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Abstract

This paper studies sabotage in a dynamic tournament. Three play-
ers compete in two rounds. In the final round, a player who is leading
in the race, but not yet beyond the reach of his competitors, gets
sabotaged more heavily. As a consequence, if players are at the same
position initially, they do not work productively or sabotage at all in
the first round. Thus sabotage is not only directly destructive, but
also depresses incentives to work productively. If players are hetero-
geneous ex ante, sabotage activities in the first round may be concen-
trated against an underdog, contrary to findings from static tourna-
ments. We also discuss the robustness of our results in a less stylized
environment.
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1 Introduction

In practice, tournaments or contests are ubiquitous. A typical example is an
internal labor market tournament, in which employees compete for a bonus or
a promotion (Lazear and Rosen 1981). Other examples include R&D races,
litigation contests, rent seeking contests, political campaigning or sports con-
tests.!

In tournaments, only a relative comparison of the contestants is impor-
tant. The players therefore have an incentive to sabotage each other, and
the consequences of sabotage in static tournaments are by now relatively well
understood (see e.g. Lazear 1989, Drago and Turnbull 1991, Skaperdas and
Grofman 1995, Chan 1996, Drago and Garvey 1998, Konrad 2000, Krikel
2000, Chen 2003, 2005, Harbring, Irlenbusch, Krikel, and Selten 2007, Miin-
ster 2007, Giirtler 2008). Many real world tournaments, however, take place
over a certain time period, and thus are dynamic in nature. Dynamic tour-
naments have been studied in the literature on R&D races (e.g. Fudenberg,
Gilbert, Stiglitz, and Tirole, 1983, Harris and Vickers 1985). Newer papers
include Konrad and Kovenock (2006), Klumpp and Polborn (2006) on elec-
tion races, and Yildirim (2005) on rent-seeking contests. Very little is known,
however, about sabotage in dynamic tournaments.? An exception is Ishida
(2006), who studies sabotage in a dynamic tournament between two players
with asymmetric information about their abilities. Ishida points to a ratchet
effect, where high ability contestants have an incentive to hide their ability
early on, in order to avoid becoming a victim of sabotage, and focusses on
the optimal design of sabotage-proof contracts which lead to zero sabotage
in equilibrium.

Our paper is located at the intersection between the literature on sabo-

!See Konrad (2007) for a survey.

2An interaction between sabotage and dynamic considerations is analyzed in Auriol,
Friebel, and Pechlivanos (2002), who show that career concerns may induce sabotage even
if players are not competing in a tournament.



tage in tournaments and on dynamic tournaments and studies sabotage in a
dynamic tournament. There are three players competing in two rounds for
a prize. In contrast to Ishida (2006), we assume that players’ abilities are
common knowledge; thus there is no ratchet effect in our model. Initially,
players have some exogenously given position. In each round, a player can
work productively and move one step forward; moreover, he can sabotage one
of his rivals and move him one step backward. Sabotage, however, is more
costly than productive effort. Between the rounds, players observe each oth-
ers’ position. After the second round, the player who is leading wins; ties are
broken randomly.

When contestants are heterogeneous, a common finding concerning static
tournaments is that favorites are sabotaged more strongly than underdogs
since they are the more dangerous rivals (Chen 2003, Harbring, Irlenbusch,
Kriikel, and Selten 2007, Miinster 2007). This is replicated in the final round
of our model. We show that, as a consequence, sabotage may decrease incen-
tives in the first round. In fact, when players are homogeneous ex ante, i.e.
start at the same position, no player moves forward or sabotages any rival
in the first round to avoid being sabotaged in round two. Thus sabotage is
not only directly harmful by destroying valuable output, but also indirectly
depresses the incentives to work productively.

Our second main result is on the question who is likely to be a victim
of sabotage. In the first round, we show that sabotage may be concentrated
against an underdog to basically eliminate him from the tournament. As
explained above, this is very different from findings in static tournaments.

The remainder of the paper is organized as follows. Section 2 introduces
a stylized model of sabotage in a two-stage tournament. Proceeding back-
wards, Sections 3 and 4 study equilibria of the second and the first stage,
respectively. Section 5 discusses the robustness of the results obtained, by
pointing out other equilibria (Section 5.1), discussing the assumptions driving

the main result (Section 5.2), and by showing that a similar result can be



obtained in a less stylized model (Section 5.3).

2 The model

Consider a two-round tournament game (¢t = 1,2) with three players i =
1,2,3 competing for a prize V' > 0. In each of the rounds, player i chooses
a productive effort ] € {0,1} and a sabotage effort s}; € {0,1}, j = 1,2,3,
j # i. We assume Z#i s';fj < 1, i.e. a player cannot sabotage both his
opponents at the same time. To highlight the strategic effects of the model,

we impose the following assumption.

Assumption 1 A productive effort of 1 entails no costs for a player. Player

i chooses el = 1 unless this strictly reduces his payoff.

