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Abstract

We consider the case of an upstream seller who works to improve an asset that has

been specialized to a downstream buyer’s needs. The buyer then makes a take it or leave

it offer to the seller about how the future surplus should be split. We assume that the

seller from the outset has private information about the fraction of the surplus that he can

realize on his own, and show that this leads to higher investment compared to the complete

information case. This positive effect on investment is countervailed by the occurrence of

inefficient separations, which result when the buyer mistakenly tries to call the seller’s bluff

with a low offer.

JEL classification: D23, D82

Keywords: signaling, relationship-specific investment, incomplete contracts, outside op-

tions

1 Introduction

In many industries firms rely on the relationship-specific investments of their suppliers, yet

the subcontractors are small firms compared to their customers, and potential customers are

few. If the bargaining power lies entirely with the customer, how are the necessary investments

induced in this environment in which the customer dictates the rules and suing for payment

is unthinkable, i.e., how do the firms overcome a potential hold-up problem?1 First, it seems

vital for small suppliers to have many potential customers such that in case of separation

they can make up for the loss by dealing with others. Second, the customer will likely not
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1For early work on the hold-up problem see Williamson (1975) and (1979), Grout (1984), and Hart and Moore

(1988).
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have enough information about the position of the supplier in the market to fully exploit her

superior bargaining position.

In this paper, we explore the consequences of asymmetric information about the supplier’s

opportunities outside the relationship. We show that the resulting information rents may stim-

ulate innovation if the buyer has no other way to commit to adequately reward the supplier’s

investment. Moreover, there is a signaling motive in the investment choice. If the best alterna-

tive use of the relationship-specific asset is private information to the supplier, the buyer will

try to deduce this outside option from the level of investment. If the supplier is very reluctant

to invest, it seems likely that he fears to be held-up because of a low outside option, and the

buyer will then indeed make a low offer. If instead the supplier is very eager to invest, the

buyer may belief that the private value from the investment is high, hence she has to make a

high offer. Now the possibility arises that a supplier with a low outside option mimics the type

with the high outside option and invests more. This effect may mitigate the hold-up problem

and lead to higher investment.

The baseline model that we use in this paper is a simplified version of the property rights

model developed by Grossman and Hart (1986) and Hart and Moore (1990)2. An upstream

seller invests into an asset, which can generate a return within the relationship with a down-

stream buyer. It is not possible to write detailed long-term contracts, instead the buyer later

makes a take-it-or-leave-it offer to the seller and thereby determines how the return to invest-

ment is shared. We assume that the seller owns the asset, so that he can threaten to use it for

a different purpose. His bargaining position then depends on how specific the asset is to the

relationship with the buyer.

An investment is called general if there is a competitive market that fully appreciates the

generated return, while a specific investment loses a large part of its value if it is used outside a

particular relationship.3 For example, subcontractors that produce an input for a downstream

firm will have some incentives to innovate if they are granted ownership of the asset that they

work to improve, or a legal title to the innovation that they develop. As another example,

consider an employee who may increase her human capital in the safe knowledge that it cannot

be taken away from her and has a value for other employers as well. Nevertheless, if there

is a large discrepancy between the asset’s value in the current relationship and the next best

alternative, investment incentives may be diluted for fear of opportunistic behavior of the other

party.

Many investments in machines or human capital are a mix of specific and general investment,

2See also Hart (1995), Farrell and Gibbons (1995), Chiu (1998), and de Meza and Lockwood (1998).
3In the terminology of Klein, Crawford and Alchian (1978), general investments create no appropriable rents,

while the quasi-rents that are generated by specific investments can partly be appropriated by the other party

in the relationship. See Becker (1964) for the implications of general and specific investment in the context of

human capital acquisition.

2



where the degree of specificity determines the severity of the hold-up problem. In fact, how

specific an investment is also depends on characteristics of the investing party, e.g., on its access

to the market for the asset or its ability to transform the asset to general use; and moreover

these characteristics are likely to be unobservable. For a worker who has the entrepreneurial

ability to use his training to start his own business, all training might be considered general.

In contrast, for a worker who has to rely on finding a job in a similar business the specificity

of the investment depends on his cost of switching jobs. Entrepreneurial ability and cost of

switching jobs are certainly private information to the employee, and similarly, for a seller of a

good (like a house), his own consumption value of the good is usually not known to a potential

buyer. In this paper, we make the assumption that the degree of specificity, as captured by the

best alternative use of the investment, is private information to the seller.

We find that this game, in which the seller tries to signal a high outside option with specific

investment, has an essentially unique equilibrium. All perfect Bayesian equilibria lead to the

same payoffs and distribution of investments. If the seller’s outside option is known to be

relatively low compared to the value of the investment to the buyer, all types of sellers invest

the same amount. They choose the investment level that the type with the maximum outside

option would also choose under symmetric information. Clearly, in such a pooling equilibrium

investments and joint surplus are higher than in the case with complete information.

In general, the equilibrium is a hybrid, or semi-pooling, equilibrium. There is a cut-off

type such that all sellers with a lower outside option pool on this type’s strategy. This cut-off

type, and all higher ones, mix between their own and all higher types’ complete information

investments. All these types hence separate in the sense that they choose different strategies.

Because of the randomization, however, a chosen investment does not give away the type ex

post. An observed investment could have been chosen by any type who would invest less under

complete information. While the information asymmetry leads to higher investment, this effect

is traded against the inefficiency generated by the non-investing party trying to appropriate

part of the information rents. How the joint surplus compares to the case with complete

information therefore depends on the parameters of the model.

That in our model relationship-specific investment can be used as a signal for an outside

option distinguishes this paper from the rest of the literature. The idea that private information

about outside options can lead to rents that foster investment has been addressed before, e.g.

in Malcomson (1997) and Sloof (2008). In these papers, the outside options are realized after

investment decisions have been made. Although signaling plays no role in such a model, the

models yield similar qualitative predictions: in comparison to the standard hold-up model,

which excludes all ex post frictions and focuses on inefficient preparations, there are now

greater inefficiencies ex post and less ex ante. In particular, investment levels can be too high

relative to their later use. A characteristic of the signaling model, in comparison, is a “bluffing”
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element that leads to an equilibrium in mixed strategies.4

Signaling models by now have a long tradition in economics, starting with Spence (1973),

who models education as a wasteful signal of productivity. The general idea is that it can

be possible to reveal private information like productivity or quality by means of signals (like

education, warranties, or high prices), if the cost of the signal differs across types. In contrast,

in the outside option signaling game the cost of investment depends only indirectly on types.

Since all types of sellers have the same cost of investment, types only matter if the uninformed

party makes low offers. In particular, different types of sellers would choose different levels of

investment if information was symmetric, while in the original Spence model the wasteful signal

would then not be used at all.5 More related to the present paper is recent work on signaling

that assumes productive investment and shows that signaling can lead to higher investment

and even to a Pareto improvement. This includes Hermalin (1998), in which a leader may

signal a worthwhile project by exerting high effort, and Daughety and Reinganum (2009), in

which a signaling motive helps a team to overcome a free-riding problem.

