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Abstract

This paper shows that, contrary to what is generally believed, decreas-
ing concavity of the agent’s utility function with respect to the screening
variable is not sufficient to ensure that stochastic mechanisms are subopti-
mal. The paper demonstrates, however, that they are suboptimal whenever
the optimal deterministic mechanism exhibits no bunching. This is the case
for most applications of the theory and therefore validates the literature’s
usual focus on deterministic mechanisms.
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1 Introduction

In the past decades economic literature has seen many fruitful applications of

mechanism design in the theory of nonlinear pricing, monopoly regulation, tax-

ation, and insurance. Most of these applications, however, restrict their analysis

to deterministic mechanisms. By itself the restriction is problematic, because

it is well known that in general deterministic mechanisms are suboptimal (e.g.

Stiglitz [6], Arnott and Stiglitz [1]). It is therefore a priori not clear that the

obtained mechanisms are truly optimal and do indeed represent optimal ways to

deal with asymmetric information.1 This has prompted authors to find additional

conditions that guarantee an optimality of deterministic mechanisms.

For principal–agent problems with quasi–linear utility such a condition is seen

in a decreasing concavity of the agent’s utility function with respect to the screen-

ing variable (e.g., Laffont and Tirole [4,p.119], or Fudenberg and Tirole [2,p.306],

Laffont and Martimort [3,p.65]). This paper presents a counter example which

contradicts this claim. It provides the intuition that, contrary to deterministic

mechanisms, stochastic mechanisms are able to implement allocations that are

non–monotonic in expected terms. Consequently, stochastic mechanisms may be

optimal when non–monotonic schemes are desirable.

The paper further shows that when the optimal deterministic mechanism does

not involve bunching, then it is also optimal with respect to stochastic mecha-

nisms. As “no–bunching” is the norm in most applications of the theory, the result

validates the literature’s focus on deterministic mechanisms.2 I demonstrate this

result by considering the optimality of stochastic mechanisms directly. The ap-

proach therefore differs from the literature’s more indirect procedure of replacing

each random mechanism with a corresponding deterministic one. Instead, my

approach is more related to Myerson [5], who shows that also in auctions the im-

plementation problem can be reduced to an unconstrained maximization problem

which is linear in probability.

2 The Example

An existing argument that demonstrates the suboptimality of random mech-

anisms in principal–agent settings with quasi–linear utilities may be found in

standard text books (e.g., [2,p.306], [4,p.119], [3,p.65])). The logic behind the ar-

1See [6] for a more elaborate discussion of this problem.
2Hence, apart from the fact that the analysis of bunching is more involved, an additional

reason to focus on settings without bunching is the optimality of deterministic mechanisms.
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gument is to show that the players gain by replacing a random mechanism with

one that implements the expected allocation of the mechanism deterministically.

Indeed, if this can be done for any random mechanism, then random mechanisms

are suboptimal. However, contrary to deterministic mechanisms, random mech-

anisms are able to implement allocations that are non–monotonic in expected

terms. As is well known, such schedules cannot be implemented by deterministic

mechanisms.

This suggests that if non–monotonic schedules are desirable, stochastic mech-

anisms may outperform deterministic ones. In this case, the principal faces a

trade–off between the desirability of non–monotonic schedules versus the intro-

duction of additional risk. Consequently, this section demonstrates the beneficial

role of stochastic mechanisms in a specific principal agent problem in which the

principal and the efficient type do not mind risky allocations. It therefore illus-

trates the positive effect of stochastic mechanisms in an extreme way; stochas-

tic mechanisms are able to implement the optimal non–monotonic deterministic

mechanism arbitrarily closely.

Suppose the principal has to implement some allocation x ∈ IR+ and may

specify a transfer w ∈ IR. There are two types of agents θ ∈ {1, 2} with quasi–

linear utility functions

u1(w, x) = w − x2 and u2(w, x) =

{
w − x2/2 for x < 2;

w − 2x + 2 for x ≥ 2.

