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We analyze the optimal choice of risk in a two-stage tournament game between

two players that have different concave utility functions. At the first stage, both

players simultaneously choose risk. At the second stage, both observe overall risk

and simultaneously decide on effort or investment. The results show that those two

effects which mainly determine risk taking — an effort effect and a likelihood effect

— are strictly interrelated. This finding sharply contrasts with existing results on

risk taking in tournament games with symmetric equilibrium efforts where such

linkage can never arise. Hence, previous findings based on symmetry at the effort

stage turn out to be nongeneric.
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1 Introduction

In rank-order tournaments, players compete for given prizes. The best per-

forming player (e.g. the one with the highest output) receives the high-

est prize, the second best performer gets the second highest prize and so

on. Distribution of prizes according to relative performance creates consid-

erable incentives for all contestants since ex ante each player wants to be

declared winner of the tournament. There are many examples for rank-order

tournaments in practice: sales representatives compete for bonuses which

have been fixed in advance (Murphy et al. 2004), workers take part in job-

promotion tournaments (Baker et al. 1994), athletes participate in sports

contests (Szymanski 2003), lawyers compete in litigation contests (Wärneryd

2000), firms and individuals invest in external or internal rent-seeking con-

tests (Gibbons 2005), managers receive relative performance pay (Gibbons

and Murphy 1990), firms spend resources for advertising in winner-take-

all markets (Schmalensee 1976), there are research tournaments (Schöttner

2007) and even tournaments in broiler production (Knoeber and Thurman

1994).

Theoretic models which analyze players’ behavior in rank-order tourna-

ments1 typically focus on the effort or investment decision of contestants:

The more input a player chooses relative to his opponents the higher will

be his probability of winning the tournament. However, in real tournaments

1See, among many others, Lazear and Rosen (1981) and O’Keeffe et al. (1984). For a

survey on tournaments and contests see Konrad (2007).
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players can often also decide on the risk of their behavior. For example, be-

fore firms choose their advertising expenditures, they can decide on whether

introducing a new product (high risk) or not (low risk). In many tourna-

ments, contestants first have the choice between using a standard technique

(low risk) or switching to a new technique (high risk); thereafter they decide

on effort or, more generally, on input to win the tournament.

This paper addresses such a two-stage tournament game with risk taking

at the first stage and effort or input choice at the second stage. We focus on

heterogeneous and risk averse workers so that interior pure-strategy equilib-

ria at the effort stage are always asymmetric. This asymmetric outcome has

important consequences on those effects which mainly determine risk taking

in tournaments: First, the choice of risk influences the equilibrium efforts

at the second stage (effort effect). Second, risk also influences the players’

probabilities of winning (likelihood effect). Previous work on risk taking in

two-stage tournaments has only considered symmetric equilibria at the effort

stage 2. There, the effort effect and the likelihood effect were completely

separate. However, this outcome will no longer hold, if players’ utility func-

tions at least slightly differ. Then both effort effect and likelihood effect are

strictly interrelated which can be crucial for risk taking. In particular, we

can show that in this situation the underdog (favorite), i.e. the player with

the lower (higher) probability of winning in equilibrium, may prefer low risk

(high risk) in order to maximize his winning probability which is impossi-

ble under symmetry. We also consider the role of risk aversion. Whereas
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under mean-variance preferences the more risk averse player always prefers

maximum risk this result need not hold for alternative utility functions.

So far there is only a small number of papers which also address the

problem of risk taking in two-stage tournaments. Hvide (2002) focuses on the

case of homogeneous players. Since equilibrium efforts are always identical

in his setting and the winning probability of each player is always one half

irrespective of the risk level, basically there is no likelihood effect in the

Hvide-model. Since equilibrium efforts are monotonically decreasing in risk,

each player chooses maximum risk according to the effort effect so that players

exert minimum effort at the second stage of the game. In the setting of Hvide

(2002), maximizing risk at the first stage works like an implicit collusion for

the effort choices at the second stage.

When introducing heterogeneity between the players, there are two pos-

sibilities in principle. Following O’Keeffe et al. (1984) we can differentiate

between unfair and uneven tournaments. In an unfair two-person tourna-

ment, players choose identical efforts so that again we have a symmetric

equilibrium like in the case of homogeneous contestants. However, one of

the players has a lead and, hence, a higher probability of winning. In an un-

even tournament, only asymmetric equilibria exist since players have different

cost-of-effort functions or different preferences of winning (i.e. the subjective

tournament prizes or the respective utilities of the players differ). Kräkel and

Sliwka (2004) combine the problem of risk taking with unfair tournaments.