The remainder of the paper is organized as follows. In Section 2, the outside option signaling

game is introduced. In Section 3, we first go through the special case of two possible types

in order to illustrate the kind of equilibria that we find in the general case of a finite type

space, which we analyze in Section 4. In Section 5 we look at the case that all types are drawn

from an interval of the real line. We analyze both these cases because it is much more natural

to think about the problem using a finite type space, but the solution has a more tractable

form in the limit of an atom-less distribution. We also discuss how changes in the timing or

information structure would change the outcome of the game; in particular we analyze a version

with commitment in Section 6. Proofs not given in the text can be found in an appendix.

2 The model

The model describes an interaction between a downstream buyer-manufacturer and an up-

stream supplier who has to tailor his production processes to the needs of the buyer.6 In the

game with complete information, the seller chooses an investment i ∈ I, at cost c(i), to improve

the value of an asset/good to be traded. If seller and buyer work together, they can generate

a value of v(i), while the value of the good or asset to the seller without the buyer is only the

4This outcome of an equilibrium in mixed strategies due to a commitment problem is reminiscent of equilibria

in hold-up problems with asymmetric information as studied in Gul (2001) and Gonzales (2004).
5That by definition signaling cannot lead to too little education changes, however, if one allows education to

be productive (see Weiss (1983)).
6As explained in the introduction, the model is very abstract and therefore fits a variety of settings, including

an employer-employee relationship.
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fraction θv(i), θ ∈ Θ ⊂ [0, 1].7 The buyer observes the investment and the value of the asset

and makes an offer about how to share the surplus with the seller. If the seller rejects the offer,

he gets θv(i) from taking his outside option, while the buyer is left with zero. If the seller

accepts, they split the generated surplus as proposed by the buyer.

Throughout the paper, we make the following assumptions:

Assumption 1. We assume that I = R+, that the functions v and c are differentiable, in-

creasing, and concave resp. strictly convex. Furthermore v(0) ≥ 0, c(0) = 0, c′(0) = 0, and

limi→∞ c′(i) = ∞.

The buyer has no way to commit to a particular reaction or to write a contract that

conditions on i or v(i) or that specifies a particular bargaining game. Instead she makes a

take-it-or-leave-it offer to the seller after having observed the investment. If θ is the type of the

buyer, i the seller’s investment, o ∈ [0, 1] the buyer’s offer, expressed as a share of the surplus,

and a ∈ {0, 1} the acceptance decision of the seller, then the seller’s payoff is given by

(ao + (1 − a)θ)v(i) − c(i)

and the buyer’s payoff by

a(1 − o)v(i).

This game can be easily solved by backward induction. The seller will accept all offers o > θ,

and since the buyer can always offer a little bit more, we assume that the seller accepts all

offers o ≥ θ8. The buyer will offer a share θ of the realized surplus, which the seller will

accept, leaving him a profit of θv(i) − c(i) from investment i. In anticipation of this return to

investment the seller invests

ic(θ) = arg max θv(i) − c(i),

which given Assumption 1 always exists and is unique. Therefore also the inverse of ic exists,

which we denote by θc : ic(Θ) → Θ. The seller’s payoff under complete information, in

dependence on the outside option θ, is denoted by

uc(θ) = max
i

θv(i) − c(i).

Note that the derivative of uc is equal to v ◦ ic, and in particular, uc is increasing and strictly

convex.9

7There does not need to be a deterministic relationship between the value and the investment. As long as the

downstream party can observe the investment and the value, the analysis would extend with some notational

changes to the case that v(i) represents the expected value of investment i.
8This holds for all types except θ = 1. Since the buyer makes no profit on this type, it does not matter

whether we assume that this type rejects or accepts an offer of 1.
9We could alternatively make this, or other conditions from which it follows, our assumption. That is,

investment decisions can be allowed to be multi-dimensional or discrete as long as the optimal investment levels

lead to an increasing and strictly convex function u
c.
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1 2 3 4

Seller learns
outside option

θ ∼ F

Seller chooses
investment i ∈ I

Buyer observes i

and the value v(i),

and makes an offer o

Seller accepts (a = 1)

or rejects (a = 0)

Figure 1: Timeline of the outside option signaling game.

In the game with incomplete information, θ is private information of the upstream seller.

The sequence of events is illustrated in Figure 1. We assume that first the seller learns his

type θ, which is drawn from a type space Θ ⊂ [0, 1] according to a distribution function F. We

have to make assumptions on F (like log-concavity), but these will be introduced separately

in later sections. The buyer only knows the distribution of the outside option, but not the

realized value. She observes the seller’s investment, forms beliefs about the outside option and

then makes a take-it-or-leave-it offer that is optimal for her given her updated beliefs about

the acceptance threshold of the seller. We are interested in perfect Bayesian equilibria of this

game, and in any such equilibrium a seller of type θ will accept an offer if and only if it is

greater than the outside option. We therefore fix this acceptance decision, the same as in the

game with perfect information, as the outcome of the subgame following the buyer’s offer. In

the remainder of the paper we then deal with the following payoff functions: if the seller is of

type θ and invests i, and the buyer makes an offer o, then the seller gets max(θ, o)v(i) − c(i)

and the buyer gets (1 − o)v(i) if θ ≤ o, and 0 else.

A strategy of the seller specifies an investment for each type, possibly using a randomization

device to mix over a set of investments. A strategy of the seller is a function Q : Θ× I → [0, 1]

such that Q(.|θ) = Q(θ, .) is the distribution of investments that a type θ chooses. A strategy

for the buyer maps investments into a share of the surplus that she offers to the seller, where

she as well may randomize over a set of offers. While a pure strategy is given by a function from

investments I to offers in [0, 1], we write a mixed strategy as a function P : I × [0, 1] → [0, 1],

where Pi(o) = P (i, o) is the probability that the buyer’s offer, when observing investment i, is

less or equal to o.

If the buyer’s strategy is given by P , the seller’s expected profit from choosing investment

i is

U(P, i, θ) = v(i)

∫

max(θ, o)dPi(o) − c(i),

and given a strategy Q of the seller, the buyer’s expected payoff from the pure strategy o : I →

[0, 1] is

V (Q, o) =

∫ ∫

[θ≤o(i)]
(1 − o(i))v(i)dQ(i|θ)dF (θ).
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3 Example: Two types

In this section, we illustrate the effects that are at work in the model for the case that there are

only two possible types, 0 < θL < θH < 1. Let fL denote the probability that the outside option

is low, and fH = 1−fL the probability that it is high. The analysis of the general model in the

next section involves some technicalities that are absent in this special case, which nevertheless

conveys much of the intuition.

