has private information; however, they consider a com-
mon values environment in winner-pay auctions, whereas we study a private values
environment in all-pay auctions. In an all-pay auction setting, Konrad (2009) char-
acterizes the equilibrium under one-sided asymmetric information where one player’s

value follows a two-point distribution. For imperfectly discriminating contests with a



Tullock contest success function, Hurley and Shogren (1998a) characterize the equi-
librium under one-sided asymmetric information, and Hurley and Shogren (1998b)
numerically solve specific examples to compare the three information structures that
also arise in our model with regard to rent dissipation and efficiency. For an im-
perfectly discriminating contest success function axiomatized by Skaperdas (1996,
Theorem 1), Wérneryd (2003) considers a contest with two agents who have the
same value of winning, but where there is uncertainty about this value. He compares
a symmetric information structure to the case where one agent privately knows the
value of the prize and shows that rent dissipation may be lower under asymmetric
information.

We add to this literature by studying the all-pay auction framework, and we
focus on private values. One advantage of our all-pay auction setting in comparison
to models of imperfectly discriminating contests with private values is that it is
possible to fully characterize the equilibrium under asymmetric information and to
derive robust results that are not driven by specific restrictions on the probability
distribution of the valuations; in particular, the greater tractability of the two-sided
asymmetric information case allows to obtain more general results.

A growing literature considers information acquisition in winner-pay auctions;
recent work includes Persico (2000) and Hernando-Veciana (2009) who compare the
incentives to acquire information among different winner-pay auction formats. Infor-
mation acquisition ahead of contests, however, seems to be relatively unexplored.?
Our paper is also linked to the literature on strategic behavior ahead of contests.
Konrad (2009) surveys this literature. Our contribution to this literature is to study
the incentives for information acquisition in contests.

In Section 2, we describe the strategies and payoffs of the players in the all-pay
auction for a given information structure. In Section 3, we analyze the all-pay auction
with one-sided asymmetric information. In Section 4, we consider the all-pay auction

in a context of information acquisition. Section 5 discusses how our result is affected

$Morath (2010) studies information acquisition in the framework of a war of attrition with a
finite time horizon and shows that, even if information is available without cost, in equilibrium only
one player may acquire information.



if the assumptions on the observability of information acquisition change. Section 6

is the conclusion. All proofs are in the appendix.

2 The all-pay auction

There are two players 1 and 2 competing in an all-pay auction. Player ¢ values
winning by v;. The wvaluations, or types, v; and vy are drawn independently from a
cumulative distribution function F' that is common knowledge. We assume that F
is continuous, has support [0,1], and is continuously differentiable with F’ (v) > 0
for v € (0,1).

In Section 3, we assume that the realized value of v; is common knowledge,
whereas the realized value of v, is private information of player 2. In Section 4,
we assume that initially no player is informed about any valuation, but players can
acquire information: at a cost ¢, a player can learn his own value.* Player j can
observe whether or not ¢ has acquired information, but not the realized value v;.

Finally, players compete in an all-pay auction. They simultaneously choose their
bids z; € [0,00). The player with the higher bid wins, ties are broken randomly.
Both players have to pay their bid. Thus, i’s payoff from the all-pay auction (gross

of the direct cost of investing in information) is

vy — Xy, T > Zj,
v
2

—Tq, T, < Tj.

U; = — Ty, Ty = Ty,

4Note that the investment does not change the distribution of one’s value, nor one’s ability to
compete in the contest. Investments in one’s value or ability have been studied by Miinster (2007).



3 One-sided asymmetric information

Suppose that player 1’s valuation v; is common knowledge.® Player 2’s valuation
vy is privately known only to himself. Thus, a pure strategy of player 1 is a bid
x1 € [0, 00), whereas a pure strategy of player 2 is a function g, : [0,1] — [0, 00) that
maps the typespace into the set of possible bids. The solution concept is Bayesian
Nash equilibrium (henceforth, "equilibrium").

Denote the bid distributions of players 1 and 2 by By and By, i.e. B;(x) denotes
the probability that i’s bid is weakly below x. If 1 plays a pure strategy of bidding
x with probability one, then B is degenerate: By (z) =0 for z < x and By (z) =1
otherwise. If Bj is not degenerate, 1 plays a non-degenerate mixed strategy. In
contrast, the bid distribution By captures the uncertainty concerning v, as well as

the possible randomization of player 2.

Lemma 1 In any equilibrium, the bid distributions By and Bs have the following

properties:
(i) (Continuity) By and By are continuous on (0,00).

(ii) (Support) The supports of By and B both have the same minimum b= 0, and

the same mazimum b < v;.
(iii) (At most one mass point at zero) min {B; (0), B2 (0)} = 0.
(iv) (Monotonicity) B, and By are strictly monotone increasing on [0,b].

Similar properties are standard in auction theory. Continuity implies that there
are no mass points, except possibly at zero. Monotonicity rules out any gaps in the
support. Thus (ii) and (iv) imply that B; and By have the same support.

It follows directly from Lemma 1 that, in any equilibrium, player 1 randomizes

according to a CDF that is continuous and strictly increasing on [0, 5]. To get some

®The analysis goes through for all v; > 0. For v; = 0, there is no equilibrium because player
1 will bid zero and player 2 has no best response since any strictly positive bid, however small,
guarantees victory. This problem disappears if ties are broken in favor of the player with the higher
valuation.



intuition, suppose to the contrary that player 1 chooses a pure strategy, i.e. bids
some amount x with probability one. Then player 2 would either like to marginally
overbid player 1, or bid zero. But then bidding z is not optimal for 1, contradicting

equilibrium. Thus player 1 has to randomize. In contrast, 2 plays a pure strategy.

Lemma 2 In any equilibrium, player 2 plays a pure strategy (o : [0,1] — [O,Z_)] .
There is a critical value ve [0,1) such that B4 (ve) = 0 for vo <v and B4 (vy) > 0 for

vy >v. Moreover, 35 is continuous on [0,1] and strictly increasing on [v,1] .

Lemma 2 shows that player 2, whose valuation is private information, bids ac-
cording to a strategy that is increasing in his value, and low types might bid zero.
The highest type of player 2 (who has v, = 1) bids exactly b. The intuition behind
the proof is simple. Higher types of player 2 will bid higher. Thus, if some type
of player 2 randomizes over some interval, no other type of player 2 will bid in this
interval. But then B, is constant in that interval, contradicting Lemma 1.

Note that 3, has image [O,l_)}. Since 3, is continuous and strictly increasing
on (v,1], it is invertible on (v,1] with 85" : (0,6] — (v,1]. Furthermore, (35" is

continuous and strictly increasing on (0, B].

Lemma 3 In equilibrium, By and By are differentiable on (0,13); moreover (4 is
differentiable on (v, 1).