Sabotage, instead, leads to costs £ > 0. Thus sabotage is more costly
than working productive. Compared with the value of winning, however, k
is relatively small; in particular, we assume that & < V//18. Player ¢ wins the

tournament if

Tot)_e=) D s> Iglggc{:cjo Y- ZZSZJ} (k=1,2.3k £ )
t t g t t k#j

where ;o denotes player ¢’s initial position. These positions are exogenously
given. If a player is ahead of his competitors after both rounds, he is declared
the winner. If two or more players share the leading position, each wins with

equal probability. Finally, there is no discounting.

3 The second round

The model is solved by backward induction. Clearly, the players’ actions in
the second round depend on their relative positions. For notational conve-

nience, we assume player 1 to be the leader after the first round, player 2 to
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be in second position and player 3 to be in third position (players may also
be in the same position, of course). This is without loss of generality as one
can simply renumber the players if necessary. Let A; denote the difference
between positions of players 1 and 2, and A, the difference between players
2 and 3.

In round two, by choosing e? = 1 instead of e? = 0 a player (weakly)
increases his winning-probability and so can never be worse off. Thus, by
assumption A1, each player chooses e? = 1.

We now characterize equilibria of the subgames in round two. In some
subgames, multiple equilibria exist. We do not, however, attempt to give a
complete characterization of the set of all equilibria.®> The primary objective
of the paper is to highlight some potential effects of sabotage in a dynamic
tournament, and to show that players’ behavior in dynamic tournaments
may be entirely different from behavior in static tournaments. To reach this

objective, it is enough to show that certain types of equilibria exist.

Lemma 1 Let Ay = 0. (i) If Ay = 0, there is an equilibrium, where players
choose 53, = s33 = s3; = 1. All players have a payoff of % —k. (ii) If Ay = 1,
there is an equilibrium where players 1 and 2 choose s3, = s3; = 1. Player 3
chooses s3; = 1 and s2, = 1 with probability 0.5, respectively. Players 1 and
2 receive % — k, while player 3 has a payoff % — k. (1i) If Ay > 2, players 1
and 2 choose s2, = s, = 1 while player 8 chooses s3; = s3, = 0. The payoffs

are % — k to players 1 and 2 and zero to player 3.

Proof. (i) If any player deviates from the proposed equilibrium, he loses the
tournament for sure. A deviation is therefore not profitable. (ii) If players 1
and 2 choose s3, = s2, = 1, player 3 is obviously indifferent between sabotag-
ing either of his opponents (which he strictly prefers to not doing anything
at all.) Hence, player 3 does not deviate from the proposed equilibrium. If

player 1 is sabotaged by player 3, he loses for sure. Moreover, if he is not

3See, however, the discussion in Subsection 5.1.



sabotaged by player 3, he is indifferent between sabotaging either of his op-

v
4

staying inactive. Hence, he also cannot gain by deviating from the proposed

ponents. Further, as =~ > k, he prefers sabotaging one of his opponents to

equilibrium. The same holds for player 2. It is further straightforward to

show that player 3 wins with probability 0.5 so that his payoff is % — k while
1%

the other players receive 7 —k. (iii) If A; = 0 and Ay > 2, player 3 loses the

tournament for sure and so does not sabotage. Then, players 1 and 2 obvi-
ously choose s2, = s3, = 1. As each wins the tournament with probability

0.5, they receive % —k. =

Parts (i) and (iii) of this lemma are very intuitive. Part (i) says that, if all
three players are at the same position, they all get the same payoff V/3 — k.
Part (iii) says that, if one player is sufficiently far back while the other two
are at the same position, then the underdog gets zero while the front-runners
get a payoff of /2 — k each.* The most surprising part is (ii). If there are
two front-runners followed by one underdog who is one step behind them, all
sabotage activities are directed against the front-runners. Each of the front-
runners wins with probability 1/4, while the underdog wins with probability
1/2 and is thus better off than the favorites!

The next lemma shows that being the single front-runner may be even
worse. It considers the case where there is a single favorite, who is one step

ahead of the second position.

Lemma 2 Let Ay = 1. (i) If Ay = 0, there is an equilibrium, where player

1 chooses s2, = s2, = 0 and receives a payoff of zero. Players 2 and 3 choose

s3; = s3;, = 1. Their payoff is % — k, respectively. (i) If Ay = 1, the

players choose s3, = s3, = s} = 1. Each receives a payoff of ¥ — k. (iii) If

Ay > 2, 3 does not sabotage and has zero payoff. Player 1 chooses s, = 1

V-2k
\%4

payoff is V — k. Player 2 chooses s3, = 1 with probability ¢ = 1 — p and does

with probability p = and does not sabotage with probability 1 — p. His

4We use "favorite" and "front-runner" as synonyms.



not sabotage with probability 1 — q = p. His payoff is zero.

Proof. (i) Consider player 2. Given his opponent’s actions, he is indifferent

between sabotaging player 1 and 3 (which he strictly prefers to not doing

anything). Hence, he does not want to deviate from the proposed equilibrium.

