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Abstract

A budget-constrained buyer wants to purchase items from a shortlisted set.

Items are differentiated by quality and sellers have private reserve prices for

their items. Sellers quote prices strategically, inducing a knapsack game.

The buyer’s problem is to select a subset of maximal quality. We propose

a buying mechanism which can be viewed as a game theoretic extension of

Dantzig’s greedy heuristic for the classic knapsack problem. We use Monte

Carlo simulations to analyse the performance of our mechanism. Finally,

we discuss how the mechanism can be applied to award R&D subsidies.

JEL classifications: D21, D43, D44, D45
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1. introduction

Consider a buyer who has a fixed budget to spend on items from a shortlisted

set. The items differ in quality. The quality of a subset of items is the

sum of the individual qualities of its elements. A subset of higher quality is

preferred to one of lower quality. Subsets of the same quality are considered

as perfect substitutes. Each seller has private information about his reserve

price for his item. The buyer’s problem is to select a subset of items of

maximal quality subject to his budget constraint.

Under complete information, the buyer faces a binary knapsack problem

with qualities corresponding to values and reserve prices corresponding to

weights in the standard notation. In the realm of incomplete information,

any buying mechanism induces a knapsack game where sellers choose the

weight of their item (i.e. the price they quote) strategically. In this paper we

extend Dantzig’s greedy heuristic (Dantzig (1957)) for the knapsack problem

to this game–theoretic setting. More precisely, we design an auction mech-

anism with the following property: In equilibrium (in dominant strategies)

every item that is chosen has better quality relative to its price than every

item that is not chosen.

For an important application of this problem, consider government funds

to subsidize R&D activities by private businesses. Firms apply for subsidies

by submitting a research proposal. Proposals vary both in quality and the

stated level of required funding. A selection committee chooses an alloca-

tion that maximizes total quality. Since costs are private information, firms

might overstate the amount they need, leading to suboptimal allocations.

The problem was first studied by Giebe, Grebe, and Wolfstetter (2006) who

give an economic analysis of the R&D subsidies program for small and

medium-sized companies in Germany (see Binks, Lockett, Siegel, and Wess-

ner (2003) for an account of the US and UK programs). Aggarwal and Hart-

line (2006) study knapsack auctions with applications to advertisement and

broadband bandwidth markets.

This paper proceeds as follows. Section 2 introduces the problem in a for-

mal setting. In section 3, we present our mechanism. We discuss several

properties and give examples. In particular, we outline its connection to

Dantzig’s algorithm. Section 4 employs a Monte Carlo simulation to com-

pare the performance of the mechanism to theoretical benchmarks. Section

5 briefly debates some aspects of applying the mechanism to award R&D

subsidies.

2. the model

2.1 The formal setting

Assume we haven potential sellers numbered 1, . . . , n. We use i to represent

a typical seller andN to represent the whole set of sellers, i.e. N = {1, . . . , n}.

Each seller wants to sell an indivisible item for which he has a private reserve
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price zi. Items differ in quality. Let qi denote the quality of seller i’s item

relative to an item of highest quality, so that 1 ≥ qi for all i ∈ N (This

requires the possibility to compare items’ qualities quantitatively). Sellers

are faced by a single buyer who has a fixed and finite budget B to spend

on these items. The buyer’s objective is to purchase a subset of items of

maximal quality, where the quality of a set of items is the sum of qualities

of its elements.

2.2 Complete Information: The Knapsack Problem

The 0-1 (binary) knapsack problem is one of the most studied problems

in combinatorial optimization (see e.g. Korte and Vygen (2005, ch. 17)). It

reads as follows:

Given a set of items each with a weight and a value, determine a subset of

items so that the total weight is less than a given capacity and the total value

is as large as possible.

Note that for the special case of complete information, (i.e. if all zi are

known) the buyer’s problem is a knapsack problem, with qualities corre-

sponding to values and reserve prices corresponding to weights. Indeed,

the buyer merely has to solve the optimization problem and pay every seller

in the chosen allocation his reserve price. More formally, the buyer’s prob-

lem reduces to finding

arg max
x

n
∑

i=1

qixi s.t.

n
∑

i=1

zixi ≤ B, x ∈ {0,1}n (1)

The binary knapsack problem is NP -hard. Dantzig proposed the following

simple heuristic algorithm:

Dantzig’s greedy heuristic. Sort items in increasing order of weight–per–

value. Insert items in this order until the cap binds.

The heuristic can perform arbitrarily bad relative to the optimal solution.

However, one can derive a relative bound:

Lemma 2.2.1 (Dantzig (1957)) Suppose that the first i− 1 items of the list fit

into the knapsack. Then the absolute error is bounded by the value of the ith

item (the critical item).

2.3 Incomplete information: A knapsack game

In the presence of incomplete information (i.e. private reserve prices) any

buying mechanism induces a knapsack game where sellers choose the weight

of their item (the price they quote) strategically. The special case of com-

plete information poses a natural benchmark for any buying mechanism for

this general case. In the next section we develop a simple and very practi-

cable auction mechanism that performs remarkably well (compared to this
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benchmark) in simulations. Our mechanism can be viewed as an extension

of Dantzig’s greedy heuristic to this game theoretic knapsack problem in

the way that, in equilibrium, it chooses those items which offer the best

price-per-quality ratio.