We start with the buyer’s offer decision. It is clear that offering any share greater than θH

ensures acceptance, and among those offers θH is the most profitable for the buyer. Any offer

strictly lower than θL is sure to be rejected, and is thus weakly dominated by offering θL. Offers

inbetween θL and θH lead to only the low type accepting, with θL being the cheapest with this

outcome. Therefore, the buyer essentially chooses between offers θL and θH according to her

beliefs. She will offer θL if she beliefs that the probability of a low outside option is greater

than 1−θH

1−θL
.

Next, put yourself in the shoes of a high type seller. This seller knows that for any invest-

ment i he will get θHv(i) ex post, given that it is never optimal for the buyer to offer more

than θH . Therefore, he invests iH = arg max θHv(i) − c(i). His payoff is uc(θH), which is not

surprising as there is no incentive to mimic lower types in this game. Now that we know the

strategy of the high type in any possible equilibrium, it is clear that a seller with a low outside

option will reveal his type if he invests any amount different from iH . Therefore, this type

faces a choice between iL, which yields a payoff of uc(θL), and iH . Since uc(θH) > uc(θL), a

separating equilibrium cannot exist. The best the low type can hope for is to pool with the

high type and get uc(θH). This will happen if the buyer indeed has an incentive to make a

generous offer in case both types invest high with probability one. If it holds that fL ≤ 1−θH

1−θL

then the unique equilibrium of the game is the pooling equilibrium.

If the pooling equilibrium does not exist, the only possibility left is a hyprid, or semi-

pooling, equilibrium in which the low type mixes between the low and the high investment.

For the low type to be indifferent between low and high investment, the probability of offer θL

following investment iH must be such that the low type’s payoff from choosing iH is equal to

uc(θL). The probability that has this property is

pHL =
uc(θH) − uc(θL)

(θH − θL)v(iH)
.

To make the buyer indifferent between the high and the low offer, the low type seller has to

choose the low investment with probability

qLL =
(1 − θH) − fL(1 − θH)

(θH − θL)fL

.

This equilibrium exists if and only if the pooling equilibrium does not exist. This insight,

that depending on the distribution there is either a pooling equilibrium or an equilibrium with

mixed strategies and partial pooling, remains valid in the general case.
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Note that the pooling equilibrium becomes more likely the higher the fraction of high types

is, and the closer together the two types are. It is also true that increasing the high type’s

value, or even increasing the high and the low value by an equal amount, can turn a pooling

equilibrium into a semi-pooling equilibrium and thereby decrease the ex ante expected payoff

of the seller. Interpreting the outside option as the fraction of the asset that he owns, this

means that giving the seller more property rights can sometimes be detrimental to his payoff.

4 Finite type space

In this section, we assume that Θ = {θ1, ..., θH} with 0 ≤ θ1 < θ2 < ... < θH < 1.10 We

shortcut ic(θk) =: ik. Let (P,Q) be a perfect Bayesian equilibrium of the outside option

signaling game. In the following, we will derive properties of (P,Q), in order to eventually

arrive at a characterization of all equilibrium outcomes. Let I∗ be the set of investments that

are chosen with positive probability in the equilibrium (P,Q), and let Θ∗(i) denote the set

of all types that choose i ∈ I∗ with positive probability. We denote by u∗(θ) the equilibrium

payoff received by a seller of type θ, i.e., with this notation we have for all i ∈ I∗ and θ ∈ Θ∗(i)

that u∗(θ) = U(P, i, θ).

Note that u∗(θ) ≥ uc(θ), because a type θ can always guarantee himself the payoff uc(θ)

independent of the buyer, by investing ic(θ) and taking his outside option. Similarly, because

the seller’s payoff is weakly increasing in θ for all offers and investments, U(P, i, θ) and u∗(θ)

are weakly increasing in θ. A higher type could always play a lower type’s strategy and get at

least the same payoff as that type.

In the following, we will first show that if an investment i may occur at all in equilibrium,

then it is chosen with positive probability by the type θc(i) that chooses i under symmetric

information, and by none of the higher types. Then, in Lemma 2, we show that investing i is

optimal for all lower types, i.e. those between θ1 and θc(i). Finally, in Prop. 5 we will answer

the question which investments will be chosen in equilibrium. The reader who is not interested

in the proofs may skip the lemmas leading to Prop. 5 which contains the main result of this

section.

When the buyer observes an investment i ∈ I∗, she updates that the seller must have an

outside option in Θ∗(i). The share she offers will therefore also lie in Θ∗(i) ⊂ {θ1, ..., θH}, and

it will never be more than the highest possible type would accept, i.e. the offer is not higher

than θm = max Θ∗(i). The profit received by type θm from choosing i is therefore equal to

θmv(i) − c(i), which would be strictly smaller than uc(θm) if i 6= im. Therefore i = im, which

means that if an investment i occurs in the signaling equilibrium, then θc(i) is the highest

10The assumption θH < 1 is made only for simplicity. We could easily add types θ ≥ 1 who would always

invest i
c(θ) and get no acceptable offer from the buyer. That is, a type θ ≥ 1 seller would neither mimic other

types nor be mimicked himself.

8



type to choose this investment. In particular, only investments ik, k = 1, ...,H can occur in

equilibrium.

We will sometimes use the one-to-one relationship between θk and ik and express everything

in types. This highlights that in this model types are distinguished by their investment in the

complete information case. We can also identify the buyer’s offer with the type that just accepts

it, and then write the equilibrium strategies P and Q as matrices. An entry pkl in the matrix

P stands for the probability of offer θl when investment ik is observed, and an entry qkl in Q

is the probability of type k investing il, or “mimicking” type l. Since we have shown that in

any equilibrium the mixed strategy of type θk has support {ik, ..., iH} and the buyer’s random

offer following investment ik takes on values in {θ1, ..., θk}, equilibrium strategies P and Q are

triangular matrices. Equilibrium conditions for strategies (P,Q) in matrix form then look as

follows:

(i) qkl > 0 implies that

l ∈ arg max
m

v(im)
m
∑

j=1

pmj max(θj , θk) − c(im),

(ii) for each l with il ∈ I∗, plj > 0 implies that

j ∈ arg max
m

(1 − θm)
m
∑

k=1

fkqkl.

We will show next that the set of best responses to P of a given type θk includes all

investments that are greater or equal than ik and are chosen at all in the equilibrium. In other

words, if an investment ik is chosen at all, then it is optimal for every type smaller or equal to

the corresponding type θk.

Lemma 2. For all ik ∈ I∗ it holds that U(P, ik, θ) = u∗(θ) for all θ = θ1, ..., θk.

Proof. We know already that U(P, ik, θk) = u∗(θk). First, we show that the equality also holds

for the lowest type, i.e. that U(P, ik, θ1) = u∗(θ1). To this end, let θl be the lowest type with

this property, i.e., U(P, ik, θl) = u∗(θl) and U(P, ik, θ) < u∗(θ) for all θ < θl. Since no type

below θl chooses ik, the offer following it cannot be lower than θl. Type l’s expected payoff

then does not depend on him being type θl, but every lower type would get the same payoff

when investing ik :

U(P, ik, θl) = v(ik)

∫

o dPik(o) − c(ik) = U(P, ik, θ) for all θ ≤ θl.

