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Abstract

This paper examines the efficiency of expectation damages as a breach remedy

in a bilateral trade setting with renegotiation and relationship-specific investment

by the buyer and the seller. As demonstrated by Edlin and Reichelstein (1996), no

contract that specifies only a fixed quantity and a fixed per-unit price can induce

efficient investment if marginal cost is constant and deterministic. We show that

this result does not extend to more general payoff functions. If both parties face

the risk of breaching, the first best becomes attainable with a simple price-quantity

contract.

(JEL: K12, D86, L14)

Real-world contracts sometimes look surprisingly simple given the complexity of the

environment. A production contract between a buyer and a seller might specify only
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a fixed quantity and a price per unit, although between the signing of the contract

and actual trade many contingencies may arise that affect the value of trade. As a

consequence, after the uncertainty about valuation and production costs is resolved

the parties might observe that they can make a larger profit by trading more or less

than the stipulated quantity. In this case, they can resort to renegotiation to reach a

trade decision that is optimal given the relationship-investments they made. The main

purpose of their contract is then to set the right incentives to invest.

The contract affects the investment incentives by serving as a disagreement point in

the renegotiations. Here, standard breach remedies play a role, since the payoff that

one party can realize unilaterally also depends on the consequences of breach. In this

paper, we focus on the standard expectation damages remedy. It is assumed that courts

can verify all relevant information to award expectation damages, which compensate

the victim of breach for the loss of profit. Our result is that contracts do not need to be

contingent under this damage rule: price and quantity can be adjusted to induce both

parties to invest efficiently.

Two effects of renegotiation and standard breach remedies on investment have been

identified in the literature. If the parties leave the trade decision to ex post negotiations,

they will underinvest relative to the first best, due to a hold-up problem (see e.g. Oliver

S. Williamson (1985), Oliver Hart and John H. Moore (1988)). In contrast, the economic

analysis of breach remedies by Steven Shavell (1980,1984), William P. Rogerson (1984)

and others reveals that if contracts and breach remedies are available then there can also

be an overinvestment effect. Remedies such as expectation damages act as an insurance

against breach. The victim of breach invests more than if he or she internalized the lost

investment in case of breach.

These two intuitions are integrated by Aaron S. Edlin and Stefan Reichelstein (1996)

(henceforth ER), who show that it is possible to balance the hold-up effect against the

overinvestment effect when contracts are enforced by the standard breach remedies of

expectation damages or specific performance. They find that a continuous quantity in

the contract is a powerful tool to adjust the investment incentives of one party.1 In

1The idea that a continuous variable can help to reach the first best by balancing one party’s

investment incentives also appears in related articles such as Tai-Yeong Chung (1991), Philippe Aghion,
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addition, when the breach remedy is specific performance, the incentives of two parties

can be aligned with a single quantity if the payoff functions have a particular form.

In contrast, for the regime of expectation damages ER show that for a deterministic

and linear cost function no fixed price-quantity contract exists that achieves first best

investment decisions. They conclude that specific performance is better suited for two-

sided investment problems than expectation damages.

The present paper extends the analysis to more general cost and valuation functions

and finds that the scope of expectation damages to solve a bilateral hold-up problem

is much larger than this counterexample suggests. It turns out that in ER’s framework

with divisible contracts2, the per-unit price can be used as an additional instrument

to fine-tune both parties’ incentives to invest. ER establish their positive results for

one-sided investment through the adjustment of quantity alone, while the price is set

high or low such that always the same party breaches. With an intermediate price, any

party may breach the contract, and the parties’ probabilities of breach vary with price.

Therefore, a contract that specifies an up-front transfer, a quantity, and a per-unit price

often suffices to obtain efficient two-sided investment.

The reason why the first best can not be obtained under the expectation damages

remedy in the case of constant and deterministic marginal cost is that the seller’s invest-

ment decision completely determines who breaches. The breaching party never gains

from having invested more than the efficient amount, hence the hold-up effect dominates

this party’s incentives. In order to balance both investment decisions, both parties must

face the risk of breach. While no single per-unit price has this effect in ER’s example, we

demonstrate that the parties can use a lottery between an extremely high and extremely

low per-unit price. Like the intermediate per-unit price, the probability of a high price

can be used as an additional continuous variable to fine-tune investment incentives.

The paper is organized as follows: Section I introduces the model, while in Sec-

tion II the ex post consequences of expectation damages with divisible contracts are

Mathias Dewatripont and Patrick Rey (1994), and Georg Nöldeke and Klaus M. Schmidt (1995). In

these papers, the first best can be reached because renegotiation leaves one party with the full surplus.
2A divisible contract consists of several items and the price to be paid is apportioned to each item.