3. the mechanism

In this section we present our main results. In 3.1 we introduce the Dantzig

auction for the buyer’s problem and discuss some properties. We give two

examples in 3.2.

3.1 The Dantzig auction

Consider the following open descending clock auction for the buyer’s prob-

lem introduced in section 2: Each potential seller makes an initial offer (or

bid). Should the sum of all bids exceed the buyer’s budget, the buyer tells

each bidder to lower its bid by a certain decrement (this might be zero or

a positive number). If a bidder refuses to lower his bid by the required

amount, he is eliminated from the auction. If he accepts, he stays active

for the next round (if there is one). This procedure continues until the bud-

get exceeds the sum of all active bids, i.e. until there is no excess demand.

Those bidders who are still active at the end of the last round receive their

final bids in return for their items.

A stopping rule βi(zi) is the lowest bid that bidder i is willing to make

depending on his private reserve price zi.

Lemma 3.1.1 βi(zi) = zi is a weakly dominant strategy for all i = 1, . . . , n

Proof Assume bidder i chooses βi > zi. If i wins at price βi(zi) or higher

there is no difference. But if i loses there is either no difference or i would

have won (and preferred to win) by playing zi instead. The argument is

analogous for zi > βi(zi). �

Thus, (β1, . . . , βn) = (z1, . . . , zn) is an equilibrium in (weakly) dominant

strategies. Whenever we speak of an equilibrium of the auction game, we

will implicitly refer to this particular equilibrium.

Next, we want to specify how the decrements are calculated. To this end,

we propose the following Dantzig clock rule: Each bidder starts at his max-

imal bid. This might simply be the budget B for all bidders. Alternatively,

there may be predefined individual maximal bids for the bidders. A price-

per-quality bidding-clock starts at the highest initial bid-per-quality ratio.

As long as there is excess demand, this price-per-quality clock is lowered by

one unit every round and all active bidders are informed if and by how much

they have to lower their bids to meet the new ratio. As an example, consider

a bidder whose item has quality q =
1
2 and assume that his current bid is

b = 100, giving him a current price-per-quality ratio of 200. Now, suppose
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the price-per-quality clock is lowered to 199. The bidder has to lower his

bid to 99.5 to stay active.

Definition 3.1.1 A descending clock auction as above with a Dantzig clock

rule is a Dantzig auction.

The next proposition shows that this name is indeed justified.

Proposition 3.1.1 In equilibrium, the Dantzig auction leads to an allocation

A with the following Dantzig–like property: Let i, j ∈ N, with i ∈ A and

j ∈ N\A. Let bwi be i’s winning bid. Then
bwi
qi
<

zj
qj

, i.e. every item in the

final allocation has a better price–quality ratio than every item that is not in

that allocation.

Proof As j is not in the final allocation, there exists a round r in which j

drops out of the auction. Suppose the price-per-quality clock shows x after

round r −1. Then, in equilibrium, x ≥
zwj
qj
> x−ε, where ε is the decrement.

But i is still active after round r , thus x − ε ≥
bri
qi

(bri being i’s bid in round

r ). Since qi is constant and bids can only decrease from round to round, the

result follows. �

In other words: Take the complete set of information generated during the

auction, that is the set of winning bids and the final bids of all other bidders.

Then the Dantzig auction yields the same allocation as the Dantzig heuristic

applied to this information set.

Instead of allowing for a multiround open bidding procedure, the buyer

could design an equivalent automated mechanism where bidders simply

submit a stopping rule to an algorithm.1

Let B be the budget, c = (c1, . . . , cn) the vector of individual maximal bids

(again, ci = B for all i ∈ N is possible), q = (q1, . . . .qn) the vector of quality

ratios relative to the best project, ε > 0 the size of the decrement and β =

(β1, . . . , βn) the vector of chosen stopping rules. Additionally, let b denote

an arbitrary set of bids and A ⊆ N an arbitrary subset of items. With this

notation, the following proxy algorithm is equivalent to the Dantzig auction.

Algorithm 3.1.1

INPUT: B, N, ε, c, q, β

INITIALIZE: b=c,A= {1, . . . , n}

WHILE: |b| > B

• Let r =max
{

b1

q1
, . . . ,

b|A|
q|A|

}

• For all i with
bi
qi
= r

1Of course, for equivalence the algorithm must not exploit the collected information to

the bidders’ disadvantage.
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• IF bi > βi

· bi ← bi − εqi // lower the bid

• ELSE

· A ←A\{i}, b← b\{bi} // eliminate from the auction

· rearrange indices appropriately

RETURN:A, b

It should be clear that the algorithm terminates as the sum of active bids

decreases every round.