Given differentiability of the bid distributions, we can use first-order conditions
together with appropriate boundary conditions to determine the equilibrium and
show its uniqueness. The expected payoff of player 1 from a bid x; € (0, 1_7} is equal

to
Elu (z1)] = F (52_1 (%)) v — T

since [, ! exists on (O,B]. Because player 1 randomizes continuously on (O,B],

E [uy (x1)] must be constant in this interval. Therefore,

F' (B3 (1)) —1=0. (1)



Any solution to the differential equation (1) has to fulfill

By (v2) = F (vg)vq + k

for all vy such that 5, (v2) > 0, where the constant k remains to be determined.
Note that F (vg)v; + k > 0 if and only if v, > F~!'(—k/v;). By Lemma 2, types
vy < F7'(—k/vy) bid zero, hence By (0) = —k/vy, and thus k¥ € (—wv;,0]. For
notational convenience, let ay = —k /vy (we use the subscript 2’ since ay = By (0)).

Putting things together,

0, vy € [0, F71 ()

F2 (v2) = { F (v2) v1 — aguy, vy € [F71 (ag), 1] 2)

where s € [0, 1) remains to be determined.
Now consider player 2. The first-order condition for a type v, who bids a strictly

positive amount is given by
Bi (x9) vy — 1 =0. (3)

Using (2),
1 1

551 (x2) B F-1 (x2+azv1

B (z2) =

v1

(4)
)

has to hold for all 5 > 0. This is solved by

xTo 1
Bl (.],’2) = /0 Wdz + aq

v1

By ' (x2)
_ / YL4E () + ag (5)

F~1(az) v

where o remains to be determined. Note that ay = By (0) € [0,1) .
To determine «; and «ip, we use the fact that, at most, one of the bid distributions

has a mass point at zero (Lemma 1(iii)):
min {B; (0), By (0)} = min {ay, as} = 0. (6)

10



Moreover, player 1 will never bid higher than the highest type of player 2, thus
Bi (B, (1)) = 1. By (5), we get

/1 UaF () +ar = 1. (7)

“1(ag) v

Equations (6) and (7) uniquely determine the mass points «; and as.

Lemma 4 (i) If
/ Bar () > 1, (8)

v

then ay = 0 and ay is the unique solution to

/1 BaF (v) = 1. 9)

F—l(a2) v
(11) If (8) does not hold, then ay = 0 and «; is the unique solution to

/1 %dF (V) +a; =1. (10)

Using Lemmas 1-4, we can now state the main result of this section.

Proposition 1 Suppose that player 1°s valuation is common knowledge and player
2’s valuation is his private information. The all-pay auction has a unique equilibrium.
Player 1 randomizes according to

. L )dz +ay for x1€10,(1—ag)uv)

0 F71<z+a2v1
v1

1 for x> (1—ag)v;

By (x1) = (11)

where ay and o are defined in Lemma 4. Player 2 plays the following pure strategy:

0 for vy €10, F71 (an))

62 (UQ) = { F(Uz) V] — Qi fOT’ Vg € [F_l (OQ) ) 1] (12)

11



In equilibrium, player 1 randomizes according to a (concave) distribution func-
tion. The probability that he bids zero is equal to a;. Thus, whenever oy > 0,
player 1’s expected payoff is zero, since he is indifferent between bidding zero and
any positive bid in (0,v;]. If instead ap > 0, then the upper bound of the bid dis-
tribution is smaller than v, and the expected payoff of player 1 equals cav; > 0. In
this case, player 2 bids zero for all types that are smaller than v= F~! (o), i.e. with
probability as. For all other types, player 2 bids a positive amount [, (v2) and gets
a positive expected payoff which is increasing in his type.® From an ex ante point of
view, player 2’s equilibrium payoff is strictly positive. His bid distribution is given
by

By (w2) = F (B3 (1)) = 42
where x5 € [0,(1 —ay)v;]. Hence, player 2’s bids are uniformly distributed on
(0, (1 — ) v1) with (possibly) a mass point at zero. This is similar to the all-pay
auction under complete information: in order to make player 1 indifferent, player 2’s
bids have to follow a uniform distribution with slope 1/v;.

Proposition 1 shows that (generically”) one of the players bids zero with positive
probability. Which player has the mass point at zero depends both on the distribution
of player 2 ’s types (F') and on the value of player 1 (vy). If player 1 is relatively
strong in the sense that the expected value of the ratio vy /V5 is bigger than one, then
it is player 2 who has the mass point at zero (see (8)). The intuition is that, since
player 1 is relatively strong, he bids aggressively; player 2 in turn bids zero whenever
he has a low value. On the other hand, if player 1 is relatively weak, then player 1
has the mass point at zero.

Note that, if v; is weakly larger than player 2’s expected valuation F (V5), then

®One interesting implication of (12) is that the bid of player 2 sometimes increases in the value
of his opponent. To see this, suppose that g = 0. Then 5, (v2) = F' (v2) v1 is increasing in v;. For
the comparative statics it must be kept in mind, however, that when v, increases, this may increase
as by (9). It can be shown that, for this reason, 3, also sometimes decreases in v;.

"If the left hand side of (8) is exactly one, then no player has a mass point at zero.

12



(8) is always fulfilled. This follows from

/1 AR (v) > /1 ER) yp () > 1 (13)

(% v

which is true by Jensen’s inequality (£ (1/V3) > 1/E (V3)). Thus, if v; is sufficiently
large, player 1 is relatively strong and player 2 has the mass point at zero.®

The equilibrium characterization can be used to obtain empirically testable pre-
dictions, similarly to the work of Hendricks and Porter (1988) in the context of
auctions for oil tracts. Choosing zero effort can be interpreted as nonparticipation.
For concreteness, consider the application where player 1 is an incumbent and player

2 a newcomer with private information.

1. For higher values of the incumbent, it occurs more frequently that the newcomer

does not participate. Formally, ay is (weakly) increasing in v;.

2. In observations where the newcomer does not participate, one should never
observe that the incumbent’s bid is "close" to his value. To see this, note that
if ay > 0, the upper bound of the bid distribution is equal to (1 — as) vy < v3

and hence bounded away from v .

Note that to test implication 1, the researcher only needs to observe participation
and the value of the incumbent, which is assumed to be commonly known in the
model. For implication 2, the bids of the incumbent need to be observable as well.
Sometimes it may be possible to observe the value of the newcomer ex post, in
particular if the newcomer wins the contest, or ex post profits. Then we get the

following additional testable implications:

3. The allocation of the prize is inefficient in the sense that the player with the
lower value sometimes wins. In particular, we should sometimes observe that

the newcomer wins although his value is lower.

8If F is a uniform distribution on the unit interval, the left hand side of (8) is infinite for any
v1 > 0, thus (8) holds, and player 2 has a mass point at zero. We point out, however, that for a
uniform distribution over an intervall [a, b] with a > 0, it depends on v; whether player 1 or player
2 has a mass point at zero. In contrast, the argument in (13) does not hinge on the assumption
that the lower bound of the support of F' is zero.