It can be broken into its component parts, such that each unit together with the per-unit price can be

treated as a separate contract, which is fulfilled or breached independently.
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Figure 1: Timeline of the model.

discussed. The main result on the optimality of price-quantity contracts is presented

in Section III, and Section IV deals with stochastic prices. Concluding remarks can be

found in Section V. Proofs are relegated to the appendix.

I Model Description

The sequence of events is illustrated in Figure 1. A seller and a buyer, both of whom

are risk-neutral, have to incur relationship-specific investments in preparation of future

trade. To protect these investments, they sign a contract at date 1, specifying a per-unit

price p̄ and a quantity q̄ ∈ [0, qmax] of the good to be traded.3 The parties may also

exchange an up-front transfer T to divide the gains from trade after price and quantity

are chosen to maximize joint surplus.

At date 2, the seller invests to decrease his marginal cost, and the buyer invests

to increase her marginal benefit of the good. The costs of their investments (or re-

liance expenditures, in legal terms) are denoted by σ ∈ [0, σmax] and β ∈ [0, βmax],

respectively. These investment decisions may be difficult to describe or to observe, and

consequently are not contractible. The exact shape of the cost and valuation functions

becomes commonly known at date 3, when the state of the world θ ∈ Θ is realized. The

contingency θ reflects exogenous uncertainty and is drawn from a compact state space

Θ ⊂ Rn according to a distribution function F .

At date 4, both seller and buyer decide whether they want to breach to a quantity

lower than the one specified in the contract. The consequences of breach are determined

3The quantity of the traded good could also be interpreted as duration of the business relationship.

With this interpretation the problem has a dynamic structure which is analyzed by Sergei Guriev and

Dmitriy Kvasov (2005).
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by expectation damages, either as the default breach remedy or because the contract

explicitly specifies this breach remedy. A more detailed description of the consequences

of breach follows in Section II. The payoff as determined by the legal consequences

constitutes the disagreement point in subsequent renegotiations. The outcome of the

negotiations is assumed to be the (generalized) Nash bargaining solution, where γ ∈ [0, 1]

denotes the seller’s bargaining power. We use the following notation and assumptions:

• The seller’s payoff of producing q is −C(σ, θ, q) − σ. The cost function C is

increasing and strictly convex in q, and (σ, q) 7→ C(σ, θ, q) is twice continuously

differentiable for all θ ∈ Θ, with Cσq ≤ 0.

• The buyer’s payoff of obtaining q is V (β, θ, q) − β. The valuation function V is

increasing and strictly concave in q, and (β, q) 7→ V (β, θ, q) is twice continuously

differentiable for all θ ∈ Θ, with Vβq ≥ 0.

Ex post, trade of a quantity q creates a joint surplus of

W (β, σ, θ, q) := V (β, θ, q)− C(σ, θ, q).

This is maximized at the efficient quantity

Q∗(β, σ, θ) := arg max
q∈[0,qmax]

W (β, σ, θ, q).

We denote by (β∗, σ∗) the efficient investment levels which maximize

∫
W (β, σ, θ, Q∗(β, σ, θ))dF − β − σ.

in [0, βmax]× [0, σmax]. We assume that these are the unique maximizers.

II Breach decisions

The contract and the legal consequences define a game between seller and buyer, which

we will solve by backward induction. In this section we analyze the ex post subgame,

when cost and valuation functions are realized and observable by both players and the

court. Renegotiation will lead the parties to the ex post efficient trade decision. In

order to determine their payoffs, we first explore the consequences of breach to see how
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much a party can achieve unilaterally. We abstract from issues like litigation costs or

difficulties to assess damages.

According to the expectation damage rule, the breaching party has to compensate

the victim of breach for the loss caused by the breach. The goal of this remedy is to

put the victim in as good a position as if the contract had been fulfilled. This rule

is, however, not applied literally in cases where this party faces negative profits from

completion of the contract. If one party’s breach is advantageous for the other, it is not

possible to sue for a reward, but damage payments are zero.

The buyer and the seller face symmetric decisions in this subgame. While the seller

can breach by producing and delivering less than ordered, the buyer can breach by

announcing her breach decision before the unwanted units are produced. In that case,

the seller can only recover the profit margin of the canceled goods, but not their cost

of production. Suppose that first the buyer announces her anticipatory breach decision

qB ≤ q̄, followed by the seller’s announcement qS ≤ q̄.4 Then the seller subsequently

delivers the quantity q = min{qS, qB}, as he will not be compensated for producing a

larger quantity.

Since the contract explicitly specifies a price per unit, it is divisible, and the seller

is entitled to a payment of p̄q for his partial performance. The payoffs from this part of

the contract are

S(σ, θ, q) := p̄q − C(σ, θ, q)

and

B(β, θ, q) := V (β, θ, q)− p̄q.