3.2 Examples

Consider the following examples

1. Let B = 100, ci = B for all i and suppose there are four items.

Items 1 2 3 4

qi 1
1
2

1
2

1
4

zi 50 20 20 10
ci
qi

100 200 200 400
zi
qi

50 40 40 40

Consider the Dantzig auction with this input. The price-per-value clock

starts at 400 (
c4

q4
). The auction ends when the clock is at 49, once 1

dropped out. 2, 3 and 4 win at prices 24.5, 24.5 and 12.25 yielding a

total quality
1
2 +

1
2 +

1
4 =

5
4 . Assuming sellers play their equilibrium

strategies, the buyer learned that z1 = 50, z2, z3 ≤ 24.5 and z4 ≤ 12.25.

Exploiting this information, the buyer would chose 1, 2 and 3 at a total

cost of 99, yielding a quality of 2. Under complete information the

buyer would select the first best allocation and purchase all the items

at their reserve prices, giving him quality of
9
4 at a total cost 100.

2. LetB = 100, and suppose there are two projects, 1 and 2, with q1 = q2.

Let z1,= z2 = 51. Then the algorithm chooses the empty set. This

shows that the algorithm can perform arbitrarily bad relative to the

optimal solution.

4. simulation

In this section we analyse the performance of the Dantzig auction using a

Monte Carlo simulation. For this, we assume that sellers play their equi-

librium strategies. We compare the resulting allocation, D, to two natural

benchmarks. The first benchmark, D′, is the optimal allocation that results
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if one considers all bids that are made in the auction (recall that the chosen

allocation ignores players who drop out before the auction ends). The sec-

ond benchmark, CI, is the optimal choice under complete information (see

Section 2).

We chose the following simulation parameters:

• Each item has one of three quality values: (qA, qB , qC) =
(

1,
1
2 ,0.333

)

• budget: B = 10,000

• zi uniformly distributed with support [0,1000]

• ci uniformly distributed with support [zi,1000]

• number of projects: n=100

• number of simulated auctions: 500

Note that every project assumes one of only three possible quality values.

Also, we included individual caps for the bidders. Both of these assumptions

were introduced as they become relevant when applying our mechanism to

award R&D subsidies (see section 5). In the following we present the results

of this simulation.

Our theoretical results imply that the total quality improvement from D to

D′ cannot exceed the value of the most valuable item qA = 1. This is con-

firmed by the simulation results. Figure 1 shows the empirical distribution

of absolute improvements for all simulated auctions. Moreover, we see that

for more than 60 per cent of cases an improvement was impossible. In

about 80 per cent of all cases the improvement does not exceed the value

of qB = 0.5. Figure 2 shows the relative quality gain that one obtains if one

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

Figure 1: cdf of absolute welfare gain after move from D to D′

moves from D to D′. In only a few cases, the quality gain was more than

four per cent. The above simulation results suggest that applying Dantzig’s

heuristic to the collected information during the auction is indeed a good
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Figure 2: cdf of relative quality gain after move from D to D′ (0.01 = 1 per

cent)
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Figure 3: cdf of relative total quality of D and D′ as compared to the first–

best allocation (100%)

approximation to a maximization over all allocations that are feasible given

that information.

Figure 3 compares the quality (welfare) of D and D′ as compared to the

complete–information benchmark, CI, by computing the empirical distribu-

tions of quality. For most of the observations, allocations D and D’ achieve

between 70 and 80 percent of the first best quality.

5. application to r&d subsidies

In this section we briefly sketch a possible application of the Dantzig mech-

anism.

As mentioned above, this work is motivated by Giebe, Grebe, and Wolfstetter

(2006). The authors analyse the German R&D subsidy programs for small

and medium-sized private businesses (which is similar in spirit to the SBIR

program in the US). Firms from all sectors of the economy are encouraged
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to submit their research proposals. Proposals are evaluated by a panel of

experts and ranked into one of three quality categories A, B or C (experts

frequently point out that a finer grading is hard if not impossible to achieve).

Successful applicants receive a subsidy of 50 per cent of their stated person-

nel cost. Current practice allocates subsidies as follows: As manyA projects

as possible are funded. If there is money left, it is used to fund as many B

projects as possible etc. Giebe et al outline the two major flaws of this pro-

cedure. First, it puts relatively cheap C and B projects at disadvantage to

expensive A projects even though they might promise much better research

results relative to their cost. Second it is highly likely that some applicants

receive more money than they require to carry out the project (if they agree

to do it for 50 per cent of their personnel cost it is a fair guess that some

would do it for less). The proposed Dantzig mechanism addresses both

these problems. Introducing a price-per-quality clock enforces competition

across the quality classes and the open bidding procedure brings the subsi-

dies closer to the firms’ reserve prices. The 50 per cent personnel cost serve

as the firms’ individual maximal bids.

There is one design issue that we haven’t addressed yet, namely the concept

of quality ratios. In current practice quantitative ratios between the differ-

ent quality classes exist only implicitly in the sense that qA >> qB >> qC ,

i.e. any A project is always preferred to any B project is always preferred to

any C project independent of the costs. To apply the Dantzig mechanism

one has to explicitly attach numerical equivalence ratios to the three cate-

gories (The ratios of qB = 0.5 and qC = 0.33 for our simulation were chosen

arbitrarily).
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