The same holds for player 3. Then, player 1 loses for sure and does not
v

sabotage anyone. Accordingly, players 2 and 3 receive 4 — k. (ii) If either of

the players deviates from the strategy, he loses for sure. Hence, a deviation is

not profitable. As all players win with equal probability, each receives % — k.
(iii) If A; = 1 and Ay > 2, player 3 loses the tournament for sure and so
does not sabotage anybody. In order to ensure that player 1 is indifferent

between choosing s?, = 1 and s}, = s7; = 0 we must have

V
V—k:q§+(1—q)V,

or, equivalently, ¢ = 2k/V. As we can easily see, player 1’s payoff is V' — k.

Player 2 is indifferent between choosing s3, = 1 and s3; = s3; = 0 if

—pk + (1 —p) <%—k) =0,

or equivalently

Part (i) of this Lemma 2 is on the case where one favorite is leading one
step ahead of the competitors, who tie on the same position. In this case, the
favorite gets sabotaged by both competitors, and thus loses for sure, while
the competitors win with probability 1/2 each.

Part (ii) considers the case where the players are at adjacent positions
and there are no ties. Players 2 and 3 sabotage the favorite 1, who in turn

sabotages player 2. Thus all three players end up at the same position and



have the same payoff.

Part (iii) is similar in spirit to part (iii) of Lemma 1. Again the distance
of player 3 to the other players is too big, so player 3 essentially gives up. The
leading player 1 can ensure victory by sabotaging player 2, who is initially
one step behind him. Thus player 1 gets a payoff of V' — k. The other players
get zero.

We now turn to the case where player 1 is two steps ahead of player 2.

Lemma 3 Let Ay =2. (1) If Ay =0, there is an equilibrium where player 1

chooses s2y = 1 and si; = 1 with probability 0.5, respectively. Players 2 and

v
2

receive % —k. (i) If Ay > 1, no player sabotages. Player 1 receives V', while

8 choose s3, = s3, = 1. Player 1’s payoff is v — k, while players 2 and 3

players 2 and 3 receive nothing.

Proof. (i) It is easy to see that players 2 and 3 receive nothing, if deviating
from their strategy. Moreover, by sabotaging one of his opponents, player
1 increases his winning probability from % to % so that his payoff is % — k.
Obviously, each of the players 2 and 3 receives ¥ — k. (ii) If A; = 2 and
Ay > 1, player 3 loses the tournament for sure and so does not sabotage.
Accordingly, player 2 loses also for sure, while player 1 wins for sure. Thus,
both these players do not sabotage, too. As player 1 wins for sure, he receives

V', while his opponents receive nothing. m

In all cases considered in Lemma 3, the favorite has a higher payoff than
his opponents. Intuitively, a favorite who is far ahead of his rivals is likely to
win even if his opponents direct all their sabotage activities against him.’

Finally, if player 1 is three ore more steps ahead of player 2, then sab-
otaging him makes no sense for his rivals, because player 1 will win with

certainty anyhow.

°In case (i), there also exists an equilibrium where no player sabotages. If for example
player 2 does not sabotage, it does not pay for player 3 to sabotage, too. However, this
equilibrium is not coalition proof.



Lemma 4 If Ay > 3, no player sabotages. Player 1 receives V', while players

2 and 3 receive nothing.

Proof. If A; > 3, players 2 and 3 lose the tournament for sure and so do
not sabotage. As a best response, player 1 does not sabotage, too. As he

wins for sure, he receives V', while his opponents receive nothing. =

4 The first round

We now consider the first round. A complete characterization of the equilib-
rium for all possible starting differences is beyond the scope of this paper.
Instead, we restrict attention to two situations which are in our view of
special importance. The first situation is one where all players start from
the same position, i.e. they are homogeneous ex ante. The corresponding

equilibrium is described in Proposition 1.

Proposition 1 Let w19 = x99 = w39. Then, there is a subgame perfect equi-
librium where player i chooses e} = s}j = 0. Fach player’s payoff (over both

rounds) is 5 — k.

Proof. There are in principle three possible deviations. If player ¢ deviates

to e; = 1 and sj; = 0 he receives a payoff of zero and is worse off. If player

i deviates to ef = 0 and s}; = 1 he receives a payoff of % — 2k and is worse
. . 1 _ 1 . . V

off. If player ¢ deviates to e; = 1 and s;; = 1 he receives a payoff of + — 2k

and is worse off. Hence, no player wants to deviate from the equilibrium. As

they do not move, Lemma 2, part (i) applies and the payoffs are % —k. m

Proposition 1 shows that sabotage not only has a directly destructive
effect on output, but also suppresses the incentives to work productively.
Note that if sabotage is not possible or too costly (for example if k > V/3),
then in both rounds all players work productively. Thereby they tie in the

end and each wins with probability 1/3. If sabotage is possible, however, no

9



one works in the first round. The reason is that, if one player deviates and
works productively, he moves ahead of his competitors. Then, in round 2 the
rivals focus their sabotage activities against him. Because of this strategic
effect, not working is strictly better, even though working productively has

no direct cost by Assumption 1.