Damages are confined to that part of the contract that was breached. If q < qB, the

seller is liable for the buyer’s loss on the units between q and qB. On all units above qB

the contract counts as consensually canceled. The seller has to pay

max{B(β, θ, qB)−B(β, θ, q), 0}5

4The order of announcements does not matter for the outcome of the subgame.
5This is the formula used by ER and most of the literature. Another approach is to compare

the utility resulting from breach with a hypothetical, “reasonably foreseeable” (Robert Cooter (1985))

valuation B(β∗, θ, q) instead of the actual valuation. As shown by Jim Leitzel (1989) and Urs Schweizer

(2005) this solves the overreliance problem.
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Figure 2: This figure shows that at Q∗, the buyer’s marginal damage payments equal her

marginal gain from breach.

in damages to the buyer. Similarly, if q = qB, the seller can sue the buyer for the sum

max{S(σ, θ, qS)− S(σ, θ, q), 0}.

We will show that with these damage payments the efficient breach property of

expectation damages continues to hold.6 An intuition for this result can be gained from

Figure 2 which shows marginal cost and valuation. The two functions intersect at the

efficient quantity Q∗, and in the case that is illustrated, this quantity is lower than

the contracted quantity q̄, and the “equilibrium price” P ∗ is lower than the contracted

price p̄. No damage is done by breach on the units above Q̂S, and no damages have to

be paid. For breach on all other units, the buyer has to pay the difference between p̄

and the “supply curve” to the seller, while she gains the difference between p̄ and the

“demand curve”. The buyer thus breaches on all units above the quantity Q∗, where

these differences become equal.

To formalize this result we define two quantities that are related to supply and

demand at the contract price:

Q̂S := arg max
q≤q̄

S(σ, θ, q) = min{q̄, arg max
q

S(σ, θ, q)}

6This would not be true if the court ignored the higher breach quantity and calculated damages with

respect to the contracted quantity. Such a rule would aggregate gains and losses on breached units,

such that in some contingencies breach leads to a less than efficient quantity.
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and

Q̂B := arg max
q≤q̄

B(β, θ, q) = min{q̄, arg max
q

B(β, θ, q)},

where the second equality is due to concavity of the functions S and B. We also define

P ∗ := Cq(σ, θ, Q∗).

Let us assume first that Q∗ ≤ Q̂S, which is equivalent to the case that Q∗ ≤ q̄ and

P ∗ ≤ p̄. We will show that equilibrium payoffs are equal to S(σ, θ, Q̂S) for the seller and

W (β, σ, θ, Q∗) − S(σ, θ, Q̂S) for the buyer. If the seller chooses qS = Q̂S, the damage

rule ensures him a payoff of S(σ, θ, Q̂S) plus a possible gain from renegotiation. This is

true regardless of the buyer’s breach decision, since even if the seller turned out to be

the one to breach, he would pay no damages. On the other hand, if the buyer chooses

the anticipatory breach decision qB = Q∗, she gets at least W (β, σ, θ, Q∗)− S(σ, θ, Q̂S).

To see that, note that she gets W (β, σ, θ,Q∗)− S(σ, θ, qS) if she pays positive damages

and at least B(β, θ, Q∗) if she has to pay no damages.

Therefore, in any Nash equilibrium the buyer gets at least W (β, σ, θ, Q∗)−S(σ, θ, Q̂S),

while the seller gets at least S(σ, θ, Q̂S). Since in sum the payoffs cannot be higher than

the maximal joint surplus, these must be the parties’ equilibrium payoffs, achieved by

qB = Q∗ and qS = Q̂S.7

If Q∗ ≤ Q̂B, which is equivalent to the case that Q∗ ≤ q̄ and P ∗ ≥ p̄, the buyer makes

a positive profit on every unit that is efficient to trade. This time the seller breaches to

qS = Q∗ and pays damages to the buyer. Their payoffs are B(β, θ, Q̂B) for the buyer

and W (β, σ, θ,Q∗)−B(β, θ, Q̂B) for the seller.

In the case Q∗ > q̄ the optimal quantity can be reached by renegotiation only. In

these contingencies, one of the parties makes a profit on each unit traded under the

contract. The analysis here is the same as in ER. In this case, there will be no breach,

and renegotiation can take place before or after delivery of q̄. The parties share the

additional gain from efficient trade

∆(β, σ, θ, q̄) := W (β, σ, θ, Q∗)−W (β, σ, θ, q̄)

7It can be shown that these strategies form the unique equilibrium if γ ∈ (0, 1). The key intuition

here is that the breaching party receives all gains from the breach decision.
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according to bargaining power, leaving the seller with a share of γ, the buyer with a share

of 1− γ of the renegotiation surplus. Hence, their payoffs are S(σ, θ, q̄) + γ∆(β, σ, θ, q̄)

for the buyer and B(β, θ, q̄) + (1− γ)∆(β, σ, θ, q̄) for the seller.