Note that the utility function of type 2 is differentiable at x = 2 and satisfies the

single crossing condition ∂u1(w, x)/∂x ≤ ∂u2(w, x)/∂x for all (w, x). The specific

feature of type 2’s utility function is that it does not exhibit any risk aversion

for allocations x ≥ 2. Observe however that his utility function is less concave

with respect to x than type 1’s; a property that a part of the literature views as

a guarantee for the optimality of deterministic mechanisms.

Let the principal consider the two types of agents equally likely. The princi-

pal’s utility associated with an allocation (w, x) depends on the agent’s type as

follows

V1(w, x) = 10x− w; V2(w, x) = x− w.

The first best allocations, which maximize Vi(w, x) + Ui(w, x), are xfb
1 = 5

and xfb
2 = 1. Thus, a decreasing schedule is socially desirable. Under asymmetric

information the optimal direct, deterministic mechanism ((wsb
1 , xsb

1 ), (wsb
2 , xsb

2 )) is

a solution to

max V1(w1, x1)/2 + V2(w2, x2)/2
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s.t. U1(w1, x1) ≥ U1(w2, x2) and U2(w2, x2) ≥ U2(w1, x1); (1)

U1(w1, x1) ≥ 0 and U2(w2, x2) ≥ 0; (2)

where (1) represents the incentive constraints and (2) the individual rationality

constraints. Following standard procedure, we first neglect the individual ra-

tionality constraint of the efficient type 2 and the incentive constraint of the

inefficient type 1. This procedure yields the schedule x̂ = (x̂1, x̂2) = (3, 1)

with wages ŵ = (ŵ1, ŵ2) = (9, 11/2). However, from the two incentive con-

straints and the single crossing property it follows that a deterministic schedule

is only implementable if it is weakly increasing. Hence, the obtained schedule is

not implementable; the solution (x̂, ŵ) violates the incentive constraint of type

1. Consequently, the optimal deterministic mechanism involves bunching, i.e.,

x1 = x2 = x, and maximizes V1(w, x)/2 + V2(w, x)/2 subject to U1(w, x) ≥ 0.

Straightforward calculations yield the solution (w∗, x∗) ≡ (121/16, 11/4). It fol-

lows that the optimal deterministic mechanism is (wsb
1 , xsb

1 ) = (wsb
2 , xsb

2 ) = (w∗, x∗)

and yields the principal a payoff of 121/16.

Note that the second best allocation xsb
2 = 11/4 lies in the range for which

type 2 is risk neutral with respect to the allocation x. That is, within this

range type 2 is only interested in the expected allocation and is not affected by

randomness. Since also the principal is only interested in the expected allocation,

we can introduce some randomness at no costs. Yet, by introducing randomness

concerning type 2’s allocation, it becomes less attractive to type 1. Randomness

may therefore be introduced to relax the incentive constraint for type 1. As

a concrete example consider the following stochastic direct mechanism. Type

1 is offered the original contract (121/16, 11/4). Type 2 is offered a contract

with a deterministic wage 119/16 but after acceptance the contract randomizes

between the allocations x = 2 and x = 10/3 with equal probability. Note that the

expected allocation 1/2 ∗ 2 + 1/2 ∗ 10/3 is smaller than the allocation 11/4 which

is meant for type 1. Straightforward calculations show that, despite this feature,

the stochastic mechanism is both individual rational and incentive compatible. It

yields the principal an expected payoff of 91/12, which exceeds the payoff 121/16

from the optimal deterministic contract.

However, in this extreme example where type 2 is risk neutral for any x > 2,

the principal may do even better and implement the decreasing schedule x̂ = (3, 1)

with wages ŵ arbitrarily closely. To see this, consider the deterministic contract

γ1 = (w1, x1) = (9, 3) and a contract γ2(α) with a deterministic wage w2(α) =

5 + α/2 +
√

2(1− α)(8 + α) that randomizes between the allocation x21 = 1 and

x22(α) = 1 +
√

8 + α/
√

2− 2α with probability α and 1 − α respectively. By
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construction the menu (γ1, γ2(α)) is individual rational and incentive compatible

for any α ∈ (0, 1). Note that as α goes to one, the mechanism implements (x̂, ŵ)

ever more closely.