Payoff monotonicity then implies that U(P, ik, θ) = u∗(θ) for any type θ ≤ θl, hence l = 1.

Second, we show that for a seller of type θl the investments that are best responses to P

can be found by maximizing Pi(θl−1)v(i) over all i ∈ I∗, where we define Pi(θ0) = 0. More

9



precisely, the claim is

(1) arg max
i∈I∗

U(P, i, θl) = arg max
i∈I∗

Pi(θl−1)v(i) ⊂ arg max
i∈I∗

U(P, i, θl−1).

The claim verifies the lemma, since it implies that

ik ∈ arg max
i∈I∗

U(P, i, θk) ⊂ ... ⊂ arg max
i∈I∗

U(P, i, θ1).

It remains to prove the claim, which we will do by induction. Since we know that U(P, i, θ1) =

u∗(θ1) for all i ∈ I∗, it holds for l = 1 for the appropriate definitions. Assume the claim is true

for type l − 1 ≥ 1. For all i ∈ I∗ with u∗(θl−1) = U(P, i, θl−1) type θl’s payoff is

(2) U(P, i, θl) = u∗(θl−1) + (θl − θl−1)Pi(θl−1)v(i).

while for any i′ ∈ I∗ with U(P, i′, θl−1) < u∗(θl−1) it holds that

(3) U(P, i′, θl) < u∗(θl−1) + (θl − θl−1)Pi′(θl−1)v(i′).

Using the induction hypothesis, we have that for any such i and i′

Pi′(θl−1)v(i′) = Pi′(θl−2)v(i′) ≤ Pi(θl−2)v(i) ≤ Pi(θl−1)v(i),

hence we have shown that U(P, i′, θl) < U(P, i, θl). The remainder of the claim follows easily.

To summarize, we have shown so far that in any equilibrium, while there may be investments

that do not occur at all, every investment that does occur is chosen by the type that would

invest the same amount with symmetric information. Furthermore, all lower types’ payoff from

choosing this investment equals their equilibrium payoff. In order to be consistent with this

structure, the buyer’s strategy must induce all these indifferences. This observation gives rise

to the following lemma.

Lemma 3. For all k and im ∈ I∗ with m > k it holds that

(4) Pim(θk)v(im) =
u∗(θk+1) − u∗(θk)

θk+1 − θk

.

Moreover, for all im, ik ∈ I∗ with m ≥ k it holds that pmk > 0.

Proof. The first claim follows from the proof of Lemma 2, because there we had that for all

im ∈ I∗ with m > k it holds that

u∗(θk+1) = u∗(θk) + (θk+1 − θk)Pim(θk)v(im).

To show the last claim of the lemma, note first that for any type θk with ik ∈ I∗ it must be

true that pkk > 0, because else U(P, ik, θk−1) is too low: if pkk = 0, this payoff is equal to

U(P, ik, θk−1) = ((1 − pkk)θk−1 + pkkθk)v(ik) − c(ik) = θk−1v(ik) − c(ik) < uc(θk−1).
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Second, assume that for m > k as in the lemma we have pmk = 0. Then

0 = Pim(θk)v(im) − Pim(θk−1)v(im) =
u∗(θk+1) − uc(θk)

θk+1 − θk

−
uc(θk) − u∗(θk−1)

θk − θk−1
,

and hence

uc(θk) = u∗(θk+1)
θk − θk−1

θk+1 − θk−1
+ u∗(θk−1)

θk+1 − θk

θk+1 − θk−1
.

As mentioned before, the function uc is strictly convex. Therefore, and because

θk = θk+1
θk − θk−1

θk+1 − θk−1
+ θk−1

θk+1 − θk

θk+1 − θk−1
,

we have that

uc(θk) < uc(θk+1)
θk − θk−1

θk+1 − θk−1
+ uc(θk−1)

θk+1 − θk

θk+1 − θk−1
.

Hence, pmk > 0.

Now that we have some idea about the offers that the buyer must be willing to make, we

turn to a description of the buyer’s behavior, in order to pin down the seller’s equilibrium

strategy. The details can be found in the proof of the following proposition that describes the

structure of an equilibrium. But first we need more notation and an assumption:

Assumption 4. Let R(θ) := (1 − θ)F (θ) and k̄ := min{k : R(θk) > R(θk+1)}.
11 We assume

that R is strictly concave on {θk̄, ..., θH}.

This assumption implies that θk̄ is a maximizer of the function R. To understand the role

of R, assume for a moment that all types choose the same investment i. Then R(θ) describes

the buyer’s expected share of the surplus v(i) if she makes a take it or leave it offer of θ. The

maximum θk̄ of this function is the offer that she would make in a pooling equilibrium. Can

a pooling equilibrium exist? Since the highest type θH chooses iH in any equilibrium, if all

types pool on the same investment, this must be iH . It follows that there is such a pooling

equilibrium if and only if θk̄ = θH . This suggests that complete pooling is only possible for

types lower than θk̄, and since a separating type could easily be mimicked by a lower type,

equilibria must typically be in mixed strategies.

Proposition 5. If Assumption 4 holds, then any perfect Bayesian equilibrium of the signaling

game must have the following form: No investment below ik̄ is chosen. A type θk with k ≥ k̄

mixes between all investments in {ik, ..., iH}, with expected payoff equal to uc(θk). All types θk

with k ≤ k̄ mix over {ik̄, ..., iH} with payoff uc(θk̄). When observing investment ik, the buyer

mixes between offers in {θk̄, ..., θk}, and her expected payoff from any such offer is (1−θk)v(ik).

Proof. See the Appendix.

11Let θH+1 = 1.
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All equilibria of the outside option signaling game lead to the same payoffs. Refinements to

pin down beliefs following zero probability events are not needed for this result. This is unusual

for a signaling game and is due to the special struture of this game, in which equilibrium

relationship-specific investment is in fact not a good signal for a high outside option. The

types that pool never reveal their outside options, and the others do not improve their payoff

in the signaling compared to what they could get independent of the buyer. Because the buyer’s

offers only matter to a limited extent, beliefs also do not matter as much as in other signaling

games.

From all the indifference conditions that have to be met in an equilibrium we are able to

obtain an equilibrium candidate. Combining Prop. 5 and Lemma 3 yields for all k ≥ k̄ and

m > k

(5) Pim(θk) =
uc(θk+1) − uc(θk)

(θk+1 − θk)v(im)
and Pik(θk) = 1,

as well as for k < k̄

(6) Pim(θk) = 0.

The equilibrium conditions for the seller’s strategy are

(7) (1 − θl)
l
∑

j=1

fjqjk = (1 − θk)
k
∑

j=1

fjqjk for all k ≥ l ≥ k̄

and

(8) (1 − θl)

l
∑

j=1

fjqjk ≤ (1 − θk)

k
∑

j=1

fjqjk for all l < k̄.