III Optimal Contracts

In this section, we turn to the ex ante perspective of the game and analyze the investment

choices that are induced by the contract. Taking into account the possible ex post

equilibrium payoffs as described in the last section we obtain the following expression

for the seller’s expected payoff:

s(β, σ) =(1) ∫

[Q∗>q̄]

S(σ, θ, q̄) + γ∆(β, σ, θ, q̄)dF

+

∫

[Q̂B≥Q∗]
W (β, σ, θ, Q∗)−B(β, θ, Q̂B)dF

+

∫

[Q̂S≥Q∗]
S(σ, θ, Q̂S)dF − σ.

The buyer’s expected payoff, denoted by b(β, σ), is derived analogously to the seller’s

expected payoff. The payoff functions are easiest to analyze for extreme contracts, for

which at efficient investment at least one of the events “renegotiation”, “buyer breaches”

and “seller breaches” never occurs. We define

qH := max
θ

Q∗(β∗, σ∗, θ), qL := min
θ

Q∗(β∗, σ∗, θ)

and

pL := min
θ,β,σ

P ∗(β, σ, θ), pH := max
θ,β,σ

P ∗(β, σ, θ).

Moreover, let

σS(q, p) := arg max
σ

s(β∗, σ)

denote the seller’s best response to β∗ and

βB(q, p) := arg max
β

b(β, σ∗)

the buyer’s best response to σ∗ if the contract specifies a quantity q and a price p.

9



LEMMA 1. For all prices p, it holds that σS(qL, p) ≤ σ∗ ≤ σS(qH , p) and βB(qL, p) ≤
β∗ ≤ βB(qH , p). Moreover, σS(qH , pL) = σ∗ and βB(qH , pH) = β∗.

PROOF: See the Appendix.

The intuition is that, given efficient investment, a contracted quantity as low as

qL means that the contract will always be renegotiated to a higher quantity. In the

renegotiations, a party receives only a fraction of the surplus generated by the invest-

ment, therefore both parties underinvest (hold-up effect). A high contracted quantity

qH means renegotiation never occurs, and being sometimes the non-breaching party in-

duces the parties to prepare for trade of a high quantity. Both parties overinvest, except

for the case of a very high or very low price: In this case one party always breaches

and invests efficiently, in anticipation of the efficient breach decision. This last result

has been studied in detail in Edlin (1996), who uses the term “Cadillac contract” for a

contract that is always breached.

This extreme kind of contracts will only in exceptional cases be able to induce efficient

investment in equilibrium.8 To infer from the behavior of best responses for extreme

contracts to the behavior for contracts with an intermediate price and quantity, we need

a continuity assumption. In line with the analysis of the one-sided investment case in

ER, we make the following assumption.

ASSUMPTION 1. The best response correspondences (q, p) 7→ σS(q, p) and (q, p) 7→
βB(q, p) have a continuous selection.

It would be desirable to have a characterization of the cost and valuation functions

for which this condition holds. Sufficient conditions can be found, as for example the

following assumption.

ASSUMPTION 2. Let (σ, q) 7→ C(σ, θ, q) be strictly convex and (β, q) 7→ V (β, θ, q)

be strictly concave for all θ ∈ Θ.

LEMMA 2. Assumption 2 implies Assumption 1.

8One of these special cases is γ ∈ {0, 1}. It has been known since Chung (1991) that specific

performance can lead to two-sided efficient investment if one party has all the bargaining power. The

same is true for expectation damages if the price is set such that this party always breaches. The

quantity can then be used to generate investment incentives for the other party.
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-
qL qH

pL

pH

σS ≤ σ∗

βB ≤ β∗
σS ≥ σ∗

βB ≥ β∗

βB = β∗

σS = σ∗

Figure 3: This figure shows the space of price-quantity contracts. For low and high quantities it

is indicated whether the best response to efficient investment of the other party is underinvestment,

overinvestment or efficient investment. The contracts on the paths have the property that the best

response to efficient investment is equal to efficient investment.

PROOF: See the Appendix.

Continuity of best responses indeed ensures existence of an optimal contract, as is

illustrated in Figure 3, which provides the intuition for our main result:

PROPOSITION 1. Given Assumption 1, there exists a non-contingent contract (q̄, p̄)

such that the first best investment levels (β∗, σ∗) constitute a Nash equilibrium of the

induced game.

PROOF: See the Appendix.

In order to find the optimal contract given a particular problem we can use the first

order conditions of the parties’ maximization problem. For example, the derivatives

of the expected payoff functions take a particularly simple form if cost and valuation

functions belong to the following class of functions:

ASSUMPTION 3.