13



4. If the newcomer has the same value as the incumbent, then the newcomer
will have a higher realized profit on average. To see this, note that the type
of the newcomer who has the same value as the incumbent (type vy = v1)
can guarantee himself the same profit as the incumbent by bidding at the
upper bound of the distribution of the incumbent’s bids. Since he bids lower
in equilibrium, it follows that his expected profit is higher. Of course, types

vy > vy get an even higher expected profit.

4 Information acquisition

In the following, we use our results of the previous section to analyze a game of
information acquisition in conflicts, focusing on the case where the decision to acquire
information can be observed by the opponent, but not the acquired information
itself. (We discuss the cases of open and covert information acquisition in Section 5.)
As before, the players’ types are independent draws from a cumulative distribution
function F' that is common knowledge. Prior to the all-pay auction, the players
simultaneously decide whether to purchase a perfectly informative signal about their
own valuation at a cost ¢. The realization of the signal is private information, but
whether or not a player has acquired information is common knowledge in the all-pay

auction.

Case 1: No information acquisition. Suppose that no player acquired infor-
mation. Maximizing his expected payoff in the all-pay auction, a player i’s optimal
strategy is to choose his effort as if his valuation were equal to his expected valuation
E(V;) = :jol vdF (v). Hence, the all-pay auction is reduced to a game where the
(expected) valuations F (V) and E (V3) are common knowledge. The equilibrium of
the all-pay auction under complete information is in mixed strategies and is derived

in Baye et al. (1996): both players randomize uniformly with support [0, E (V})] .

Fact 1 (Baye et al. 1996) Suppose that no player acquired information. In the

unique equilibrium of the all-pay auction, expected payoffs are E [u1] = E [us] = 0.

14



If no player invests in information, and both players have the same expected

valuation, there is full rent dissipation in the all-pay auction.

Case 2: Two-sided asymmetric information. Suppose that both players have
acquired information and know their own type, but only know the distribution of the
opponent’s type. In this case, the equilibrium of the all-pay auction is well-known.”

Each player’s bid is strictly increasing in his valuation.

Fact 2 (Weber 1985, Hillman and Riley 1989) Suppose both players acquired infor-

mation. In the unique equilibrium of the all-pay auction, expected payoffs are

By = E [us] = /0 /0 " (vs — v;) dF (v;) dF (v5) — c. (14)

The support of the bid distributions is [0, F' (V})], as in the case without infor-
mation acquisition. Without information acquisition, however, the distribution of
the bids first-order stochastic dominates the bid distribution in the case of private
information. Therefore, expected expenditures in the contest are lower with private
information, and the players get a positive expected payoff. Moreover, the allocation
of the prize is efficient in the case of private information since the player with the
higher valuation wins with probability 1. Obviously, whenever c is sufficiently small,

both players are better off than they are without information acquisition.

Case 3: One-sided asymmetric information. Suppose that only player 2 ac-
quired information. Then player 2’s valuation is private information, and player 1’s
optimal strategy is to bid as if his true valuation were E (V7). Thus, we can build
on the results of Section 3 by just replacing v; with £ (V;). Since E (V;) = E (V),
it follows from (13) that By (0) = ay > 0, and «s is defined by (9). Since player 2

bids zero for types smaller than

v=F"! () >0 (15)

9See, for example, Krishna (2002), pp. 33-34. Uniqueness of the equilibrium follows from Amann
and Leininger (1996).

15



the uninformed player 1 has a positive expected payoft,
Elul = F(v)E (V) > 0. (16)

The result that the uninformed player has a positive expected payoff may be
surprising, and thus we pause to discuss the economics behind it. The main point
is that the uninformed player is relatively strong, in the sense that the expectation
of the ratio F (V;) /V, (with respect to V5) is bigger than one.!® As pointed out in
the discussion following Proposition 1, if the uninformed player is relatively strong,
then his informed rival bids zero with strictly positive probability. Therefore, the
uninformed player must earn a strictly positive payoff.

We now turn to the payoff of the informed player. A type vy >v of player 2 that
bids a strictly positive amount gets a payoff of

By (By (v2)) vs — By (v) — ¢ = / " (M

o E(Vl)) dF (v) — c.

Player 2’s ex ante expected payoff is therefore equal to

Eug] = /Y1 / (@ B (vl)) dF () dF (vy) — c. (17)

Using these results, we can analyze the incentives to invest in information.!!
Proposition 2 There are two critical values ¢ and ¢ with 0 <c< ¢ such that:

(1) If the cost of information c is strictly smaller than c, both players acquire infor-

mation.

10T his follows from Jensen’s inequality and the fact that 1/V5 is a convex function of Vs, together
with assumption that E (V1) = E (Va) (see (13)).

'Note that players have no private information when they decide whether to acquire information.
Any reasonable belief about the opponent’s type is simply the prior distribution F. Moreover, any
continuation game has a unique Bayesian equilibrium. Therefore, we study the 2-by-2 game defined
by the payoffs described in Facts 1-2 and equations (16)-(17). This amounts to studying the perfect
Bayesian equilibria of the game defined in Section 2.
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(i) If ¢ < ¢ < ¢, there are two equilibria where exactly one player acquires infor-
mation. Additionally, there is a symmetric equilibrium where player i acquires

information with probability p = (¢ —c¢) / (¢ — ¢).
(iii) If ¢ > ¢, no player acquires information.

The critical value ¢ (¢) is the maximum amount a player is willing to spend on

information given that the opponent does (does not) acquire information. Thus,

c = /01 /0 (v — v;) dF (v;) dF (1) — F (v) E (V)

which is derived by comparing the payoffs in (14) and (16).!* As a player’s expected

payoff is zero in case no player acquires information, using (17), we get

;= /Vl / (%ﬂv)v - E(V)) dF (v;) dF (1)

Proposition 2 shows that 0 <c< ¢. Since the willingness to pay for information is
smaller if the opponent acquires information than if he does not acquire information
(c< ©), an interval (c, ¢) exists where only one player invests in information (or both
players randomize). Obviously, for sufficiently high cost of information, no player
will buy it. On the other hand, for sufficiently low cost of information, at least one
player has an incentive to acquire information due to the complete rent dissipation
in the case of no private information. For any continuous distribution function F,
however, there is an intermediate range of information costs where it only pays for
one player to acquire information.