Due to the definition of k̄, the latter condition can be fulfilled by defining

(9) qjk = qk̄k for all j < k̄.

Let us further define λk :=
fk(1−θk)(1−θk−1)

θk−θk−1
and λH+1 := 0. Possible values for the qjk are:

qk̄k =
λk − λk+1

R(θk̄)
for all k > k̄(10)

qk̄k̄ = 1 −
λk̄+1

R(θk̄)
(11)

qjk =
λk − λk+1

λj
for all k ≥ j > k̄(12)

Proposition 6. The strategies described in equations (5), (6), (9), (10), (11) and (12) form

an equilibrium of the outside option signaling game.

Proof. See the Appendix.
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An example with three types

We look at an example with three types to illustrate the different kinds of equilibrium and the

uniqueness issue. First, since R(θ) is the buyer’s expected share of the value if all types choose

the same investment and the buyer offers θ, pooling on the investment i3 is an equilibrium if

and only if (1 − θ3) = maxθ R(θ). We write this equilibrium in the matrix form described at

the beginning of this section:

Q =









0 0 1

0 0 1

0 0 1









, P =









1 0 0

0 1 0

0 0 1









.

Note that beliefs out of equilibrium, i.e. after observing an investment i 6= i3, are not pinned

down uniquely. Consequently also the first two rows in P are not uniquely determined.

In case (1 − θ2)F (θ2) = maxθ(1 − θ)F (θ) an equilibrium is of the following form:

Q =









0 q12 1−q12

0 q22 1−q22

0 0 1









, P =









1 0 0

0 1 0

0 p32 1 − p32









Again, the first row of P does not have to be the unit vector. To see how the structure

of Q translates into the condition for R, let µ2 := q22f2 + q12f1 be the probability of i2 being

chosen, which here is the same as the probability of any lower investment being chosen. The

conditions for the buyer are

• (1 − θ3)(1 − µ2) = (1 − θ2)(F (θ2) − µ2) which is equivalent to µ2 = R(θ2)−R(θ3)
θ3−θ2

. This

expression is always less or equal to 1, and it is nonnegative iff R(θ2) ≥ R(θ3).

• (1−θ2)(F (θ2)−µ2) ≥ (1−θ1)(F (θ1)−q12f1) which is equivalent to q12f1 ≥ R(θ1)−R(θ2)
1−θ1

+
(1−θ2)µ2

(1−θ1)

• (1 − θ2)µ2 ≥ (1 − θ1)q12f1 which is equivalent to q12f1 ≤ (1−θ2)
(1−θ1)µ2

Obviously, the last two conditions can only be fulfilled if R(θ1) ≤ R(θ2). If this holds, the

solutions are q12 = (1−θ2)µ2

R(θ1) −∆ for any 0 ≤ ∆ ≤ R(θ2)−R(θ1)
R(θ1) . Thus, in this case the solution is

typically not unique. If we make the restriction q12 = q22, the last two conditions, which state

that the buyer prefers offering θ2 to offering θ1, read

• q12f1 ≥ R(θ1)−R(θ2)
1−θ1

+ R(θ2)q12

(1−θ1) ⇐⇒ 1 ≥ q12

• f1 ≤ (1−θ2)
(1−θ1)F (θ2) ⇐⇒ R(θ1) ≤ R(θ2)

That is, we immediately have a solution, given by q12 = q22 = R(θ2)−R(θ3)
F (θ2)(θ3−θ2) . This is not

surprising, because here the pooling condition (R increasing) holds up to θ2. The proposed
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equilibrium in Prop. 6 also uses this fact. The buyer’s expected profit does not depend on the

values of q12 and q22, only on µ2, which is uniquely defined.

Last, if (1 − θ1)F (θ1) = maxθ(1 − θ)F (θ), then the equilibrium is unique:

Q =









q11 q12 1 − q11 − q12

0 q22 1 − q22

0 0 1









,P =









1 0 0

p21 1 − p21 0

p31 p32 1 − p31 − p32









For the values of the entries, see Proposition 6. The expressions may become complex, that is

why we look at a continuous strategy space in the next section.

We know from Prop. 5 that a strategy of the form

Q =









q11 0 1 − q11

0 0 1

0 0 1









cannot be part of an equilibrium. This can be checked explicitly here, showing that for this

to be an equilibrium it must be true that R(θ1) = maxθ R(θ) and R convex, contradicting our

assumption that R is concave. While it may well be possible to relax this assumption and still

say something about the resulting equilibria, we do not address this question in this paper.

5 Continuum type space

The expressions for the equilibrium strategies will have a simpler form in this section, which

treats the continuum type space as the limit case. Hence, in this section Θ is an interval,

Θ = [θL, θH ]. We assume that F is an atomless distribution on Θ with density f > 0, for which

the derivative f ′ exists.

Assumption 7. F is log-concave.

Analogous to the previous section, we define θ̄ = θH if R′(θ) ≥ 0 on Θ, and else

(13) θ̄ = inf{θ ∈ Θ : R′(θ) < 0},

and have

Lemma 8. Given Assumption 7, R is weakly increasing on [θL, θ̄], concave on [θ̄, θH ], and

maximized at θ̄.

See the appendix for the proof.

Proposition 9. Given Assumption 7, an equilibrium of the signaling game is given by

(14) Pi(θ) =















0 θ < θ̄
v(ic(θ))

v(i) θ̄ ≤ θ ≤ θc(i)

1 θ ≥ θc(i)
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and Q(i|θ) = Q(i|θ̄) for all θ < θ̄, and for all θ ≥ θ̄

(15) Q(i|θ) =















0 i < ic(θ)

1 − (1−θc(i))2f(θc(i))
(1−θ)2f(θ)

ic(θ) ≤ i < ic(θH)

1 i = ic(θH)

The proof is straightforward and therefore omitted. While this result does not say that

the described equilibrium is the unique outcome of the game, it can easily be shown that this

equilibrium is the limit of the equilibrium found in the previous section, and therefore the only

reasonable equilbrium. It is the limit in the following sense: For any partition θL < θ1 < ...θn <

θH of the interval [θL, θH ], one can define a discrete distribution by fk = F (θk)−F (θk−1), k =

2, ..., n. For this distribution take the equilibrium described in Prop. 6, and interpret the

equilibrium strategies as step functions on [θL, θH ]× I resp. I × [θL, θH ]. These step functions

converge against the functions defined in Proposition 9 as the partition becomes finer.

5.1 Surplus Comparison

In the following paragraphs, we compare different timings and information regimes with respect

to the payoff that is generated for the seller and the buyer as well as the joint surplus. In some

applications as for example the mobility of a worker, it seems realistic that the worker knows

his mobility but the employer never learns it until it is too late. Alternatively, it may be the

case that the worker learns his outside option only after making the firm-specific investment.