C(σ, θ, q) = C1(σ)q + C2(θ, q) + C3(σ, θ)

V (β, θ, q) = V1(β)q + V2(θ, q) + V3(β, θ).

ER show that with this functional form, the incentives for the two parties can be

aligned with a single quantity if the breach remedy is specific performance.

COROLLARY 1. If Assumption 3 holds, and (β∗, σ∗) is an interior solution, the first
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best contract (q̄, p̄) has to fulfill the conditions
∫

[Q̂S≥Q∗]
(Q̂S −Q∗)dF = (1− γ)

∫

[Q∗>q̄]

(Q∗ − q̄)dF(2)

∫

[Q̂B≥Q∗]
(Q̂B −Q∗)dF = γ

∫

[Q∗>q̄]

(Q∗ − q̄)dF ,(3)

where all quantities are evaluated at σ = σ∗ and β = β∗.

PROOF: See the Appendix.

As an example, consider the case that cost and valuation are correlated in a way

that P ∗ is independent of θ. Balancing incentives in such a case is potentially hard to

do, because the investment decisions completely determine the identity of the breaching

party. From the necessary conditions (2) and (3) it follows that if γ ∈ (0, 1), the only

candidate for a first best contract is q̄ = qH and p̄ = P ∗(β∗, σ∗, θ). If the payoff functions

are sufficiently concave, the parties make a larger profit with efficient investment than

by preparing for a higher quantity, because overinvestment leads to renegotiation in

some contingencies. To make sure that this is indeed the case, we have to appeal to

Assumption 2. Two explicit examples, exploring the importance of this assumption, can

be found in Appendix B.

IV Price adjustment clauses

In this section, we explore what kind of contracts the trading partners can write if

Assumption 1 and Proposition 1 do not hold. One of these cases is identified by ER,

who show that for γ ∈ (0, 1) and the cost function C(σ, θ, q) = C1(σ)q there exists

no contract (q̄, p̄) that can achieve the first best if the valuation function has positive

variance. With this kind of cost function the seller faces a choice between two conflicting

roles: Either he invests low and breaches the contract, or he invests high and seeks

damages if necessary. Whenever such a conflict leads to a discontinuity in one party’s

best response, the parties may have to write more complicated contracts in order to

attain the first best. We will show that if the parties can stipulate a stochastic price,

they can obtain first best outcomes for a larger class of payoff functions, including linear

ones.
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Using a lottery between a very low and a very high price instead of an intermediate

price p̄ is a more direct way to achieve breach of both parties. Let the contract specify

a lottery between pL with probability λ and pH with probability 1 − λ. Equivalently,

the parties can choose an event that occurs with probability λ independently of cost

and valuation functions, and condition the low price pL on the event and pH on its

complement. This resembles so-called price escalator clauses or price adjustment clauses,

which parties can use to share the risk of breach.9

PROPOSITION 2. Assume that the best responses are continuous in q and λ. Then

there is a quantity q̄ ∈ [qL, qH ] and a λ ∈ [0, 1], such that a contract specifying q̄ and a

lottery over pL with probability λ and pH with probability 1− λ induces the first best.

PROOF: See the Appendix.

Since this result does not require continuity of best responses in price, it holds for

a larger class of payoff functions than Proposition 1.10 The optimal contract illustrates

how the performance of expectation damages depends on who will breach the contract.

This is especially true for the case of the payoff functions defined in Assumption 3, for

which the contract takes a very intuitive form.

PROPOSITION 3. When Assumption 3 holds, a contract for q̄ =
∫

Q∗(β∗, σ∗, θ)dF

at a price pL with probability γ (the seller’s bargaining power) and pH with probability

1− γ induces the first best.

PROOF: See the Appendix.

As ER show, the same contracted quantity leads to efficient investment with specific

performance if Assumption 3 holds. One could ask whether stochastic prices are also

able to improve the performance of this breach remedy. The answer depends on the

bargaining game. While ER keep the bargaining process very general in the one-sided

investment analysis, for two-sided investment they also assume the Nash bargaining

solution with a constant sharing rule. When the price is so high or so low that it is

9Usually, one would think of price adjustment clauses as insurance against events that are correlated

with either cost or valuation. Such a clause can also help to balance incentives, but the point is much

simpler to make for the independent case.
10A sufficient condition corresponding to Assumption 2 is that W (β, σ, θ, q) is strictly concave in

(σ, q) and (β, q).
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always in one party’s interest to sue for performance, the seller’s expected profit as

derived in ER is: ∫
S(σ, θ, q̄) + γ∆(β, σ, θ, q̄)dF − σ.

The derivative of this expression with respect to σ does not depend on the price. Hence,

investment incentives can only be generated through the contracted quantity, and there

is no analog to Proposition 2.