Figure 1 illustrates the result of Proposition 2 for the example of uniformly dis-
tributed types (F' (v) = v). On the horizontal axis, it shows the cost of information
¢, and on the vertical axis, it maps a player i’s expected payoff given the decisions
on information (/;, I;). Here, I; = 1 if ¢ acquires information, and /; = 0 if ¢ does not

acquire information. If no player acquires information ((I;, I;) = (0,0)), both get an

12Recall that, if exactly one player acquires information, v is defined as the highest type of the
informed player that bids zero.
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E [u;| (I;, I;)]

0.190 (B2 =1 (I, ;) =(0,1) | (I7,1I7) =(0,0)
0.167 ;
0068 \\ E lwi| (I, [;) = (0,1)]
i Y e
0 c=0.099 ¢ =DN90

Elul (I )= (L1)] Bkl (5 1;) = (1,00

Figure 1: Equilibrium decisions on information (]Z* ' ) . Example: F' (v) = wv.

expected payoff of zero (Fact 1). If i acquires information and j does not acquire
information ((1;, I;) = (1,0)), using (17) and inserting F' (v) = v, player ¢’s payoff in
this case is equal to

Eu;| (1, I;) = (1,0)] = 0.190 — c.

Thus, if ¢ > ¢ = 0.190, in equilibrium no player acquires information. If both players

acquire information, using Fact 2, each gets a payoff of
E | (4;,1;) = (1,1)] = 0.167 — c.
If instead 7 remained uninformed, his payoff would be equal to
Ew| (4;,1;) = (0,1)] = 0.068.

Thus, as long as 0.167 — ¢ > 0.068 or ¢ <c= 0.099, both players prefer to acquire
information. If, however, 0.099 < ¢ < 0.190 and j acquires information, ¢ is better

off if he does not invest in information than if he invests: in this intermediate range
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of information cost, it holds that
Elu| (L, ;) = (0,1)] > Efug| (1;, I;) = (1,1)] .

Hence, in the intermediate range for ¢, there is an equilibrium where player j € {1,2}

acquires information and player 7 # j does not acquire information.

We conclude this section by studying the efficiency of equilibrium information
acquisition. We compare equilibrium information acquisition with first best invest-
ments by a welfare maximizing social planner who is ex ante uninformed about the
valuations, but can observe the outcome of any information acquisition. We assume
that, for a given allocation of the prize (p; and p,), bids (z; and z5), and investment

decisions (I; and I5), welfare is given by

2 2 2
44 (p17p2,$1,$27f17f2) = Zpﬂ)i - szi - CZL

where £ > 0 is a parameter.!® If k = 1, the bids in the contest are a pure waste from
a welfare point of view, whereas x = 0 captures the case where the bids are pure
transfers to some third party that do not influence welfare by itself. To characterize
the first best, we suppose that the social planner directly chooses everything that
is relevant: the bids (z; and x3), the investment decisions (/; and I5), and, inde-
pendently of the bids, the allocation of the prize (p; and p; = 1 — p;). Clearly, in
the first best, bids are zero (or irrelevant if £ = 0), and the prize is allocated to the
player who has the higher expected value, given the information that is available. It
remains to consider the first best investments in information.

If the social planner acquires information about both players, she gives the prize to
the player with the higher value, and expected welfare equals E,, ., [max {v;, v;}] —2c.
If the social planner acquires information about the valuation of only one player, it
is optimal to give the prize to this player if and only if his valuation is higher than

E (V), the expected value of the other player. In this case, expected welfare is equal

13This is standard in the rent-seeking literature, see for example Baye et al. (1996).
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to B, [max {E (V) ,v;}] — c¢. Thus, if the cost of information is lower than the gain

in allocative efficiency,
¢ < d = By, [max {v;,v;}] — E,, [max {E (V) ,v;}],

welfare is higher if both players invest than if only one player invests in information.
If the social planner does not acquire any information, she gives the prize to any
player and realizes an expected welfare of E (V). As before, if
c<d" =E, [max{E(V),v}] — E(V),
information acquisition about (at least) one player increases welfare. If the cost of
information acquisition equals ¢/, welfare is the same if two players acquire informa-
tion as if one acquires information. At ¢’, welfare is the same if one player acquires
information as if no one does. In the appendix, we show that 0 < ¢ < ¢’. This
implies that first best investments in information are as follows: if ¢ < ¢/, both play-
ers should invest, if ¢ € (¢, ¢”), one player should invest, and if ¢ > ¢’, none should

mvest.

Proposition 3 The cut-off values that determine the first best investments in infor-
mation (¢ and ") are strictly lower than the corresponding equilibrium thresholds (c
and ¢):

d < candd <eé.

Proposition 3 shows that, independently of the distribution function F, the first
best thresholds are lower than the corresponding equilibrium thresholds. However,
¢’ can be higher or smaller than ¢, depending on the functional form of F.!* Figure
2 compares equilibrium investments with the first best. In equilibrium, there is more

information acquisition:'> if ¢ € (¢, ¢), both players acquire information although

"For example, for F (v) = v, c< ¢’ < ¢, and for F (v) = v, we have ¢/ <c< ¢.

15Tn the symmetric equilibrium with randomization of information acquisition, under some pa-
rameter constellations, it may happen that ex post no player invests although in the first best one
player should invest. To be more precise, if ¢/ <c¢, then the number of players acquiring information
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Case1: c<c"

First best 2 1 0
Equilibrium 2 1 0
L} T LR : C
O Cr 9 CII c
Case2: c>c"
First best 2 1 0
Equilibrium 2 1 0
I' L} > C
0 c c" c c

Figure 2: The number of contestants who invest in information, in the first best, and
in an equilibrium without randomization of information acquisition, as a function of
the cost of information acquisition c.

only one player at most should, and similarly, whenever ¢ € (¢”, ¢), at least one player

acquires information although neither of the players should.!®

is always weakly higher than in the first best. On the other hand, if ¢’ >¢, then for any ¢ € (¢, "),
in the first best exactly one player acquires information, whereas in the mixed equilibrium the num-
ber of players acquiring information is zero, one, or two, depending on the realizations of players’
randomization.

16Qur results can be used to investigate the overall welfare effects of policies such as subsidies
or taxes on information acquisition. This requires careful thought, however. Such policies do not
only affect the information acquisition itself, but also the interaction in the ensuing contest and
thus the efficiency of the allocation and the expected bids. Hence, enforcing first best information
acquisition does not necessarily maximize welfare. For example, suppose that x = 0 and compare
the case where no player acquires information to the case where one player acquires information.
In equilibrium, the gain in allocative efficiency that results from information acquisition is lower
than in the first best due to the mixed strategy equilibrium where low types of the informed player
sometimes win and high types sometimes lose. Taking this into account means that the range of
cost of information where no player should acquire information would be bigger than (¢”, o).
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5 Observability of information acquisition

The analysis in the previous section builds on a crucial assumption on the observ-
ability of information acquisition: we assumed that the players’ decisions whether to
acquire information are observable, but the information itself is only privately known
to a player. In the following, we discuss this assumption by modifying it in two dif-
ferent directions. On the one hand, we consider the case where both the players’
decisions and the information is publicly observable (open information acquisition),
and on the other hand, we discuss the case where neither the information nor the
players’ decisions are observable by the opponent (covert information acquisition).