The example shows that the optimality of stochastic mechanisms is related

to a desirability of non–monotonic allocation schedules. One may provide the

following intuition for this result: When the principal prefers a non–monotonic

schedule, a separation of types on the basis of different degrees of efficiency is

not appropriate, since such separation demands that schedules are monotonic.

In contrast, non–monotonic separation is possible on the basis of different risk

attitudes by choosing a schedule of increasing risks for the less risk averse types.

Hence, the example suggests that deterministic mechanisms are optimal if non–

monotonic schedules are undesirable. The rest of the paper shows that this rea-

soning is correct; whenever the optimal deterministic mechanism does not involve

bunching, stochastic mechanisms are indeed suboptimal.

3 A General Principal–Agent Setup

Consider a contracting problem between a principal and an agent. The principal

has no private information. The agent, however, is privately informed about his

type θi ∈ Θ, where the number of types n ≡ |Θ| is finite.3 The agent’s type

θ is drawn from some objective distribution p = (p1, p2, . . . , pn). The principal’s

problem consists of selecting a monetary transfer t ∈ IR to the agent and an

allocation x ∈ X ⊂ IR. The principal’s and agent’s payoffs are quasi–linear and

satisfy

V (t, x|θi) = vi(x)− t and U(t, x|θi) = ui(x) + t,

respectively. I make three assumptions concerning the agent’s utility that are

standard for these types of principal–agent problems: First, higher types derive

a higher utility from an allocation x than lower types. I.e.,

ui(x) > ui−1(x), ∀θi ∈ Θ\{θ1}, ∀x ∈ X. (3)

Second, the agent’s preferences satisfy a single crossing condition in that for all

x, y ∈ X with x > y it holds

ui(x)− ui(y) ≥ ui−1(x)− ui−1(y), ∀θi ∈ Θ\{θ1}. (4)

Third, the agent’s reservation utility is type independent and normalized to zero.

3To limit technicalities, I restrict attention to finite, but arbitrarily large type sets.

5



In order to solve her contracting problem, the principal may use a mechanism

to elicit the private information from the agent. I distinguish between two types

of mechanisms: deterministic and stochastic ones. For deterministic mechanisms,

the implemented allocation x ∈ X depends on the agent’s supply of information

in a deterministic way, whereas for stochastic mechanisms the relationship may

be stochastic. As is well know (e.g., [2,p.306]), the quasi–linear payoff struc-

ture implies that there is no gain in randomizing with respect to the transfer t.

Consequently, without loss of generality the transfer is assumed deterministic.4

More precisely, a deterministic, direct mechanism ∆ = (t, x) specifies a trans-

fer schedule t : Θ → IR and an implementation function x : Θ → X. Thus, when

the agent announces he is of type θi, he receives a transfer ti and the deterministic

allocation xi is implemented.

In order to introduce stochastic mechanisms, let X denote the Borel σ-algebra

on X.5 A stochastic, direct mechanism Σ = (t, µ) specifies a transfer schedule

t : Θ → IR and an implementation function µ : Θ → Q, where Q is the set of

probability measures on X . Thus, µi(H) with H ∈ X denotes the probability

that an allocation which lies in H is implemented, when the agent reports he is of

type θi. Deterministic mechanisms are a special case of stochastic mechanisms.

In particular, a deterministic mechanism ∆ = (t, x) is equivalent to the stochastic

mechanism Σ∆ = (t, µ∆) with

µ∆
i (x(θi)) = 1, ∀θi ∈ Θ.

Alternatively, a stochastic mechanism (t, µ) is equivalent to a deterministic mech-

anism, whenever it is degenerated. That is, whenever it holds

µi(H) ∈ {0, 1}, ∀H ∈ X . (5)

4 Two Optimization Problems

Since the principal operates under perfect commitment, the revelation principle

holds. Consequently, there is no loss of generality by focusing on direct mech-

anisms Σ that are incentive compatible. The following maximization problem

yields such an optimal mechanism:

PΣ : max
Σ=(t,µ)

Vσ(Σ) ≡
n∑
i

{∫
pivi(x)dµi − piti

}
(6)

4When also the screening variable enters only linearly, deterministic mechanisms are optimal
by the same argument.