V Conclusion

We have shown that in the framework of expectation damages with bilateral investment

in Edlin and Reichelstein (1996), the first best can be restored if both parties face

the risk of breaching. With divisible contracts, this can always be achieved with a

lottery between a high and a low per-unit price, or with a fixed price if the payoff

functions are sufficiently concave. In both cases, each party’s probability of breaching

varies with price, such that price and quantity are sufficient to fine-tune both sides’

incentives to invest. Consequently, also in this framework the trading parties can write

non-contingent contracts and obtain efficient outcomes, relying on renegotiation and the

standard breach remedy of expectation damages.

Nevertheless, there is a general truth behind ER’s inefficiency example: the ex-

pectation damage rule treats the breaching party and the party suffering from breach

asymmetrically. The only contract that overcomes the hold-up problem of the breach-

ing party specifies such a high quantity that the non-breaching party invests too much.

This intuition is likely to carry over to more general settings, as long as only quantity

has an effect on investment. The contribution of the current paper is to recognize that

investment incentives need not be generated by quantity alone, price matters as well.

It remains to be explored how much price and quantity can achieve if contracts are not

divisible, or for other legal rules and contractual environments.
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Appendix

A Proofs

Proof of Lemma 1. The steps of the proof are exercised in detail only for the seller’s

payoff function, the result for the buyer can then be derived in a similar way. In a first

step, we calculate the derivative of the seller’s expected profit. For this, note that as a

direct application of the envelope theorem (for constrained maximization) we get for all

θ ∈ Θ

(A1)
∂

∂σ
W (β, σ, θ, Q∗(β, σ, θ)) = −Cσ(σ, θ,Q∗(β, σ, θ)),

and

(A2)
∂

∂σ
S(σ, θ, Q̂S(σ, θ)) = −Cσ(σ, θ, Q̂S(σ, θ)).

Next, to calculate the derivative ∂
∂σ

s(β, σ), note that for each θ the integrand in s is the

piecewise defined function

σ 7→





(1− γ)S(σ, θ, q̄) + γW (β, σ, θ,Q∗)− γB(β, θ, q̄) if Q∗ > q̄

S(σ, θ, Q̂S) if Q∗ ≤ Q̂S

W (β, σ, θ, Q∗)−B(β, θ, Q̂B) if Q∗ ≤ Q̂B

It turns out that the piecewise defined derivative of this function is continuous, i.e. the

pieces of this function are joined smoothly. We assume integrability of Cσ, so that we

can interchange integration and differentiation, and get:

∂

∂σ
s(β, σ) = −

∫

[Q∗>q̄]

((1− γ)Cσ(σ, θ, q̄) + γCσ(σ, θ, Q∗))dF − 1(A3)

−
∫

[Q̂S≥Q∗]
Cσ(σ, θ, Q̂S)dF −

∫

[Q̂B≥Q∗]
Cσ(σ, θ, Q∗)dF

= −(1− γ)

∫

[Q∗>q̄]

∆σ(β, σ, θ, q̄)dF −
∫

[Q̂S≥Q∗]
∆σ(β, σ, θ, Q̂S)dF .

−
∫

Cσ(σ, θ, Q∗)dF − 1

Because we already know that for β = β∗ the expected joint surplus is uniquely

maximized at σ∗, we will study the function

s̃(σ) := s(β∗, σ)−
(∫

W (β∗, σ, θ, Q∗(β∗, σ, θ))dF − σ

)
.
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which has derivative

(A4) s̃′(σ) = −(1− γ)

∫

[Q∗>q̄]

∆σ(β∗, σ, θ, q̄)dF −
∫

[Q̂S≥Q∗]
∆σ(β∗, σ, θ, Q̂S)dF .

By exploiting Cσq ≤ 0 , it is straightforward to see that ∆σ(β∗, σ, θ, q) is weakly decreas-

ing in q, and that the first term in s̃′(σ) is negative and the second is positive (if they

do not vanish).

Now, in order to prove the lemma, consider first q̄ = qL. In this case, for all σ ≥ σ∗

s̃′(σ) = −(1− γ)

∫
∆σ(β∗, σ, θ, qL)dF ≤ 0,

i.e. s̃ is a monotonically decreasing function in this range. Therefore, all σ > σ∗ lead

to a lower payoff than σ∗, hence σS(qL, p) ≤ σ∗. For a contract over qH , since Q∗ is

nondecreasing in σ, the first term in s̃′ vanishes for σ ≤ σ∗, i.e. s̃ is a weakly increasing

function. Therefore, at qH all σ < σ∗ are dominated by σ∗, and σS(qH , p) ≥ σ∗. Finally,

consider qH and a low price pL. By definition of pL it holds that Q̂S(σ, θ) ≤ Q∗(β∗, σ∗, θ)

for all θ ∈ Θ and σ. Therefore, the function s̃ is weakly decreasing for σ ≥ σ∗, hence

σS(qH , pL) = σ∗. For the buyer, the corresponding claims follow from the assumption

that Vβq ≥ 0.