With open information acquisition, there are three different situations that can
arise in the all-pay auction. If no player acquired information, the equilibrium is as
described in Fact 1. If only player ¢ acquired information, i’s valuation is common
knowledge, and j bids as if his value was E (V;). If both players acquired information,
both v; and v; are common knowledge. In all three cases, the equilibrium is similar
to the equilibrium under complete information characterized by Baye et al. (1996).
Expected equilibrium payoffs are as follows. The player with the higher (expected)
value receives a payoff that equals the difference between the (expected) values.
The player with the lower (expected) value receives a payoff of zero. Comparing
the expected payoffs in the three cases determines the amount that the players are
willing to spend on information.

If the information that players acquire is observable, again threshold values copen
and C,pen exist for the cost of information such that both, only one, or none of the

players wants to invest in information.

Proposition 4 With open information acquisition, the cut-off values copen and Copen,
that determine equilibrium information acquisition are equal to the corresponding

cut-off values ¢ and " for first best investments:

o - o
Copen = € and Copen, = €.

If the information that players acquire is observable, the cut-off values that de-

22



termine whether both, only one, or none of the players wants to invest in information
are exactly the same as the thresholds a social planner would set. The reason is that,
given the opponent’s decision on information, the value of acquiring information is
equal to the gain in allocative efficiency that a social planner would achieve. This,
in turn, is due to the fact (mentioned above) that the equilibrium payoff in an all-
pay auction with complete information is equal to the difference of the valuations,
or zero, whichever is greater. To see this in detail, first suppose the opponent j
does not acquire information. If player ¢ does not acquire information, his payoff
is zero (see Fact 1). If player i does acquire information, his equilibrium payoff
from the contest (gross of the investment costs) equals max {v; — £ (V;),0}, which
is exactly equal to the gain in allocative efficiency of the social planner when she
acquires information about the value of one player. Second, suppose that the op-
ponent j acquires information. If ¢ does not acquire information, his equilibrium
payoff equals max {E (V;) —v;,0}. If i acquires information, then his payoff from
the contest (gross of the investment cost) is max {v; — v;,0}. Again, player i’s gain
from information acquisition exactly equals the gain in allocative efficiency that the
social planner realizes when she acquires information about both players rather than
about one player.

Comparing Propositions 3 and 4, the cut-off values are different with open infor-
mation acquisition than when only the decision to invest is observable. This is to be
expected since the respective continuation games are different. Moreover, Proposi-
tions 3 and 4 show that, if the information is publicly observable, players invest less
in information than in the case where the information is only privately observable.
In other words, the information is less valuable to a player if it is passed on to the

opponent.

We now turn to the case of covert information acquisition where a player cannot
observe whether or not the other player has acquired information. Intuitively, for a
very low cost of information, both players invest, and for very high cost, no player

invests in information.
Proposition 5 With covert information acquisition, (i) there is an equilibrium where
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both players invest in information if and only if ¢ < ¢, and (ii) there is an equilibrium

where no player invests in information if and only if ¢ > ¢".

We do not attempt to characterize the complete equilibrium set here, but inter-
estingly, the cut-off values of ¢ such that both players, or none of the players, acquire
information are as in the first best. For ¢ € (¢, "), one has to include situations
where players randomize their information choice. Suppose that j = 1,2 invests in
information with some probability p € (0,1). Then, with probability p, player i # j
faces an informed player, and with the remaining probability 1 — p, 7 bids against an
uninformed player who behaves as if he had a value equal to E (V'). The equilibrium
of the all-pay auction is then as if types are private information and drawn from
a distribution function that has a mass point of size p at F (V) and is continuous
everywhere else: if j is informed (and has a value unequal to £ (V)), he bids accord-
ing to an increasing bid function, and if j is not informed (and has an expected value
E (V)), he randomizes his bid.

Let us compare covert information acquisition to our main model where the deci-
sion to invest in information is observable. Note that, in both cases, the information
obtained is not observed by the rival. First, the range where there is an equilib-
rium where both players invest in information is larger when the decision to invest
is observable than when it is not observable (¢> ¢'). In other words, given that the
opponent invests, the willingness to pay for information is higher when the decision is
observable. Second, the range where no player acquires information is smaller when
the decision to invest is observable than when it is not observable (¢ > ¢”): given that
the opponent does not invest, a player is willing to invest for larger values of ¢ when
the decision is observable, i.e. the willingness to pay for information is again higher
when the decision is observable than when it is not observable. In this sense, there
is a strategic value of information acquisition if the decision to acquire information
is observable: a player is willing to spend more on information if the decisions are

observable than if the decisions are not observable by the other player.
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6 Conclusion

We considered the all-pay auction between two players with one-sided asymmetric
information. The asymmetry accounts for the fact that there may be superior in-
formation about one of the contestants, for example an incumbent, compared to the
other contestants. We showed that if one contestant’s value of winning is publicly
known and the value of the opponent is private information, the all-pay auction has
a unique equilibrium, and we characterized the equilibrium strategies.

Building on this result, we studied the contestants’ incentives to invest in infor-
mation before they compete in the all-pay auction. We distinguished between three
different scenarios: (i) the opponent can observe only that a player has acquired in-
formation, but not what information he received, (ii) the opponent can observe the
information itself (open information acquisition), and (iii) the opponent does not
observe the decision to acquire information (covert information acquisition). In all
scenarios, if the cost of information is sufficiently low, it is outweighed by the value
that the information has in the contest. For intermediate cost of information, how-
ever, only one player may invest in information. Therefore, in scenario (i), in the
all-pay auction one contestant may have private information whereas there are com-
mon beliefs about the other contestant’s value of winning. Moreover, in equilibrium,
more information is acquired than in the first best. In contrast, with open or covert
information acquisition, the cut-off values of the cost of information acquisition are as
in the first best. In all three scenarios, although players are symmetric ex ante, rent
dissipation is incomplete unless the costs of information acquisition are prohibitive.

An interesting extension of our work could be the case of N contestants and
asymmetric information. For example, if a monopolist tries to defend the monopoly
rents against multiple entrants, there might be asymmetric information in the sense
that one contestant’s type is common knowledge and the other (N — 1) contestants’
types are private information.

Another interesting extension is the case of partial as opposed to complete infor-
mation acquisition. We assumed that information acquisition is a binary decision. As

long as this assumption is maintained, our results do not hinge on the assumption
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that acquiring information fully reveals one’s true valuation. Rather, there could
still be some residual uncertainty after a player has acquired information. By risk
neutrality, the player would behave as if he knew the true valuation was equal to the
expectation of the valuation under the residual uncertainty. Allowing for different
levels of investments in information, however, leads beyond the scope of this paper,

and is an interesting avenue for future research.