In a market setting, it may be that alternative offers are known to both sides from the start, or

that both sides learn of them after investment decisions have been made. We always evaluate

payoffs and surplus with respect to the distribution F , and this is also how the expectations in

the following expressions should be understood.

First we look at the case of complete information. In this case the outside option is common

knowledge from the start. The seller’s expected profit is E[uc(θ)] and the buyer obtains E[(1−

θ)v(ic(θ))]. The expected joint surplus is E[S(ic(θ))], with S := v − c.

In constrast, if the outside option becomes common knowledge only after the investment

is sunk, and is not known before to any party, the expected social surplus is S(ic(E[θ])). If

we assume that S(ic(θ)) is concave function in θ (eg. v′′′ − c′′′ ≤ 0) then this surplus is higher

than the one before. The seller gets uc(E[θ]) and is therefore worse off than in the complete

information case, because he cannot prepare for his outside option. The buyer is better off

with (1 − E[θ])v(ic(E[θ])), capturing the quasi-rent from low types who invest too much.

A third possible timing and information structure of the game is that the seller, and only

the seller, learns the outside option later. In this case, there is no signaling motive. The buyer

makes an offer of θ̄ and the seller invests ic(E[θ∨ θ̄]). While the investment is higher than in the

two cases above, it is not always put to its best use, as all types above θ̄ reject the offer. The
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seller gets uc(E[θ̄∨ θ]) which is more than in the previous case, as he enjoys some informations

rents. The buyer gets R(θ̄)v(ic(E[θ ∨ θ̄])).

Finally, in the signaling equilibrium (Prop. 9), a seller with outside option θ gets max(uc(θ), uc(θ̄)),

i.e. the seller’s expected profit is

F (θ̄)uc(θ̄) +

∫ θH

θ̄

uc(θ)dF (θ).

To find the buyer’s surplus in the signaling equilibrium, note first that −R′′(θ̂) is the probability

density of investment on [θ̄, θH). Therefore, the buyer’s expected payoff is

∫ θH

θ̄

−R′′(θ̂)(1 − θ̂)v(ic(θ̂))dθ̂ + (1 − θH)2f(θH)v(i(θH))

We see that the seller has an incentive to learn the outside option early, because in the

signaling equilibrium his expected payoff is E[uc(θ∨ θ̄)] > uc(E[θ∨ θ̄]). Since of all the possible

regimes the seller is best of in the signalling equilibrium, if he could influence the timing or

information distribution, then he would do so in the direction of the signalling structure.

If sellers came from two distinguishable groups, such that the distribution of outside options

for one group first order dominates the distribution of the other group, then all sellers in the

group with higher outside options are better off if the cut-off value is also shifted to the right.

Higher outside options have the effect that lower types can hide behind the better average

bargaining position in their group. In the cases where the cut-off value is decreased, these

types are worse off.

The effects of a FOSD shift in the distribution of types on the buyer’s profit is ambiguous.

While the presence of higher types leads to higher investment, it also means that the buyer has

to make higher offers. This reflects the nonmonotonic relationship between the buyer’s profit

and the type of the seller that arises in a hold-up problem even under symmetric information:

low types generate low surplus and high types get a large share of the pie, so that typically the

buyer prefers sellers of intermediate bargaining power. In the next section we consider the case

that the investment decision is contractible. It is clear that in that case, lower seller types are

unambiguously better for the buyer.

6 Buyer-optimal contract if investment is verifiable

In the game that is studied in the main part of this paper, all the buyer can do is to make a

take it or leave it offer based on her updated beliefs. This is optimal for her from an ex post

perspective, but not necessarily from an ex ante perspective. In this section we shall explore the

consequences of full commitment and ask what would happen if the buyer could offer a binding

contract conditional on investment before the seller moves. We maintain the assumption that
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the seller’s type is not observable, and characterize the optimal screening contract.12

Proposition 10. If the buyer can offer a contract conditional on the investment decision, the

outcome involves investment of ic(1) and inefficient separation for types θ ≥ θ̄, which take the

outside option with probability v(ic(θ))
v(ic(1)) . Each seller type is left with the same payoff as in the

case without commitment.

Proof. We use the revelation principle and let a general contract be a map from types into

outcomes that satisfies the incentive compatibility constraints of each type of seller telling the

truth. In addition, the buyer has to take into account that the seller can go for his outside

option, then getting a payoff of θv(i) after having invested an amount i, or uc(θ) ex ante. All

that matters for truth telling and participation of the seller is his expected payoff, and the buyer

in addition cares for the surplus created by the contract. Therefore, it is sufficient to focus on

contracts of the form (t(θ), i(θ), x(θ)), where t(θ) is an up-front payment from the seller to the

buyer that an announced type θ is required to make, i(θ) is the required investment, and x(θ)

the probability of separation. With probability 1 − x(θ), buyer and seller collaborate and the

seller gets the whole ex post surplus v(i(θ)). There is no loss of generality in assuming this

form of contracts, because all payoff transfers from the seller to the buyer can be handled by

the up-front payment t(θ). Given such a contract, the expected payoff to a seller of type θ who

pretends to be of type θ̃ is

(1 − x(θ̃))v(i(θ̃)) + x(θ̃)θv(i(θ̃)) − c(i(θ̃)) − t(θ̃).

A truth-telling seller creates the joint surplus S(i(θ)) − x(θ)(1 − θ)v(i(θ)), and gets uS(θ) =

S(i(θ))−x(θ)(1−θ)v(i(θ))−t(θ) for himself. The buyer’s optimization problem is the following:

max

∫ θH

θL

t(y)dF (y),

subject to the incentive compatibility constraint

(IC) uS(θ) ≥ uS(θ̃) + (θ − θ̃)x(θ̃)v(i(θ̃))

and the ex ante participation constraint

(IR) uS(θ) ≥ uc(θ),

which have to hold for all θ, θ̃ ∈ [θL, θH ].

It may seem intuitive that an optimal contract should specify the investment ic(1) for all

types, because seller types differ only with respect to the outside option. The screening device

is the probability of separation, not the investment. However, in order to separate the seller’s

12 Adverse selection problems with type-dependent reservation utilities have been addressed before (Moore

(1985), Jullien (2000)), but is not a special case of these results.
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types this probability must be positive. Therefore, it is not obvious that i(θ) = ic(1), because

ic(1) is not the optimal preparation for every type (which would be ic(1 − (1 − θ)x(θ))). In

particular, so far the formulation also allows for some types not participating and choosing a

contract of the form x = 1, i = ic(θ), t = 0.

To see that the optimal contract will nevertheless specify i(θ) = ic(1), consider any contract

(t(θ), i(θ), x(θ)). The contract (t̃(θ), ĩ(θ), x̃(θ)) defined by

t̃(θ) = t(θ) + S(ic(1)) − S(i(θ)) ≥ t(θ),

ĩ(θ) = ic(1), and

x̃(θ) = x(θ)
v(i(θ))

v(ic(1))
∈ [0, 1]

leads to the same IC and PC constraints and higher expected profit for the buyer. In particular,

this means that excluding types entirely is generally not a good idea for the buyer.