Proof of Lemma 2. Again, we prove the claim only for the seller. First, let us state the

required conditions more precisely. For each θ, whenever Q∗(β∗, σ, θ) ≤ Q̂S(σ, θ) we

need that S(σ, θ, Q̂S) is concave in σ, i.e.

Cσσ(σ, θ, Q̂S)− Cqσ(σ, θ, Q̂S)2

Cqq(σ, θ, Q̂S)
≥ 0.

This condition follows from Assumption 2, because the determinant of the Hessian

matrix of (σ, q) 7→ C(σ, θ, q) is positive at q = Q̂S. One can see here why a linear cost

function might be a problem: as Cqq becomes small, this condition becomes harder to

fulfill. Furthermore we need the condition that W (β∗, σ, θ,Q∗) is concave, meaning that

Cσσ(σ, θ,Q∗) +
Cσq(σ, θ,Q∗)2

Wqq(β∗, σ, θ, Q∗)
≥ 0,

which also follows from Assumption 2. Last, we need the condition Cσσ(σ, θ, q̄) ≥ 0,

which is also implied by convexity of C in both variables.
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Since s is continuous in q, p and σ (which is straightforward to check), according to

Berge’s theorem, the argmax correspondence σS(q, p) is upper hemicontinuous. Since

upper hemicontinuity coincides with continuity if the correspondences are functions, for

Assumption 1 to hold it suffices that the function σ 7→ s(σ, β∗) has a unique maximizer

for all q and p. We therefore show that s is strictly concave, given that Assumption 2

holds. For this we need that the derivative (see equation A3) is decreasing in σ. It

suffices to show that the continuous integrand is piecewise decreasing, which can be

done by calculating the piecewise derivatives and using the above conditions.

Proof of Proposition 1. Since because of Assumption 1 the best responses have a con-

tinuous selection, we may assume that σS(q, p) and βB(q, p) are continuous functions.

For all p ∈ [pL, pH ], define

q̄S(p) := {q ∈ [0, qH ] : σS(q, p) = σ∗}

and

q̄B(p) := {q ∈ [0, qH ] : βB(q, p) = β∗}.

From Lemma 1 and the intermediate value theorem it follows that these sets are nonempty

for each p. Note from equation (A3) that Cσq ≤ 0 implies that s′ is weakly increasing in q.

Together with Assumption 1 this implies that q̄S and q̄B are compact and convex valued

upperhemicontinuous correspondences. Consider first the case that they are functions.11

Lemma 1 tells us that q̄S(pL) = qH ≥ q̄B(pL) and q̄B(pH) = qH ≥ q̄S(pH). Applying the

intermediate value theorem again yields existence of a p̄ such that qS(p̄) = qB(p̄) =: q̄.

This contract (q̄, p̄) thus leads to β∗ as a best response to σ∗ and σ∗ as a best response

to β∗. If the correspondences q̄S(p) and q̄B(p) are not single-valued, their graphs are

still pathwise connected and we can apply the same reasoning as before.

Proof of Corollary 1. The derivative of s̃(σ), as calculated in the proof of Lemma 1

(equation A4), evaluated at σ∗, must vanish at the optimal contract. The corollary

follows since for the kind of functions defined in Assumption 3 it holds that

(A5) ∆σ(q) = −C ′
1(σ)(Q∗ − q) and ∆β(q) = V ′

1(β)(Q∗ − q).

11This holds for example if the inequalities Cσq ≤ 0 and Vβq ≥ 0 hold strictly everywhere, Q∗ is

continuous in θ, γ ∈ (0, 1), and σ∗ and β∗ are interior solutions.
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Proof of Proposition 2. When the price is pL, the buyer makes a profit on each unit, i.e.

Q̂B = q̄ for all θ. When price is pH , it holds that Q̂S = q̄ for all θ. Expected payoff

is analogous to the case with an intermediate price and can be rearranged to look as

follows (again only for the seller):

s(σ, β) =

∫
W (β, σ, θ, Q∗)dF − σ −

∫
B(β, θ, q̄)dF(A6)

−(1− γ)

∫

[Q∗>q̄]

∆(β, σ, θ, q̄)dF − (1− λ)

∫

[Q∗≤q̄]

∆(β, σ, θ, q̄)dF

with p = λpL + (1− λ)pH . The claim can now be proved following the same steps as in

the proof of Proposition 1, the role of the price being played by λ.