5All functions, such as v and u, are therefore assumed measurable on (X,X ).
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s.t.
∫

ui(x)dµi + ti ≥
∫

ui(x)dµj + tj, ∀θi, θj ∈ Θ; (7)∫
ui(x)dµi + ti ≥ 0, ∀θi ∈ Θ; (8)

where (7) represent the incentive compatibility constraints and (8) the individual

rationality constraints. Let Σ∗ = (tΣ, µΣ) with value V Σ = Vσ(Σ∗) denote a solu-

tion to problem PΣ. Throughout this paper I assume that optimal mechanisms

exist. Clearly, V Σ is unique, while there may be multiple solutions Σ∗.

Most applications of mechanism design do not study problem PΣ directly.

Rather, they first restrict attention to deterministic mechanisms of the type ∆.

In a second step, they then search for conditions that imply a suboptimality of

stochastic mechanisms. Indeed, given a suboptimality of stochastic mechanisms,

the revelation principle indirectly implies that there exists an optimal mecha-

nism that is direct, deterministic, and incentive compatible. Hence, an optimal

deterministic mechanism is a solution to

P∆ : max
∆=(t,x)

Vδ(∆) ≡
∑

i

pi {vi(xi)− ti} (9)

s.t. ui(xi) + ti ≥ ui(xj) + tj, ∀θi, θj ∈ Θ; (10)

ui(xi) + ti ≥ 0, ∀θi ∈ Θ; (11)

where (10) and (11) represent the incentive compatibility and individual rational-

ity constraints, respectively. Let ∆∗ = (t∆, µ∆) with value V ∆ = V (∆∗) denote

a solution to problem P∆.

Since deterministic mechanisms are degenerated stochastic mechanisms, prob-

lem P∆ is more constrained than problem PΣ. More precisely, problem P∆ is

equivalent to PΣ with the additional restriction (5) so that V ∆ ≤ V Σ.

The usual approach to solving problem P∆ is to focus on the local downward

constraints. In particular, disregarding the other constraints, one concentrates

on the relaxed maximization problem:

max
∆=(t,x)

Vδ(∆) s.t. ui(xi) + ti ≥ ui(xi−1) + ti−1, ∀θi ∈ Θ, (12)

where u1(x0) = t0 = 0. As is well known, the single crossing condition implies

that a solution to the relaxed problem (12) coincides with the solution to problem

P∆ if it satisfies the following monotonicity conditions:

xi ≥ xi−1, ∀θi ∈ Θ\{θ1}. (13)
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5 Optimality of Deterministic Mechanisms

This section demonstrates that whenever a solution to (12) exists that satisfies

the monotonicity constraint (13), then this implies that deterministic mechanisms

are optimal. To arrive at this result, I first relax problem PΣ in a similar way as

in the deterministic problem and focus on the relaxed problem

max
Σ=(t,µ)

Vσ(Σ) s.t.
∫

ui(x)dµi + ti ≥
∫

ui(x)dµi−1 + ti−1, ∀θi ∈ Θ, (14)

where t0 = 0 and µ0(H) = 0 for all H ∈ X . Since problem (14) is less con-

strained than the original problem PΣ, its solution, V r, is weakly greater than

V Σ. In addition, the problem is also less constrained than the relaxed determin-

istic program (12). Indeed, program (12) is equivalent to program (14) with the

additional constraint (5).6

Clearly the constraints in program (14) must be binding at the optimum, since

otherwise one could lower the respective payment ti and increase the objective

function without violating any constraints. Hence, the transfers ti may be solved

recursively as

ti = tri (µ) ≡ −
i∑

j=1

{∫
uj(x)dµj −

∫
uj(x)dµj−1

}
.

Substitution of ti and a rearrangement of terms leads to the maximization problem

max
µ

Vσ(tri (µ), µ) =
n∑
i

{∫
ci(x)dµi

}
, (15)

with

ci(x) ≡ pi(vi(x) + ui(x))−
n∑

j=i+1

pj(ui+1(x)− ui(x)).

A solution of (15) is straightforward.7 For each type θi, it puts all probability

mass on an allocation x that maximizes ci(x). More precisely, define xr
i as a

maximizer of ci(x), i.e., xr
i ∈ arg maxx ci(x). Moreover, define µr = (µr

1, . . . , µ
r
n)

as

µr
i (H) ≡

{
1 if xr

i ∈ H

0 if xr
i 6∈ H,

for all θi ∈ Θ and H ∈ X .