For any x : [θL, θH ] → [0, 1] that is part of an IC contract, if x(θ̃) = 0 for some type θ̃,

then we know that lower types pool on this type, i.e. uS(θ̃) = uS(θ) for all types θ ≤ θ̃. In

the buyer’s optimal contract it will then hold that x(θ) = 0 and t(θ) = S(ic(1)) − uc(θ̃) for all

θ ≤ θ̃. We therefore now take a threshold θ0 ∈ Θ as given and replace the IC constraints by

the requirement that x is nondecreasing and

uS(θ) = v(ic(1))

∫ θ

θ0

x(y)dy + uc(θ0).

We define X0 := {x : [θ0, θH ] → (0, 1], nondecreasing}. Following the standard method of

finding an optimal screening contract we write the problem as

max
x∈X0

S(ic(1)) − uc(θ0) −

∫ θH

θ0

(R′(θ) + 1)x(θ)v(ic(1))dθ

s.t.
∫ θ

θ0 x(y) − v(ic(y))
v(ic(1))dy ≥ 0.

Because R′(θ)+1 ≥ 0, x(θ) must be as small as possible. This suggests that IR should bind

everywhere, which we will indeed show next. First, because the objective function can also be

written as

S(ic(1)) − uS(θH) −

∫ θH

θ0

R′(θ)x(θ)v(ic(1))dθ

it is clear that θ0 ≥ θ̄. Furthermore, for the part that depends on x we can use integration by

parts to get

uS(θH) +

∫ θH

θ0

R′(θ)x(θ)v(ic(1))dθ

=(1 − θH)f(θH)uS(θH) − R′(θ0)uc(θ0) −

∫ θH

θ0

R′′(θ)uS(θ)dθ

≥(1 − θH)f(θH)uc(θH) − R′(θ0)uc(θ0) −

∫ θH

θ0

R′′(θ)uc(θ)dθ
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This shows that the objective function is maximized if IR is binding everwhere. For this to be

true, the buyer would have to set

x(θ) =
v(ic(θ))

v(ic(1))
,

which is indeed increasing, hence must be the solution to the optimization problem. Finally,

we find the optimal θ0: Solving

max
θ0

S(ic(1)) − uc(θ0) −

∫ θH

θ0

(R′(θ) + 1)v(ic(θ))dθ

yields θ̄ as the optimal cut-off value.

To summarize, the buyer promises a contract over the full surplus v(ic(1)) with some prob-

ability, in exchange for an up-front payment. The seller can choose among a menu of contracts

consisting of combinations of separation probabilities and up-front payments

(

v(i)

v(ic(1))
, S(ic(1)) − S(i)

)

, i ∈ [ic(θ̄), ic(θH)],

or trade for sure and pay S(ic(1)) − uc(θ̄) up-front.

The separation probability for a given type is never higher than the separation proba-

bility of that type in the signaling equilibrium. A seller of type θ receives the same pay-

off, max(uc(θ), uc(θ̄)). The optimal contract induces higher investment now that i is veri-

fiable and a hold-up problem does not exist. Interestingly, for types higher than θ̄, there

is in fact overinvestment relative to the investment’s later use. The buyer’s expected pay-

off is of course higher than in the case without commitment, as is the expected surplus,

which amounts to S(ic(1)) −
∫ θH

θ̄
v(ic(θ))(1 − θ)dF (θ), while in the signaling equilibrium it

is
∫ ∫

S(i)dQ(i|θ)dF (θ) −
∫ θH

θ̄
v(ic(θ))(1 − θ)dF (θ).

7 Conclusion

In the present paper, we have introduced private information about the reservation value in

a simple property rights model.The simplicity of the model allows us to fully characterize the

resulting equilibrium payoffs, which are uniquely determined. The equilibrium involves pooling

up to a certain type of outside option, such that all lower types get the same payoff and

because they accept all offers in equilibrium, these types are not distinguishable, even ex post.

Higher types follow a mixed strategy and on average obtain the same payoff as with complete

information. The seller has to mix between the investments because there is a strong force

against a separating equilibrium in this model: if only high types choose a certain investment

and get high offers, they will be mimicked by lower types.

In the outside option signaling game, there is a gap between the chosen investment and

the investment that would result if the seller would get the full return to his investment. We
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have shown that this gap vanishes if investment is verifiable. This gap would also shrink if the

seller had greater bargaining power than in the game that was analyzed. For example, if the

bargaining game was modeled as the seller making a take-it-or-leave-it offer with probability

α and the buyer only with probability 1 − α, then a higher α would increase the surplus and

the seller’s payoff. Since there is more investment on average, the buyer’s payoff can be non-

monotonic in α. Although it is standard in principal-agent models to assume take-it-or-leave-it

offers by the principal, it would of course be interesting to allow for more complex bargaining

games at the ex post stage. One game that should leave the results unchanged is repeated

offers by the buyer, but if both players can make offers, results are likely to change and become

difficult to obtain (c.f. Skryzpazc (2004)).

There are a couple of other extensions of the model that present themselves. One interest-

ing task for future work is to allow the payoff that the buyer gets when the seller takes the

outside option to be dependent on the seller’s type. This would admit a greater set of applica-

tions, in particular the interpretation of the outside option as sueing for payment, with private

information about the probability of winning.13 Another possible extension is the case of pure

rent-seeking, in which the investment increases the outside value but is of little use inside the

relationship. Investment can still be used as a signal for profitable outside opportunities, but

higher investment is no longer more efficient.

13See Chonné and Linnemer (2008) for a related model in the context of pretrial bargaining and investment

in trial preparation.
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Proofs

Proof of Proposition 5. Let ik ∈ I∗. When observing ik, the buyer’s expected profit from offer-

ing θl is

(1 − θl)

∑l
j=1 fjqjk

∑k
j=1 fjqjk

.

We know from Lemma 3 that to be consistent with the seller’s behavior, the buyer, when

observing ik, has to offer all θj , ij ∈ I∗, j ≤ k with positive probability. She will offer θk if

k
∑

j=1

fjqjk(1 − θk) ≥
l
∑

j=1

fjqjk(1 − θl) for all l,

and θl if
k
∑

j=1

fjqjk(1 − θk) =
l
∑

j=1

fjqjk(1 − θl).