In their setting, equilibria at the effort stage are always symmetric like in
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Hvide (2002). However, now both effort and likelihood effect are important.

Whether the players prefer high or low risk in order to reduce effort costs

depends on the magnitude of the favorite’s lead. If the lead is small (large)

both players are interested in choosing a high (low) risk in order to destroy

overall incentives at the second stage according to the effort effect. Concern-

ing the likelihood effect, there is an unambiguous result due to the symmetric

equilibrium: The favorite (underdog) maximizes his winning probability by

choosing low (high) risk. In this paper, we address risk taking by considering

uneven tournaments in which only asymmetric interior equilibria can exist

at the second stage. In this setting, it can be shown that the effort effect and

the likelihood effect are strictly interrelated, which sharply contrasts with

the findings for symmetric equilibria in Hvide (2002) and Kräkel and Sliwka

(2004). This linkage between the two effects can lead to an equilibrium in

which the underdog — and not the favorite — prefers low risk in order to

maximize his winning probability.

There are some other papers that also deal with risk taking in tourna-

ments. In the models by Gaba and Kalra (1999), Hvide and Kristiansen

(2003) and Taylor (2003), players can solely decide on risk taking in the

tournament; hence there is no effort effect and no possible linkage with the

likelihood effect. Other papers analyze risk taking empirically. For example,

Becker and Huselid (1992) consider individual behavior in stock-car racing.

Their results show that drivers take more risk if tournament prizes and prize

spreads are large. The findings of Brown et al. (1996) and Chevalier and Elli-
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son (1997) point out that presumable losers — contrary to presumable winners

— prefer high risks in tournaments between mutual fund managers. Finally,

the paper by Grund and Gürtler (2005) on professional soccer confirms the

previous findings that leading players or teams (players that lie behind) pre-

fer low-risk (high-risk) behavior. However, neither of the empirical papers

addresses the effort effect.

The paper is organized as follows. The next section introduces the model.

Section 3 considers the effort stage. Section 4 focuses on risk taking at the

first stage of the game; it contains the main results. Section 5 concludes.

2 The Model

Two risk averse players A and B participate in a two-stage tournament.

Player i’s (i = A,B) production or performance function is given by

qi = ei + εi (1)

where ei denotes investment or effort chosen by player i. εA and εB are

exogenous noise terms. The density of the composed random variable εj −
εi (i, j = A,B; i 6= j) is denoted by g (·) and the corresponding cumulative
distribution function by G (·) which is assumed to be continuous and twice
differentiable. The density g (·) is assumed to be symmetric around its unique
mode at zero with variance σ2 = σ2i + σ2j .

2 For example, εi and εj may

2The assumption of a unimodal distribution is not unusual in tournament models; see,

e.g., Drago et al. (1996), Hvide (2002), Chen (2003).
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be stochastically independent and normally distributed with εi ∼ N (µ, σ2i )

and εj ∼ N
¡
µ, σ2j

¢
. In that case, the convolution g (·) again is a normal

distribution with εj − εi ∼ N
¡
0, σ2i + σ2j

¢
.

Each player i (i = A,B) has a strictly concave utility function Ui which

is separable in monetary income, Ii, and effort costs, c (ei):

Ui = ui (Ii)− c (ei) (2)

with u0i (Ii) > 0, u00i (Ii) < 0,∀Ii, and c0 (ei) > 0, c00 (ei) > 0,∀ei > 0, and

c (0) = 0. The utility functions are assumed to be common knowledge.

At the first stage of the tournament game (risk stage), both players i

and j simultaneously choose their respective risks measured by the variances

σ2i and σ2j . At the second stage (effort stage), both players observe σ
2
i and

σ2j , and then simultaneously choose efforts ei and ej. Effort choices together

with the realizations of εi and εj determine qi and qj according to (1). If qi >

qj, player i is declared winner of the tournament and receives the monetary

prize Ii = w1, whereas player j’s monetary income is given by the loser prize

Ij = w2 < w1 (i, j ∈ {A,B} ; i 6= j).

3 Optimal Effort Choices

The subgame-perfect equilibrium of the two-stage game is derived by back-

ward induction. First, the effort stage is considered where the players choose

ei and ej in order to maximize their expected utilities EUi (ei) and EUj (ej),

respectively, for given values of σ2i and σ
2
j . Then we go backwards to the risk

7



stage where the two players anticipate effort choices at stage 2, e∗i
¡
σ2i , σ

2
j

¢
and e∗j

¡
σ2i , σ

2
j

¢
, and choose their respective variances σ2i and σ2j .