Our second main result characterizes a case where players are heteroge-
neous ex ante. The point of the proposition is to show that, in the first round,
sabotage activities may be focussed against an underdog. As mentioned in
the introduction, in static tournaments sabotage tends to be concentrated
against favorites. We have seen that in our model this is true in the final
round. In the first round, however, two favorites may focus their sabotage

against one underdog.

Proposition 2 Let x19 = x99 = x30 + 1. Then, there is a subgame perfect
equilibrium where each player chooses e} = 1. Moreover, player 1 (2) chooses

si3 =1 (sby = 1) with probability

and does not sabotage at all with probability 1 — x. Player 3 chooses si; = 1

with probability
k—Y(1-2)

YT TR 2 —1)

s35 = 1 with probability y, and does not sabotage with probability 1 — 2y.
Proof. See appendix. =

Proposition 2 implies that the underdog, player 3, is sabotaged more
heavily than the front-runners 1 and 2. The expected number of steps player

3 is moved backwards by the sabotage chosen by players 1 and 2 is 2x > 1.

10



The expected number of steps that player ¢ = 1,2 is moved back by the

sabotage of his rivals is y, which is smaller than 1/2 (see appendix).

5 Discussion

In this section, we discuss the robustness of our results. We do this by
pointing out other possible equilibria, discussing the assumptions driving the
main result, and by considering a more general model. We focus on the result
from Proposition 1 that sabotage suppresses incentives to work productively

in early rounds of the tournament.

5.1 Other equilibria

Above we presented one possible subgame perfect equilibrium of the game in
a homogeneous and a heterogeneous setting, respectively. The game, how-
ever, has multiple equilibria. The multiplicity of equilibria is due to a coor-
dination aspect of the game. Consider for example a symmetric subgame in
stage 2. As we showed in Lemma 1, there is an equilibrium where player 1
sabotages player 2, 2 sabotages 3, and 3 sabotages 1. Of course, there is also
an equilibrium where players coordinate their sabotage choices differently: 1
sabotages 3, 3 sabotages 2, and 2 sabotages 1. Moreover, there is a symmet-
ric equilibrium where each player sabotages each rival with probability 1/2.
Basically, the game has aspects of a coordination game, and there are several
ways to coordinate. This is natural: sabotage against a certain player is a
public good for all the other players, and of course, the private supply of a
public good has features of a coordination game.

The asymmetric subgames have multiple equilibria, too, which is again
due to different possible ways to coordinate. Consider for example a subgame
starting with A; = 0 and Ay = 1. As pointed out in Lemma 1, the subgame
has an equilibrium where players 1 and 2 mutually sabotage each other,

whereas player 3 mixes between sabotaging 1 and 2 with equal probability.

11



The subgame also has an equilibrium where 3 sabotages 1, 1 sabotages 2, and
2 mixes between sabotaging 1 and 3. Moreover, there is a third equilibrium
which is similar to the second, with the roles of 1 and 2 exchanged. Note
that in all these equilibria, for each of the front-runners 1 and 2, there is
exactly one player who sabotages the front-runner with probability one. If the
remaining player does not sabotage, all three players tie; thus the remaining
player is indifferent between sabotaging either of his rivals. If the remaining
player sabotages each of his rivals with probability 1/2, none of the players
has an incentive to deviate.

The multiplicity of equilibria in the second stage also leads to a multi-
plicity of subgame perfect equilibria in the whole game. We highlight this by

considering the case where players are homogeneous ex ante.

Remark 1 Suppose that x19 = x99 = w39. There exists a subgame perfect
equilibrium where, in the first stage, all players work (e} = 1,1 =1,2,3) and
do not sabotage (si; =0, ¥i, j,i # j).

Proof. See appendix. =

Remark 1 shows that in the case of homogeneous players, all players may
also work productively in the first stage. As mentioned before, this is due
to the multiplicity of equilibria in the second stage of the game. In the
asymmetric subgames, there are also equilibria where the leading players are
not sabotaged as harshly as suggested by Lemmas 1 to 3. Then, it may pay
to work productively and to move one step forward in the first stage.

In our view, however, the equilibrium described in Remark 1 is less plausi-
ble than the one described in Proposition 1. If the rivals have made different
choices in the first stage, we believe that it is focal to sabotage the rival who
is ahead in the race. Consider player 1, for example. If player 2 is leading
over 3 after the first stage, sabotaging 3 makes sense only if 1 is sufficiently
certain that the sabotage decisions of 2 and 3 will compensate the advantage

of 2 over 3. Moreover, given the small cost of sabotage, sabotaging 2 will be

12



better for player 1 than not sabotaging at all, unless 1 is sufficiently sure that
the choices of the other players are such that 1 wins with high probability
anyhow, or 1 loses with high probability anyhow. If we require players to
sabotage the rivals who are ahead in the race, the equilibrium in Remark 1
breaks down. Therefore, we have placed greater emphasis on the equilibrium

described in Proposition 1.