A Appendix

A.1 Proof of Lemma 1

(i) (Continuity) Suppose that B; exhibits a discontinuity at some Z > 0. This implies
that a bid of x; = & has strictly positive probability. Thus, there exist €, &’ > 0 such
that player i strictly prefers z; = & + ¢ over all z; € (Z — &', %) : shifting probability
mass from (Z —¢’, %) to T + € only involves an infinitesimally larger cost of effort,

T Since player ¢ will not bid in

but strictly increases the probability of winning.!
(z — €', %), player j can strictly increase his payoff by bidding z — % instead of 7.

(ii) (Support) Let b; (b;) denote the maximum (minimum) of the support of B;.
Suppose that b; > I_)j. Then B; (xz) =1 for all x > l_aj. Thus, player i prefers to bid
z; = (2} + b;) /2 to any bid 2} > b;, contradicting b; > b;. Hence, by = by = b. Since
player 1 can ensure a payoff of zero by bidding zero, we must have b < v;.

Suppose that b; >b; > 0. Then any bid z; <b; loses with probability one; player
j could increase his payoff by bidding zero instead, which is a contradiction.

Now suppose b; >b; = 0. Then player j strictly prefers a bid of zero over all bids
in (0,b;), thus B; has no probability mass in (0,b;). Since B; has no mass points
(except possibly at zero) it follows that B; is constant on (0,b;]. But then there
exists € > 0 such that player ¢ strictly prefers a bid of € over any bid in [b;,b; + ¢):

a bid of € has strictly lower costs but only a marginally lower probability of winning.

This is a contradiction to the definition of b;.

17f § = 2, this argument assumes vp > 0. But this is inconsequential since type vo = 0 has zero
probability.
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Finally, suppose b; =by =b> 0. By (i), Bj (b) = 0, and there exists an ¢ > 0
such that x; = 0 is preferred to any bid z; € [b,b+ ¢), which contradicts b; > 0.
Combining these arguments shows that b; =bs = 0.

(ili) (Mass points at zero) If B; (0) > 0, there exists an ¢ > 0 such that player ¢
prefers x; = € to x; = 0. Hence, B; (0) = 0. This shows that the bid distribution of
at most one player can have a mass point at zero.

(iv) (Monotonicity) Suppose that B; is constant in an interval (2’,z") where
0 < a2’ < 2" < b, further suppose that 2” = max{z|B; (z) = B, (2')}. Then
B,
prefers z; = 2/ to all z; € (2/,2” +¢) : by bidding «’ player i reduces his prob-

(z') = Bj(2") < 1 since 2’ < b. There exists an ¢ > 0 such that player i

ability of winning only by (at most) an infinitesimally small amount, but strictly
decreases his expected cost of effort. Thus ¢ does not bid in (z/,2” + ¢) . Since B;
has no mass points, we have B; (z') = B; (" + ¢) . But then j prefers bidding «’ over
any bid in [2”, 2" + €] and thus we must have B; (2" +¢) = B; ('), contradicting
2" =max{z|B; (x) = B; (') }.

A.2 Proof of Lemma 2

First we show that no type of player 2 randomizes. Suppose to the contrary that
some type vh of player 2 does randomize. Let z; (x5) be the infimum (supremum)

of the support of the distribution of bids made by type v5. For any z > x;,

By (@) vy — x> By (x)vy — x (18)
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for otherwise v}, could gain from shifting probability mass to z.'® From (18),
x— 21> (By(x) — By (7)) vy

Since B is strictly increasing, for any v < v, we have
x— x> (By(x) — By (1)) v}

or

By (z)vy — x> By (x)vy — x

i.e. type vj strictly prefers to bid z; over bidding x. Therefore, for all v] < v},
the supremum of the support of the distribution of bids made by type v§ must be

weakly smaller than z;. Similarly, for all v}’ > v5, the infimum of the support of the

distribution of bids made by type v}’ must be weakly higher than xj. Therefore only
type vh bids in (z;, xp) . Since the distribution of types, F), is continuous, it follows
that Bs is constant on (x;, xp,), contradicting Lemma 1.

It follows that player 2 plays a pure strategy [, : [0,1] — [0,00). Moreover, 3,
is weakly increasing. Now suppose that v§ < v§ and S, (vh) = By (vh). Since 3, is
weakly increasing, it follows that (3, (ve) = B, (v4) for all vy € [v),v]. Therefore By
has an atom at (5, (v5) (the size of the atom is at least F' (vy) — F'(v})). Since By is
continuous except possibly at zero, this atom can only be at (3, (v}) = 0.

This shows that there is a ve [0, 1) such that, first, for all vy <v, 5, (v2) = 0, and
second, [, is strictly increasing on [v, 1]. Since By is strictly increasing, 3, has to be

continuous as well.

I81f type v} bids z; with strictly positive probability, type v} gains from shifting this probability
mass to z. If type v} bids x; with probability zero, then, for any € > 0, the interval (z;,x; + ¢€)
has positive probability. Suppose that z; > 0. Then B; is continuous on [z, z; + €] by Lemma 1.
Therefore, if (18) does not hold, then for small enough ¢ > 0, By (2) vy — 2z < B; (z)vh — x for
all z € (x;,z; + ¢), and shifting probability mass from the interval (x;,2z; +¢) to x is beneficial.
It remains to consider the case z; = 0. Then B; may have a discontinuity at x;. However, B
is right-continuous. Therefore, if (18) does not hold at 2; = 0, then for small enough ¢ > 0,
B (2) vy — z < By () vy — z for all z € (0,¢), and shifting probability mass from the interval (0, &)
to x is beneficial.
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A.3 Proof of Lemma 3

We first show that B; is differentiable at any z, € (0,5) . Let vy = B3 () and
consider a strictly increasing sequence vy with v§ € (v,1) and lim,, ., v5 = vy. For
notational brevity let 23 = (5 (v§). Then 2% is strictly increasing and lim,,_,o, 23§ =
To.

Bidding z7 is at least as good as bidding x5 for type v%, thus

By (wy) vy — x5 > By (w2) vy — 29

or .
> v;"‘Bl (w2) — Bnl (23)
Taking lim sup, we get
B — By (2% 1
lim sup ( 1 (22) i(%)) < —. (19)
To — Ty V2

Similarly, for type vq, bidding x5 is at least as good as bidding z%. Thus
B1 (1'2) Vo — T2 Z Bl (ZL‘S) Vg — l’g

Rearranging and taking lim inf, we get

lim inf (Bl (r2) = By Wg)) > 0—12 (20)

Ty — Ty

From (20) and (19), it follows that

<B1 (2) — By ($3>> _ 1

- J—

lim

x5 Tz V2

A parallel argument, that considers a strictly decreasing sequence vy with limit vy,

shows that
<B1 (172) — Bl (ZL‘721>> _ 1

Ty — Xy U

lim
zy T2
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Thus B; is differentiable at vy, with

dBl (I‘)
dx

T=x9

We next show that the bid distribution B, is differentiable. Since B is strictly
increasing on (0, l_)), player 1 must be indifferent between all bids x € (0, 5) . Fix one
xr, € (0, l_)) . Consider a sequence z{ with limit x; and with 2} € (0, Z_)) for all n. For

all n, player 1 is indifferent between bidding x} and bidding z; :

Bg (.T?) V1 — I? = BQ (Il) V1 — 1

Rearranging,
By (1) = By (af) 1
Ty — 2} U1
Thus
lim (32 (71) — Bs (ff)) 1
Nn—00 T, — x? U1

and therefore B, is differentiable.
Since F' is differentiable by assumption, it follows that 5, must be differentiable

as well.