In stage 2, player i chooses ei to maximize

EUi (ei) = ui (w1)G (ei − ej) + ui (w2) [1−G (ei − ej)]− c (ei) (3)

with G (ei − ej) =prob{qi > qj} =prob{εj − εi < ei − ej} denoting i’s prob-
ability of winning. In analogy, player j’s objective function can be written

as

EUj (ej) = uj (w1) [1−G (ei − ej)] + uj (w2)G (ei − ej)− c (ej) . (4)

If an interior equilibrium solution in pure-strategies,
¡
e∗i , e

∗
j

¢
, exists at the

effort stage, it will be characterized by the players’ first-order conditions

∆uig
¡
e∗i − e∗j

¢− c0 (e∗i ) = 0 (5)

∆ujg
¡
e∗i − e∗j

¢− c0
¡
e∗j
¢
= 0 (6)

with∆uk := uk (w1)−uk (w2) (k = i, j) describing player k’s additional utility

from receiving more money in case of winning the tournament. Conditions (5)

and (6) show that, in an interior pure-strategy equilibrium, the player with

the larger utility spread ∆uk exerts more effort. Of course, if luck becomes

extremely large so that effort has not any real impact on the outcome of

the tournament, an interior solution will not exist. Especially, if σ2 = ∞
the winner of the tournament is determined by pure luck, and each player’s

likelihood of winning is one half irrespective of the effort choices. Hence, in

equilibrium both players choose zero efforts to minimize effort costs.
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As it is known in the tournament literature, pure-strategy equilibria will

only exist if there is sufficient noise in the tournament and the players’ cost

function c (·) is sufficiently steep (Lazear and Rosen 1981, 845). In particular,
strict concavity of the players’ objective functions and, hence, existence of

pure-strategy equilibria is assured if3

sup
σ2,∆e

∆uk · |g0 (∆e) | < inf
e>0

c00 (e) (7)

with∆e := ei−ej. Let σ2min denote the respective value of σ2 at the left-hand
side of (7), i.e. σ2min characterizes the minimum amount of risk necessary for

assuring the existence of a pure-strategy equilibrium at the effort stage of

the tournament game. We obtain the following results:

Proposition 1 If c0 (0) = 0 and σ2min ≤ σ2 < ∞, there will exist a pure-
strategy equilibrium at the effort stage,

¡
e∗i , e

∗
j

¢
, being described by (5) and

(6). Moreover, sign
³
∂e∗i
∂σ2

´
= sign

³
∂e∗j
∂σ2

´
.

Proof. The first part of the proposition has already been proved. To see

that sign (∂e∗i /∂σ
2) = sign

¡
∂e∗j/∂σ

2
¢
we have to implicitly differentiate the

system of equations (5) and (6):

∂e∗i
∂σ2

=
1

|J |∆ui
∂g
¡
e∗i − e∗j

¢
∂σ2

· c00 ¡e∗j¢ (8)

∂e∗j
∂σ2

=
1

|J |∆uj
∂g
¡
e∗i − e∗j

¢
∂σ2

· c00 (e∗i ) (9)

with

|J | := EU 00
i (ei)EU

00
j (ej) +∆ui∆uj

£
g0
¡
e∗i − e∗j

¢¤2
> 0

3For a similar condition see Schöttner (2007).
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denoting the Jacobian determinant. Comparing (8) and (9) yields

sign

µ
∂e∗i
∂σ2

¶
= sign

µ
∂e∗j
∂σ2

¶
= sign

Ã
∂g
¡
e∗i − e∗j

¢
∂σ2

!
. (10)

Proposition 1 shows that marginally increasing risk makes both players

either increase or decrease efforts. From the first-order conditions (5) and

(6), we know that if one player chooses more (less) effort, the other player

will react in the same way (i.e. c0 (e∗i ) /∆ui = c0
¡
e∗j
¢
/∆uj). However, it

is interesting to see in which situations both players increase or decrease

their efforts. Increasing risk means that the probability mass under the

density g (·) is shifted from the middle towards the tails of the distribution.

If the effort difference |e∗i − e∗j | is located near the mode, ∂g
¡
e∗i − e∗j

¢
/∂σ2

will be negative and the two players reduce their equilibrium efforts. If,

on the contrary, |e∗i − e∗j | is large and, hence, lies at one of the tails, then
∂g
¡
e∗i − e∗j

¢
/∂σ2 will be positive so that marginally increasing risk makes

both players choose higher efforts in equilibrium. As an example consider

εj − εi ∼ N (0, σ2) which gives

∂g
¡
e∗i − e∗j

¢
∂σ

=

exp

(
−
¡
e∗i − e∗j

¢2
2σ2

)
σ2
√
2π

Ã¡
e∗i − e∗j

¢2
σ2

− 1
!
.