5.2 Crucial assumptions

In this subsection we discuss the crucial assumptions behind our main result
that the possibility of sabotage may lead to zero productive effort in the first
stage of the game. The logic behind the result is that, in the final stage,
players with a lead are sabotaged more heavily, which dampens incentives
for productive work before the final stage. There are four main assumptions
that drive this result.

1. We assume that there is a single winner prize. This fits very well to the
example of a promotion tournament where workers often compete for
a single position on a higher hierarchy level. Still, there are also real-
world examples where the prize structure is different. Former General
Electric CEO Jack Welch, for example, was an advocate of so-called dis-
missal tournaments where the worst-performing workers have to leave
the firm. In such a tournament, winning means that one is allowed to
stay in the firm, whereas losing implies that one gets fired. Accord-
ingly, there are many winner and only few loser prizes. Then, in the
final stage sabotage may be directed against players who are lagging
behind. To understand this, consider a last place punishing scheme
where all players receive an equal winner prize except the player with
the lowest output. In this case, it only matters not to have the low-
est output. Sabotaging front-runners may well be irrelevant, whereas

sabotaging those with a low output may pay off.

13



2. The result hinges on there being at least three players.’ It is easily
verified that, in the model above, if there are two players, in both
stages both players will work and sabotage. The crucial difference is
that, with three or more players, each player can choose to sabotage a

particular rival.

3. We assume that, in the first stage, players cannot get so far ahead of
their rivals that they are no longer vulnerable by sabotage. To see
that this is important, let the model be changed such that productive
effort brings a player three or more steps ahead. Thus, if players j
and k£ choose zero productive effort and do not sabotage in stage 1,
player ¢ can gain a lead of at least three steps, and consequently win
the tournament for sure, even if both rivals sabotage him in the final
stage. Then of course there is no equilibrium where players do nothing
in stage 1. Conversely, if sabotage is relatively easy and effective, no
player will be able to get sufficiently ahead of their rivals so that he his

safe from their attack.

4. We assume that players are able to observe the ranking after the first
stage of the game. Obviously, if this were not possible, players could
not direct their sabotage activities against the current leader. Then,
players would have an incentive to choose high productive effort in the

first stage of the game.

5.3 A more general model

The result in Proposition 1 is more general than the highly stylized model
considered above may suggest. In particular, it is not crucial that the number
of players is exactly equal to three, that there are only two stages, or that the

action spaces are discrete. In the remainder of this section, we demonstrate

6Chen (2003) and Miinster (2007) also point out that the case of two players is different
from the case of three or more players.
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that a similar result can be obtained in a model with n > 3 possibly hetero-
geneous players, T > 2 stages, and continuous strategy spaces. The model
is an extension of Miinster (2007). In stage t = 1,...,T, each player chooses
effort ¢! € R,. Moreover, in stage ¢t = 1,...,T, each player chooses n — 1
sabotage activities, one against each rival. Let s’éj € R, be the sabotage of
i against rival j € {1,...,n}\ {i} in stage ¢t. The final output of i equals the
sum of his efforts minus the sabotage received, plus a noise term ¢; that is

realized after the final stage of the game has been played:

T
¢ :xw—l—z <e’;f - Zs§l> + &

t=1 i
The noise terms ¢; are identically and independently distributed according to
a continuously differentiable distribution function F. As above, x;q is player
i ’s initial position. Following Miinster (2007), we assume that F' has full
support and is log-concave.” The highest output wins a winner prize V > 0,
all others get nothing. Let p; denote the probability that ¢ wins. To ease

notation, define

T T
Yij = Tio +Z (ef - Z%) - (ﬂijﬂLZ (62 - Z%)) :
t=1 t=1

£ 7]

This is the difference in expected output between player ¢ and j, given all

decisions taken in the game. Then

pi = Pr{q>q;Vj#i}
= Priy; +e >¢;,Vj#4i}
= [ War ) P e e )

(e}

"The assumption of log-concavity is fulfilled by many commonly studied parametric
distribution functions, see Bagnoli and Bergstrom (2005).
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The objective function of player i is

N g (cﬁ (e)) + Si (Z s§j>> |

J#i

Here, C;; and S;; are cost functions, assumed to be strictly increasing and
convex. Following Miinster (2007), we allow players to be heterogeneous and
have different cost functions. In fact, if 7" = 1, the model is a special case of
the model studied in Miinster (2007). Moreover, we allow the cost functions
to differ across stages.

To keep things as simple as possible, we assume that, for any decisions
taken in earlier rounds that are not prohibitively costly, the final stage of the
game has an interior pure strategy equilibrium where all decision variables
are positive. This assumption implicitly limits the degree of heterogeneity
between players, both concerning the exogenous differences in ability cap-
tured in the cost functions and in the initial positions, and the endogenous
differences due to the play on previous stages.® It ensures that, at the final
stage, sabotage is sufficiently easy and no player is beyond the reach of his
competitors (see the third point discussed above).