As a first step, we write down all inequalities that define the buyer’s behavior in an equi-

librium (P,Q). Denote by

K := {k : ik ∈ I∗\{iH}}

all chosen investments that are strictly smaller than iH . We treat H separately because we

have to account for the fact that Q is a stochastic matrix, i.e., that the row entries add up to

one. For all j, l ≤ k, l, k ∈ K the following inequalites must hold:

j
∑

i=1

fi(θk − θj)qik +

k
∑

i=j+1

fi(θk − 1)qik ≤ 0

−

(

l
∑

i=1

fi(θk − θl)qik +

k
∑

i=l+1

fi(θk − 1)qik

)

≤ 0

−qjk ≤ 0

as well as (straightforward calculation) for all l < H, i ∈ K

R(θH) − R(θl) ≥

l
∑

j=1

∑

j≤k∈K

fj(θl − θH)qjk +

H−1
∑

j=l+1

∑

k∈K

fj(1 − θH)qjk

R(θi) − R(θH) ≥

i
∑

j=1

∑

j≤k∈K

fj(θH − θi)qjk +

H−1
∑

j=k+1

∑

j≤k∈K

fj(θH − 1)qjk

1 ≥
∑

j≤l∈K

qji

We are going to treat the variables we are looking for as one big vector, denoted by q. The

entries in q are indexed by jk, 1 ≤ j ≤ k, k ∈ K. Similarly, we define a vector µjk by

µjk
ik = fi(θk − θj) for all i ≤ j and µjk

ik = fi(θk − 1) for all i > j and zero else. Further-

more, define a vector µl by µl
jk = fj(θl − θH) for all j ≤ l and µl

jk = fj(1 − θH) for all j > l.
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Last, let 1j denote a vector with 1j
jk = 1 for j ≤ k ∈ K and 0 else; and let ejk be a vector with

ejk
jk = 1 and 0 else.

Our inequalities now read

−ejkq ≤ 0 1 ≤ j ≤ k, k ∈ K

1jq ≤ 1 j = 1, ...,H − 1

µjkq ≤ 0 for all k ∈ K, j < k and ≥ 0 for j ∈ K

µlq ≤ R(θH) − R(θl) for all l < H and ≥ 0 for l ∈ K

As the second step, we find a system of inequalities that is an alternative of this system, i.e.

that has a solution if and only if this one has none. We use Theorem 22.1 of Rockafellar (1970)

to get the following alternative system:

(i)
∑H−1

j=1 βj +
∑H−1

l=1 δl(R(θH) − R(θl)) < 0

(ii)
∑H−1

j=1 1jβj +
∑

jk µjkγjk +
∑H−1

l=1 µlδl ≥ 0

where we are looking for coefficients βj ≥ 0, j = 1, ..H − 1, γjk (≥ 0 if j /∈ K), δl, (≥ 0 if

l /∈ K). For the analysis, it is convenient to write the second equation as an equation in each

coefficient jk with k ∈ K and j ≤ k

βj +

j−1
∑

i=1

γikfj(θk − 1) +

k−1
∑

i=j

γikfj(θk − θi) +

j−1
∑

l=1

δlfj(1 − θH) +

H−1
∑

l=j

δlfj(θl − θH) ≥ 0

Let k̂ = minK. We claim that k̄ = k̂ and first show that R(θl) ≤ R(θ
k̂
) for l < k̂. Assume

not. Then there is a solution with δl = γlk = 1 and δ
k̂

= γ
k̂k

= −1 and all other coefficients

equal to zero: The first inequality is obviously satisfied, and for the second, since k ≥ k̂ > l

always holds, there are only three cases to distinguish, j > k̂, l < j ≤ k̂, and j ≤ l.

Similarly, one can show that R(θ
k̂+1) ≤ R(θ

k̂
) is also necessary, because else there is a

solution with δ
k̂+1 = γ

k̂+1k
= 1 and δ

k̂
= γ

k̂k
= −1. The easy case distinctions are again

left to the reader. Hence, k̂ = k̄. Note that we could have shown more generally that K ⊂

{k with R(θk) ≥ R(θk+1)}.

Next we show that K is an interval. Assume to the contrary that there is a gap in K,

i.e, there exist l < m < h with m /∈ K, l = max {k ∈ K, k ≤ m} and h = min{k ∈ K, k ≥

m}. There is a λ ∈ (0, 1) with (1 − λ)θh + λθl = θm. Define δl = γlk = −λ, δm = γmk =

1, δh = γhk = −(1 − λ) for all relevant k ∈ K. Then the first condition holds because R

is concave on K: λR(θl) + (1 − λ)R(θh) − R(θm) < 0. That the second condition always

holds with equality is seen immediately if k ≤ l, for which this condition takes the form

θm − θH − λ(θh − θH) − (1 − λ)(θl − θH) = 0. For the remaining case k ≥ h there has to be

24



again a case distinction regarding j, each case leading to the same result. Thus concavity of R

implies that there are no gaps in chosen investment, K = {k̄, ..., H − 1} .

Proof of Prop. 6. First, we check that the strategies fulfill equation 7. For k > k̄:

(1 − θl)

l
∑

j=1

fjqjk = (1 − θl)





k̄
∑

j=1

fj
λk − λk+1

R(θk̄)
+

l
∑

j=k̄+1

λk − λk+1

λj





= (1 − θl)





(λk − λk+1)

1 − θk̄

+
l
∑

j=k̄+1

(

(λk − λk+1)

1 − θj
−

(λk − λk+1)

1 − θj−1

)





= λk − λk+1,

which is independent of l. Similarly for k = k̄.

Next, note that

R(θk) − R(θk−1)

θk − θk−1
=

fk(1 − θk−1)

(θk − θk−1)
− F (θk) =

fk(1 − θk)

(θk − θk−1)
− F (θk−1)

and therefore

λk − λk+1 = (1 − θk)

(

R(θk) − R(θk−1)

θk − θk−1
−

R(θk+1) − R(θk)

θk+1 − θk

)

≥ 0.

Also,

R(θk̄) ≥ λk̄+1 ⇔ (θk̄+1 − θk̄)F (θk̄) ≥ fk̄+1(1 − θk̄+1) ⇔ R(θk̄) ≥ R(θk̄+1).

These conditions imply that all qjk ≥ 0. We still need to show that they add up to one:

H
∑

k=j

qjk =
H
∑

k=j

λk − λk+1

λj
= 1 for all j > k̄

H
∑

k=k̄

qjk̄ = 1 −
λk̄+1

R(θk̄)
+

H
∑

k=k̄+1

λk − λk+1

R(θk̄)
= 1

Here we have that all low types follow the same strategy. If such a restriction is not imposed,

there may be more possible values for the strategies.

Proof of Lemma 8. To show that F log-concave (which is implied by f log-concave) is sufficient

for this property of R, we will show first that

R′′(θ) ≥ 0 ⇒ R′(θ) > 0.

The second derivative of R is

R′′(θ) = (1 − θ)f ′(θ) − 2f(θ)
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such that R′′(θ) ≥ 0 implies that f ′(θ) > 0 and

(1 − θ) ≥
2f(θ)

f ′(θ)
.

Hence,

R′(θ) = (1 − θ)f(θ) − F (θ) ≥
2f(θ)2 − F (θ)f ′(θ)

f ′(θ)
≥

f(θ)2

f ′(θ)
> 0.

From the definition of θ̄, where we have a local maximum, the claim easily follows.
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