A.4 Proof of Lemma 4

(i) Suppose to the contrary that «; > 0. Then as = 0 by (6) and thus

1
v
B (8,(1) = [ 2P () + a1 > 1,
0
contradiction. Thus a; = 0. Inserting a; = 0 in (7), we get (9). The left-hand side
of (9) is strictly greater than one for ap = 0, it strictly decreases in s, and is equal
to zero for ay = 1. By continuity, there is a unique o € (0,1) such that (9) holds.
Part (ii) can be proven similarly. From (i) and (ii), it follows that a; and a are

uniquely determined.

30



A.5 Proof of Proposition 1

Uniqueness follows from the discussion in the main text. It remains to establish that
the strategies are an equilibrium. Consider player 1 and suppose player 2 follows

(12). The expected payoff of player 1 for a bid z; € (0, (1 — as) v4] is equal to
Efuy (z1)] = F (85" (z1)) v1 — 1

since 3, exists on (0, (1 — ay)v1]. Inserting (12), we get E [u; (21)] = ayv; for all
z1 € (0, (1 — ag)v1]. Moreover, if (8) does not hold, then ay = 0 and player 1 has
a payoff of zero; thus in this case he is indifferent between all z; € [0, (1 — a3) vq].
Bidding more than (1 — aw) v; is always suboptimal. Thus (11) is a best response.
Now consider player 2 and suppose he has a valuation vy. Given By, his payoft

By (x) vy — x is strictly concave in his bid x since

0? ¢ 1 7 1
Bl (z) = — / ———dz | = ———F <.
ox? \ Jo p—1 (z+a2v1> 0x -1 <x+a2v1>
U1 v1
If vy > F~! (), then the first-order condition (3) describes the unique maximum.
If vy < F~! (ay), then for all zo > 0,

B;(J@)Ug—lz vy — 1 < 0.

F-1 (x2+azvl)
v1
Therefore, (12) is a best response.

A.6 Proof of Proposition 2

Suppose player j does not acquire information. If i does not acquire information
either, he gets an expected payoft of zero by Fact 1; if i acquires information, his

payoff is described by (17). Hence, i’s best response is to acquire information if and
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only if ¢ is smaller than

¢im /V1 / <%ﬂv)v - E(V)) dF (v;) dF (v;) (21)

where, from (15), v= F~! (o;;) > 0, and v is defined by

/ BV e (v) = 1. (22)

(%

Note that from (22), it follows that v< E (V).
Now suppose that j acquires information. If ¢ remains uninformed, he gets
F(v)E(V), as in (16). If i acquires information, his payoff is described by (14).

Thus, i’s best response is to acquire information if and only if ¢ is smaller than
1 Vi v
¢im / / (vi — vy) dF (v;) dF (v;) — / E(V)dF (v) (23)
0o Jo 0

where again v is defined by (22).

Let

¢ = By, (max {v;,v;}] — E,, [max{E (V) ,v;}].

i,Uj

(In Appendix A.7, we will show that in the first best, both players acquire information

if and only if ¢ < ¢.) The following lemmas will be used repeatedly below.

Lemma 5

c':/ol /0 (vi—vj)dF(vj)dF(vi)—/OE(V) (E(V) = v;)dF (v;) > 0.
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Proof. For the equality,

d = E,,, max{v;,v;}] — E,, [max{E (V) ,v;}]

_ / / wdF (v) dF (v;) / / v,dF (v;) dF (v;)
_ / M By aF () - [E o, i @)
_ / / ) dF (v;) dF (v;) — /OE(V) (£ (V) —v;) dF (vy).

The inequality ¢ > 0 follows from Jensen’s inequality. To see this, define

1
g (v;) ::/ max {v;, v, } dF (v;) .
0
Since g is strictly convex in v;,
Ey; g (vi)] > g (Ey; (v:))

or equivalently
By, max {v;, v;}] > E,; [max {E (V) v;}].

n
Lemma 6 (i) ¢> ¢ and (ii) ¢ >c.

Proof. (i) Using Lemma 5,

B(V)
c—d = /0 (E (V) —wv;)dF (vj) /E V) dF (v))

E(V)
= / (E (V) —wv;)dF (vj) / v dF (v;)

v
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Adding and subtracting both fE( ) vdF (vj) and fYE(V) \_/El()‘_/) dF (v;) yields

J

c—c = /Ov(y—vj)dF(Uj)—l—/VE(V) <E(V)—vj+y_YE<V))dF(Uj)

Uj
E(V) BEV)
—/ vdF (Uj)+/ yﬂdF (vj) -
0

v Uj

First observe that

/VE(V)VEG/)CZF W) = v [/Vl EWV) p (v;) — /1 EWV) p (Uj)}

v Uj v oY EWV) Yj
1
= v [1—/ E(V)dF (vj)]
EWV) Yj

where the second equality uses (22). Therefore,

v E(V) — ) (v, — v
c—d = /O(Y—Uj)dF(Uj)+/ EV) = v) _)dF(Uj)

v Uj

. /OE(V) 0F (0] /1 E(V)dF (v;)

E(WV) Yj

+v

which is strictly positive.

(ii) With (21) and (23), ¢—c is equal to

/1/ (E V)v
/ / V) dF (v;) dF (v:) / / vi — v) dF (v;) dF (1)

- / h(v;) dF (v;)

0

F <v>) 0F (v)) dF (v,)

where



if v; <v, and

Uj

v = (E WM’—E(V)) aF (1)

+ [ BV @) - [ - )ir )

if v; >v. Then, it is sufficient to show that h (v;) > 0 for all v; € [0, 1].
Case 1: v; <v. From (22), it follows that v< E (V'), and thus

/ E(V)dF (;) > / 0idF (v)) > / (or — v;) dF (v;).
0 0 0
Case 2: v; € (v, E(V)]. Here, h (v;) is equal to

/vi (vi —v;) (E(V) _Uj)dF(Uj) —I—/V (E(V) = v +v;) dF (vy).