As in Miinster (2007, Proposition 2), in any interior equilibrium of the
last stage of the game, each player will win with the same probability. The
reason is easy to understand. Suppose to the contrary that player ¢ wins
with a higher probability than j. Then player £ should sabotage ¢ more and
reduce his sabotage against j by the same amount. Since the cost of sabotage
depends only on the sum of sabotage activities, the costs of k are unchanged.
However, as shown in Miinster (2007, Lemma 1), k£ ’s probability of win-
ning is increased; thus the initial situation cannot have been an equilibrium.

Therefore, in equilibrium all players win with the same probability.

8 As shown in Miinster (2007), when players are very different, some players may not
be sabotaged at all. Moreover, there has to be sufficiently much noise in order that a pure
strategy equilibrium exists; this is a common feature of most models of tournaments. See
Miinster (2007) for a more detailed discussion of the assumption of an interior equilibrium.

16



It follows that, by gaining a lead in the previous stages, a player does not

improve his probability of winning. Moreover, decisions taken on previous

stages have no impact on the equilibrium effort and the total amount of

sabotage chosen on the final stage. To see this, consider the necessary first

order conditions for the optimal decisions on stage 7T :

Using (1),

Opi

del

Op;

T
83”-

Ip; ,

oel V. = OiT (elT)

Ip;i , T . .

asT.V I Z‘Sil , Vj € {L,n}\{z}
K 1£i

— /OO (Z (F’ (yij + 5@’) Hlyéz‘,jF (yil + 51))) Jad (5z) dgi,

o0

J#i

= / F' (yi; + &) (Wi i F (ya + €:)) F' (e3) des.

[e.9]

Since every player wins with the same probability, y; = 0 for all ¢ and [ # .
It follows that

Define

i _ (1) /_oo F'(e:) (F ()" F' (e4) des,

del

L~ [P EE)rT R e

T
0517-

o0

[e.9]

g:=(n-1) /_OO F' (&) (F ()" 2 F' (g;) de;.

(o)

and note that g depends only on the fundamentals of the model, and is

independent of the endogenous variables. On the last stage, equilibrium
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effort, and the sum of sabotage chosen by i, equals

el = Ciz'(gV),

1 9V
255 = Sz'Tl (n—l)'

Therefore, the costs that ¢ incurs in the final stage are independent of the
decisions taken on previous stages. Of course, the previous decisions will de-
termine which rival 7 sabotages how much; only the sum of sabotage activities
of 7 is independent of previous decisions.

We now turn to the decisions taken earlier in the game. Consider stage
T — 1. As we have just argued, the choices of player i neither change his
probability of winning in the end, nor change the cost he will incur in the
equilibrium of the final stage. Thus, the only impact of ’s choices on his
payoff are through the cost ¢ incurs in stage T"— 1. Therefore it is optimal to
choose zero effort and sabotage. Proceeding with backward induction, the
argument carries over to all previous stages. The following proposition sums

up the discussion.

Proposition 3 Consider the model discussed in this subsection and suppose
that, for any history of the game up to the final stage T', the equilibrium of
the final stage is interior and in pure strategies. Then in any subgame perfect

equilibrium,

forallt € {1,....,T — 1}, alli € {1,...,n}, and all j € {1,...,n}\ {i}.

Proposition 3 shows that players choose zero effort and zero sabotage in
all stages except the final stage. Thus our first main result (Proposition 1
above) is not limited to the stylized model with exactly three homogeneous
players, two rounds, and discrete action spaces.

Unfortunately, we can use this more general setup only to confirm our

first main result. The second result requires some players to drop out of the
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race and the final-stage equilibrium not to be interior. In this case, however,
the general setup becomes intractable. To be able to present both results
in a unified framework, we have therefore decided for the discrete model

presented in Sections 2 to 4.

6 Conclusion

This paper studied sabotage in a dynamic tournament. Sabotage is not only
directly harmful, but also depresses incentives to work productively, if players
are homogeneous ex ante. If players are heterogeneous ex ante, sabotage may
be focussed on an underdog in the first round, in contrast to findings on static
tournaments. In a discussion of our results, we extended the main finding to a
situation with more than two periods, where players’ sabotage is not limited
to one opponent. One of the main assumptions driving the result is that,
for any history of the game barring prohibitively costly choices, no player
is beyond the reach of the sabotage activities of his opponents. Studying
situations where it is possible but costly to obtain such a lead would be an

interesting extension.

A Appendix:

A.1 Proof of Proposition 2

The proof proceeds in four steps. Step (i) establishes that € (1/2,1) and
y € (0,1/2). Step (ii) shows that player 1 is indifferent between the two
pure strategies he randomizes over, and step (iii) shows that player 1 has no
incentive to deviate to any other strategy. Similar considerations apply to

player 2. Finally, step (iv) shows that player 3 has no incentive to deviate.
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(i) Note that
k

1
— > S —
v
47 2(5-k)
holds iff V' > 9k, which is true by assumption. Thus we have 1/2 < x < 1.
Next, we show that y € (0,1/2). Note that y is positive if

%(1—x)<k

Inserting x yields

Since both sides of the inequality are positive, we can take the square of both

sides. Thus the last inequality is equivalent to

V2 v:o v
R R [
1 " I 2Tk

or

2
%/ﬁv — ngQ — 323 + 8K%V < —V?k
< —%kQV + ngQ +32k3 >0
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To see that this inequality is fulfilled note that

—@M/ + gw +32 > Vk (—?k + §v)

3 3
5V 5
v;g(_m+§v)
175
= —V°k
27V >0

where we use k < V/18 in the second line. Hence y > 0. Moreover, y is
strictly smaller than 1/2 iff (using = > 1/2)

1
¥+k(2x—3)>0.
But
V(1+x) V(1+3)
SR k@ -3 > P k(1-3)
1
= V-2
V- 2%
> 0

Therefore y € (0,1/2).