Proof of Proposition 3. We prove this result independently of previous results in this

paper, because it holds without Assumption 1, and would hold also for arbitrary invest-

ment decisions and linear functions. For λ = γ, the seller’s expected payoff functions as

stated in equation (A6) equals

s(β, σ) = p̄q̄ + (1− γ)

(∫
−C(σ, θ, q̄)dF − σ

)

+γ

(∫
W (β, σ, θ, Q∗)dF − σ

)
− γ

∫
V (β, θ, q̄)dF

with p̄ = γpL + (1 − γ)pH . In this case, the payoff functions are identical to the ones

that result from specific performance in ER. Next, consider the defining equation of σ∗,

which is that for all other σ

(A7)

∫
W (β∗, σ∗, θ, Q∗(σ∗, β∗, θ))dF − σ∗ ≥

∫
W (β∗, σ, θ, Q∗(σ, β∗, θ))dF − σ.

Furthermore, from the definition of Q∗ we know that

(A8) W (β∗, σ, θ,Q∗(σ, β∗, θ)) ≥ W (β∗, σ, θ, Q∗(σ∗, β∗, θ)) for all σ, θ.

From these two equations, it follows that

(A9) σ∗ ∈ arg max
σ

∫
−C(σ, θ,Q∗(σ∗, β∗, θ))dF − σ

Since we assumed the special payoff functions defined in Assumption 3 it follows that

with q̄ =
∫

Q∗(β∗, σ∗, θ)dF

(A10) σ∗ ∈ arg max
σ

∫
−C(σ, θ, q̄)dF − σ.

Hence, when β = β∗, all terms in the seller’s payoff function are maximized at σ∗, and

it is straightforward to show that the same holds symmetrically for the buyer.
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B Examples

In this appendix we compute two examples. Let γ = 1
2

and

C(σ, θ, q) =
1

2σ
q + c

q2

2θ
,

V (β, θ, q) =

(
4

3
c +

7

3
− 1

2β

)
q − q2

2θ
.

In the specification of the model the investment cost was normalized to be linear, but

it can as well be any convex function. For this example, we take σ2/2 to be the cost of

investment σ. The uncertainty parameter θ is assumed to be uniformly distributed on

the interval [1, 2]. The efficient quantity is

Q∗(β, σ, θ) =

(
4

3
c +

7

3
− 1

2β
− 1

2σ

)
θ

1 + c
.

Calculations reveal that σ∗ = β∗ = 1. Since the equilibrium price

P ∗(β, σ, θ) =
c

1 + c

(
4

3
c +

7

3
− 1

2β
− 1

2σ

)
+

1

2σ
.

does not depend on θ, the candidate for an efficient contract is q̄ = 8
3

and p̄ = 4
3
c + 1

2
.

The sufficient condition in Assumption 2 is fulfilled if c > 3/16.12 For very low c, this

contract leads to a saddle point instead of a maximum of the seller’s payoff function

at σ∗. This example is one in which, once investment is sunk, only one party breaches

the contract. Nevertheless, since the overinvesting party faces hold-up and non-breach

contingencies, the equilibrium is efficient if the payoff functions are sufficiently concave.

As the cost function approaches a linear and deterministic one, the first best ceases to

be attainable.

This does not necessarily hold if there is a random element in the linear term, such

that always both parties face the risk of breaching. Consider the following variant of

the preceding example:

C(σ, θ, q) =

(
1

2σ
+ θ1

)
q

V (β, θ, q) =

(
7

3
− 1

2β
+ θ1

)
q − q2

2θ2

.

That is, we set c = 0 and to the contingency we add a new component which makes

marginal cost volatile. The part θ1 is a market shock which affects both the buyer’s

12This bound is even lower if the convex investment cost is taken into account.
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valuation and the seller’s cost (which could be opportunity cost). The part θ2 only

affects the buyer, and is again uniformly distributed on [1, 2]. With regard to θ1, we

assume that it is uniformly distributed on [0, 1]. The efficient quantity is now

Q∗(β, σ, θ) =

(
7

3
− 1

2β
− 1

2σ

)
θ2.

Looking for the optimal contract, we get the following equation from the seller’s maxi-

mization problem:

∫

[Q∗≤q̄]

(
p̄− 1

2

)
(q̄ −Q∗) dθ2 =

∫

[Q∗>q̄]

1

2
(Q∗ − q̄) dθ2

One obvious solution is q̄ = 2 and p̄ = 1. All solutions are characterized by

p̄S(q) =
1

2
+

(3
4
q̄ − 2)2

2(3
4
q̄ − 1)2

for all qH = 8
3

> q̄ > qL = 4
3
. The buyer’s payoff fulfills all assumptions. Unfortunately,

the condition that characterizes the optimal contract for the buyer becomes quite com-

plex. As numerical solutions of the two equations we get q̄ = 2.039 and p̄ = 0.8956.
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