6Note that there exist no straightforward conditions similar to (13) which guarantee that
the solution of problem (14) coincides with the solution of the original problem (6).

7Existence is guaranteed when X is compact and ci(x) is upper semicontinuous.

8



Proposition 1 The implementation function µr is a solution of (15).

Proof: For any implementation function µ̃ it holds

Vσ(tri (µ̃), µ̃) =
n∑
i

pi

{∫
ci(x)dµ̃i

}
≤

n∑
i

pi

{∫
max

x
ci(x)dµ̃i

}
=

n∑
i

pi max
x

ci(x) =
n∑
i

pici(x
r
i ) =

n∑
i

pi

{∫
ci(x)dµr

i

}
= Vσ(Σr),

with Σr ≡ (tri (µ
r), µr). Hence, µr yields at least as much as any other µ̃ and is a

maximizer. Q.E.D.

Since µr
i satisfies (5), it is a degenerated measure. Hence, the mechanism Σr =

(tr(µr), µr) is equivalent to the deterministic mechanism ∆r ≡ (tr(µr), xr(θ)) with

xr(θi) ≡ xr
i .

As ∆r satisfies the constraints of the relaxed maximization problem (12), it must

also solve (12). This reasoning leads to our main result:

Proposition 2 If there exists a solution (t̄, x̄) of (12) that satisfies (13) then

V ∆ = V Σ and deterministic mechanisms are optimal.

Proof: Suppose (t̄, x̄) solves (12) and satisfies (13) then (t̄, x̄) solves P∆ so that

V ∆ = Vδ(t̄, x̄). Thus, it holds Vδ(t̄, x̄) = V ∆ ≤ V Σ ≤ Vσ(Σr). But ∆r satisfies the

constraints in (12) so that it is feasible for this program. Since (t̄, x̄) solves (12),

it must therefore hold Vδ(∆
r) ≤ Vδ(t̄, x̄). Finally we have that Vσ(Σr) = Vδ(∆

r).

Linking all these weak inequalities yields Vσ(Σr) = Vδ(∆
r) ≤ Vδ(t̄, x̄) = V ∆ ≤

V Σ ≤ Vσ(Σr). Hence, V ∆ = V Σ, so that a deterministic mechanism is optimal.

Q.E.D.

6 Concluding Remarks

This paper shows that in principal–agent problems deterministic mechanisms are

suboptimal even if the concavity of the agent’s utility function with respect to the

screening variable decreases with the agent’s type. The advantage of stochastic

mechanisms is that they are able to separate types due to a difference in risk

attitudes with respect to the screening variable instead of efficiency alone. As

a consequence, they are, in contrast to deterministic ones, able to implement

allocations that are decreasing in expected terms. This may render deterministic

mechanisms suboptimal.
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Yet, whenever the optimal deterministic contract involves no bunching of

types, it is also optimal with respect to stochastic mechanisms. This endoge-

nous condition hands applications a practical tool for checking the optimality of

deterministic contracts; normally one already checks for monotonicity for other

reasons. Indeed, since in most applications the obtained optimal deterministic

mechanisms do not involve bunching, it validates the literature’s usual restriction

to such mechanisms.

At first sight it may seem puzzling that the result does not depend on the

concavity of the players’ utility functions vi(x) and ui(x). That is, deterministic

mechanisms are optimal, even when the principal and agent are risk–loving with

respect to x and explicit randomization seems desirable. To understand that such

an intuition is misleading, consider the special case of n = 1. In this case there is

no asymmetric information and the principal simply maximizes the social surplus

v1(x) + u1(x). Clearly, randomization with respect to x does not yield a higher

surplus. In particular, when v1 and u1 are both convex on the entire domain X,

the optimal allocation is either a corner solution or does not exist. Finally, note

that the result does not claim that, in general, there do not exist deterministic

allocations x ∈ X that are Pareto dominated by stochastic ones. Rather, if such

allocations exist, they are suboptimal.
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