(ii) Given the other players’ strategies, player 1 is indifferent between
choosing e} = sl; = 1 on the one hand, and e} = 1 but si, = sl; = 0 on the
other, iff

x(y(V—k)—l—(l—Qy) (g-k))Jr(l—x) <2y(%—k)+(1—2y) (%—k))—k
:x<2y<%—k)+(1—2y)<g—k))+(1—x)(y<g—k)+(1—2y)<%—k))

The first line is the payoff from choosing e} = si; = 1.
o With probability x, player 2 sabotages player 3. In this case:
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— If 3 sabotages 2 (which happens with probability y) player 1 leads
one step before player 2, and player 3 is two steps behind player
2. By Lemma 2 (iii), the payoff of 1is V — k.

— If 3 does not sabotage at all (which happens with probability
1 — 2y) then 1 and 2 tie and player 3 is three steps behind. By

Lemma 1 (iii), 1 gets ¥ — k.

— If 3 sabotages 1, then 1 is one step behind 2 while 3 is two steps
behind 1. By Lemma 2 (iii), player 1 has a continuation payoff of

Zero.
e With probability 1 — z, player 2 does not sabotage. In this case:

— If 3 sabotages 2 (which happens with probability y) player 1 leads
one step before player 2, and player 3 is one step behind player 2.
By Lemma 2 (ii), the payoff to 1 is ¥ — k.

— If 3 sabotages 1 (which happens with probability y), then 1 is one
step behind 2 while 3 is one step behind 1. By Lemma 2 (ii), again
player 1 has a payoff of % — k.

— If 3 does not sabotage at all (which happens with probability
1 — 2y) then 1 and 2 tie and player 3 is two steps behind. By

Lemma 1 (iii), 1 gets v — k.

Similarly, the second line is the payoff from choosing e} = 1 and s{; =

1
519 = 0.

e With probability x, player 2 sabotages player 3. This leads to the same
expected continuation payoff of player 1 as in the last bullet item,

except that player 1 now incurs no cost of sabotage in the first round.

e With probability 1 — z, player 2 does not sabotage. Then:
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— If 3 sabotages 2 (which happens with probability y) player 1 leads
one step before player 2, who ties with 3. By Lemma 2 (i), the

payoft to 1 is zero.

— If 3 sabotages 1 (which happens with probability y), then 1 and 3
tie one step behind 2. By Lemma 2 (i), player 1 gets £ — k.

— If 3 does not sabotage at all (which happens with probability
1 — 2y) then 1 and 2 tie and player 3 is one step behind. By

Lemma 1 (i), 1 gets ¥ — k.

The equation can be transformed into

x(%—u—y)k)+(1—2x)(%—k—ﬂ)—k:

) (- a-on)

or equivalently into

1% 1% yV o 2ayV
— 1T — 2 _ _— —_ =
v+ xyk+4 k 7+ yk =0
Y1—-z)—k

(¥ + k) (1—2x)

Thus, given the other players follow the strategies described in the proposi-
tion, player 1 is indifferent between the pure strategies over which he ran-

domizes.

(iii) Now we show that player 1 has no incentive to deviate to any other

strategy. If player 1 does not sabotage and does not work productively, he
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gets

(omG ) (5 o(5-0)
e {a-a (5) o (3-0) (5

This is strictly smaller than the payoff from choosing si; = 1 and e} = 1 iff

x((1—2y) (%—k>+y<%—2k))
< x(y(V—k‘)+(1—2y)<%—k>)—k

Simplifying, we get

k<a (y(%+k)+(1 —2y)%)

or equivalently

k<x(y(%+k;)+%)

This inequality holds because, given z > %, the right hand side is bigger than
V/12, and we assumed that k& < V/18.

Now consider a deviation to sj; = 1 and ej = 0. The expected payoff is

x((1—2y)0+y0+y<g—k))
-2 <(1—2y) <%—k)+y(%—k>+y<%—k)) K

Again, this is smaller than the payoff from choosing si; = 1 and e} = 1,
because the continuation value is always smaller, independently of the real-

ization of the mixing of the opponents in round 1.
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Now consider a deviation to si, = 1 and e] = 0. The expected payoff is

(oo (30) o)
S T R (R E)

< o y(V—k‘)+(1—2y)(%—k>)

-2 (2y<%—k)+(1—2y) (%—k))—k

iff
V V %4
0<$Z+(1—£If) (—yﬁ+(1—2y)€)
V V 5V
= o +(-a) (E—yﬁ)

This is true since x > 1/2 and y < 1.