Uj 0

The first term is strictly positive because v; < v; < E (V) and v; >v. The second
term is strictly positive as v; < E (V') and, by (15), v> 0.
Case 3: v; € (E(V),1]. Since v is independent of v;, we get

) = [ EVare) - [Care),

W) = 2P ) F ),

Uj

hence, h is strictly concave for v; > E (V). Moreover, as v; — 1, b’/ converges to

/VlE<V)dF(vj)—/OldF(sj):1—1:O.

Uj

(The first integral is one by (22).) Thus, A’ must be positive for all v; € (E (V), 1)
and thus A (v;) > h (E (V)) > 0 where the last inequality follows from case 2. m

We are now in a position to prove Proposition 2. From Lemmas 5 and 6, it

follows directly that ¢ >c> 0. Thus, (i) if ¢ <c¢, information acquisition is strictly
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dominant. (ii) If ¢c< ¢ < ¢, a player invests in information only if the opponent
remains uninformed, and there exist two asymmetric equilibria where exactly one
player invests. Moreover, there is a symmetric equilibrium where both players invest
in information with probability p = (¢ — ¢) / (¢ — ¢) : if player i acquires information,
he gets

(1=p)C—=c)+p(F ) E(V)+c—c)=pF(v)E(V)

which is equal to his payoff if he remains uninformed. Thus, ¢ is indifferent be-
tween investing and not investing in information. Moreover, for all p that are strictly
smaller (greater) than this critical value, i strictly prefers (not) to acquire informa-

tion. Finally, (iii) if ¢ > ¢, not investing is strictly dominant.

A.7 Proof of Proposition 3

If the social planner does not acquire information, welfare equals £ (V). If she

acquires information about the valuation of one player, welfare is equal to
E,, [max{E (V) ,v;}] —c.

If the social planner acquires information about both players, welfare equals

By, v, [max {v, v;}] — 2c.
As above, let
¢ = By, o, [max {v;,v;}] — E,, [max {E (V) ,v;}]. (24)
Moreover, let
' = B, [max{E(V),v} —E(V)

_ / (vi — E (V) dF (u;). (25)

E(V)

Lemma 7 (i) 0 < ¢ < ¢ and (i) ¢ <c and ' < ¢c.
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Proof. (i) In Lemma 5, we have already shown that ¢ > 0. Moreover, using Lemma

5,

¢ = // vi — vy) dF (v;) dF (v3) — /E(V)(E(V)—v])dF(v])

= A /0 (v; — E(V))dF ( UJ )dF (v;) / / —Uj dF(Uj)dF(UZ)
[ ) varearw)

- /01 /0 (UZ-—E(V))dF(vj)dF(vi)+/ElV /EV (E (V) = v;) dF (vj) dF (v;)

SO V) JE(V)
_/0 / (E(V) = v;) dF (v;) dF (v;)
which is strictly smaller than
/01 /O (vi — E (V) dF (v;) dF (v,) </El(v) /0 (vi — B (V) dF (v;) dF (v;)
< /El(v) /01 (vi — E (V) dF (v;) dF (v5) = "

(ii) The first inequality is Lemma 6, part (i). Moreover, by (21) and (25), ¢ > ¢’

is equivalent to

[

By (17), the left-hand side is i’s ex ante expected payoff if ¢ acquired information and

_E (V)) dF (v;) dF (v5) > / (vi — B (V) dF (v;).

E(V)

J remained uninformed. Since, in this case, j never bids higher than his expected
value, the LHS must be weakly higher than the RHS, because the latter is the payoff
i could ensure by bidding E (V) for all types v; > F (V') and bidding zero otherwise.
It remains to show that for some realizations of v;, ¢ can do strictly better. Note first
that F~! (q;) =v> 0, i.e. j’s maximum bid is b = (1 — a;) E (V) < E (V). Hence,
for all realizations v; € ((1 —a;) E (V), E (V)), i can ensure a strictly positive payoff

37



by bidding (1 — «;) E (V), and hence the LHS must be strictly larger than the RHS.

|

The inequalities in (i) allow us to characterize first best information acquisition:
if ¢ < ¢, both should acquire information; if ¢ € (¢, "), exactly one player should
acquire information; finally, if ¢ > ¢”, no one should. With (ii), we can compare
equilibrium investments and first best investments (see Figure 2 in the main text).
If ¢ < ¢, both players invest as in the first best. If ¢ € (¢, min {c,’}), both players
acquire information although exactly one player should. If ¢ € (min{c,c"},c"),
in the asymmetric equilibria exactly one player acquires information, as in the first
best. If ¢ € (", ¢), at least one player acquires information, but neither of the players
should. Finally, if ¢ > ¢, no player invests, as in the first best. Therefore, the number

of players investing in information is higher than the first best.

A.8 Proof of Proposition 4

If no player invests in information, both get an expected payoff of zero. If only
player ¢ invests, i’s expected payoff is E,, [max{v; — E(V),0}] — ¢, while j gets
E,, [max{E (V) — v;,0}]. If both players acquire information, each of them gets
By, v, [max {v; — v;,0}] —c.

Now suppose that j remains uninformed. Player ¢’s best response is to acquire
information whenever ¢ is smaller than E,, [max {v; — £/ (V'),0}] which, with (25),

is equal to ¢”’. If j acquires information, i invests whenever c is smaller than
By, v, [max {v; — v;,0}] — By, [max {E (V) — v;, 0}]

which, by Lemma 5, is equal to ¢. Since 0 < ¢ < ¢, both players (no player) acquire
information if ¢ < ¢ (¢ > ¢”). If ¢ € (¢, "), there are two equilibria where exactly
one player acquires information, and a mixed strategy equilibrium where players

acquire information with probability (¢” —¢) /(" — ).
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A.9 Proof of Proposition 5

(i) We first analyze whether there can be an equilibrium where both players acquire

information with probability 1. If this is the case, then they bid as in Fact 2 and

// vi — v3) dF (v;) dF () —

Now suppose that ¢ deviates and remains uninformed. Then, his optimal bid is as if

both get a payoff of

he had a value of F (V) which leads to a deviation payoff of

E(V)
/0 (E (V) = v;) dF (v;).

Hence, it pays off to save the cost of information whenever c is larger than

/ / v;) dF (v;) dF (v;) — /OE(V)(E<V)—vj)dF(vj)

which, by Lemma 5, is equal to ¢’. Thus, if and only if ¢ < ¢/, an equilibrium exists
where both players acquire information.

(ii) Now suppose that both players do not invest in information with probability
1. Then, both get zero payoff. If ¢ deviates and acquires information, his optimal
bid is zero if v; < E (V) and E (V) if v; > E (V). (The type v; = E (V) is exactly
indifferent. Thus, lower types prefer a bid of zero, and higher types prefer a bid at
the upper bound of the support of j’s bids.) The deviation payoff is

[ w-BV)are) -

E(V)

Therefore, if and only if ¢ is larger than ¢ (from (25)), there is an equilibrium where

no player acquires information.
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