Finally, consider a deviation to sl, = 1 and el = 1. The expected payoff

(oG85 wo(5-0)
e {a-sees (5] n(3-1)

The continuation value is weakly smaller than that from choosing si; = e} =

1, independently of the realization of the mixing of the opponents in round

18

1; and for some realizations it is strictly smaller.

(iv) Consider player 3 and suppose e; = 1. Given the other players’

strategies, player 3 is indifferent between the three alternatives to sabotage
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player 1, to sabotage player 2, and not sabotaging at all, if

zml—@<%—k)+u—xf(%—k)—k:u—xf(%—k>.

The left-hand-side is the payoff of sabotaging player 1, and also the payoff
of sabotaging player 2; the right-hand-side is the payoff of not sabotaging at

all. The equation simplifies to

k
?— x4+
As x > 0, the solution to this condition is

Y I
2 4 2(%¥—k)

It remains to consider whether player 3 wants to deviate to some other

strategy. It is however straightforward to show that player 3 has no incentive

to deviate.

A.2 Proof of Remark 1

Note first that if the players stick to the equilibrium strategies, they are all
at the same position at the beginning of the second stage. Then, Lemma 1
applies and each player has a payoff of % — k.

In the first stage, there are three possible types of deviations from the
proposed equilibrium. A player could deviate by choosing to work and, at the
same time, to sabotage one of his opponents. Further, a player could decide
not to work and not to sabotage, while thirdly, a player could decide not to
work but to sabotage one of the other players. The first two deviations lead
to a subgame, where two players tie in the first position, while the remaining

player is one step behind. The third deviation gives rise to a subgame, where
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there is a single leader who is one step ahead of both his rivals.

Let us consider these subgames in more detail. As indicated before, in the
first subgame where A; = 0 and A, = 1, there exists a different equilibrium
than the one identified in Lemma 1. In particular, there is an equilibrium
where all players work and player 3 sabotages player 1, player 1 sabotages
player 2, whereas player 2 sabotages each of his opponents with probability

0.5. In this equilibrium, players 1 and 3 have a payoff of % — k, while player

v _
2

lead to such a subgame. If a player deviates by choosing to work and to

2 receives k. Now consider the described first-stage deviations that
sabotage one of his opponents, he may fear to receive just % — 2k (the payoff
to player 1 minus the additional sabotage cost) which is less than he would
get by sticking to the equilibrium strategy. Similarly, if a player deviates by
deciding neither to work nor to sabotage, his payoff equals % — k which is
again less than the equilibrium payoff. Hence, depending on how the players
expect the subgame to be played the first two deviations may both not be
profitable.

Under the third possible deviation a player decides not to work but to
sabotage one of his rivals. Here, we have A; = 1 and A, = 0. In addition
to the equilibrium characterized in Lemma 2 there are different equilibria in
this subgame. In these equilibria, all players work. Moreover, player 1 mixes

between sabotaging player 2 and not sabotaging anyone (with probability

r e [0, %] and 1 — r, respectively). Player 2 mixes between sabotaging
player 1 and player 3 (with probability s = Y2 and 1 — s), while player 3

sabotages player 1 for sure.
To see that no player wants to deviate, note that player 1’s payoff from
sabotaging player 2 equals
(1—-s)V -k

whereas his payoff from not sabotaging at all is

Vv

1-s)%
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Player 1 is indifferent between these actions if

-2
(1—S)V—k:(1—s)%@s:vv y

Moreover, player 1’s payoff from sabotaging player 3 is
V
1—5)=—k
(1-5)

which is lower than the payoffs identified before.
Similarly, player 2’s payoff from sabotaging 1 or 3 is the same and given
by

v
1—7r)——k
(1-1)5
This payoff must not be lower than the payoff from not sabotaging at all,
which is v
1—7)—
(1-1)5

The resulting condition is

(1-@%-@(1-@%

or

< V — 6k
r

-V
Finally, player 3’s payoff from sabotaging 1 is

TSV—F(l—T)S%—/{

which is never lower than his payoff from sabotaging player 2

V V
L1 — ) s— —
7"32—1—( 7’)82 k
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or his payoff from not sabotaging at all

7“3% +(1 —7")8%

To see the latter, note that

r3V+(1—r)sg—k>7"8%+(1—7“)3%

<=>SK+TSK>]€
6 3
V_%K_I_TV_%K
V 6 vV 3
V — 8k V —2k

>0
R

>k

Because of V' > 8k, the last condition is always fulfilled.

Consider now a deviation in the first stage of the game that leads to such
a subgame. If a player deviates by not working and sabotaging one of his
rivals, he must fear to receive a payoff (1 — r) % — k — k. This payoff is lower

than the equilibrium payoff if r is high enough (for r = V"/ﬁk it is definitively

lower). Then, the deviation is not profitable. In turn, there are situations

where no profitable deviations from the proposed equilibrium exist.
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