Thus, the derivative is positive (negative) if |e∗i − e∗j | > (<)σ. Note that the
effort difference e∗i − e∗j positively depends on the difference of the players’

utility spreads, ∆ui −∆uj, which yields the following corollary:
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Corollary 1 If |∆ui −∆uj| is sufficiently large (small), an increase in risk
σ2 will result in larger (smaller) equilibrium efforts

¡
e∗i , e

∗
j

¢
.

The intuition for this result is the following: If the players are very hetero-

geneous in the sense that their utility spreads∆ui and∆uj differ significantly,

then competition is highly uneven resulting in low effort levels of both play-

ers — the player with the very low utility spread (the underdog) is hardly

motivated and exerts very little effort so that the other player (the favorite)

also chooses a very low effort level as best response. However, increasing risk

in this situation brings the poorly motivated underdog back into the race,

since higher uncertainty works against the uneven competition. This effect

makes both contestants exert higher effort levels. Consider now the opposite

case. If there is only a small degree of heterogeneity (i.e. |∆ui − ∆uj| is
small) in the tournament, competition will be rather even and efforts rather

high. Increasing risk in such situation destroys incentives — the outcome of

the tournament is rather determined by luck than by effort choice — so that

equilibrium efforts fall.

4 Optimal Risk Taking

We differentiate between two situations. In the first scenario, each player

can freely choose any variance which is equal or greater than σ2min/2. In the

second scenario, each player can either choose low risk σ2L or high risk σ2H

with σ2L < σ2H and 2σ
2
L ≥ σ2min.
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4.1 The Continuous Case

In this subsection, player i (j) chooses σ2i (σ
2
j) at the first stage of the game

with σ2i , σ
2
j ≥ σ2min/2 anticipating that, at the second stage, efforts are chosen

according to (5) and (6) in case of an interior solution, or that e∗i = e∗j = 0

in case of σ2 = σ2i + σ2j =∞. We obtain the following result:

Proposition 2 At the first stage, only corner or semi-corner solutions exist

in which the player with the lower utility spread ∆uk, k ∈ {i, j}, chooses
σ2k =∞ as weakly dominant strategy.

Proof. The non-existence of interior solutions can be shown by con-

tradiction. In case of an interior solution at the second stage, the players’

objection functions at the first stage can be written as4

EUi

¡
σ2i
¢
= ui (w2) +∆ui ·G

¡
e∗i − e∗j ;σ

2
i + σ2j

¢− c (e∗i ) (11)

EUj

¡
σ2j
¢
= uj (w2) +∆uj ·G

¡− £e∗i − e∗j
¤
;σ2i + σ2j

¢− c
¡
e∗j
¢

(12)

with G
¡·;σ2i + σ2j

¢ ≡ G (·), and e∗i = e∗i
¡
σ2i + σ2j

¢
and e∗j = e∗j

¡
σ2i + σ2j

¢
being described by (5) and (6). The first-order conditions yield

∆ui

µ
g (∆e∗)

µ
∂e∗i
∂σ2i
− ∂e∗j

∂σ2i

¶
+

∂G (∆e∗)
∂σ2i

¶
= c0 (e∗i )

∂e∗i
∂σ2i

(13)

∆uj

µ
−g (−∆e∗)

µ
∂e∗i
∂σ2j
− ∂e∗j

∂σ2j

¶
+

∂G (−∆e∗)
∂σ2j

¶
= c0

¡
e∗j
¢ ∂e∗j
∂σ2j

(14)

4Note that G (−x) = 1−G (x) because of the symmetry of the convolution.
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with ∆e∗ := e∗i − e∗j . Since g (∆e∗) = g (−∆e∗) (due to symmetry) and

because of (5) and (6) (hence, the envelope theorem applies) we have that

g (∆e∗)
∂e∗j
∂σ2i

=
∂G (∆e∗)

∂σ2i
(15)

and g (∆e∗)
∂e∗i
∂σ2j

=
∂G (−∆e∗)

∂σ2j
. (16)

However, since ∂σ2

∂σ2i
= ∂σ2

∂σ2j
so that sign

³
∂e∗j
∂σ2i

´
= sign

³
∂e∗i
∂σ2j

´
according to

Proposition 1, and since sign
³
∂G(∆e∗)

∂σ2i

´
6= sign

³
∂G(−∆e∗)

∂σ2j

´
= sign( ∂

∂σ2j
(1 −

G (∆e∗))), equations (15) and (16) cannot hold at the same time.

Hence, at least on player chooses either σ2min/2 or∞ in equilibrium. We can

show that the player with the smaller utility spread always weakly prefers

∞. Let, w.l.o.g., ∆ui > ∆uj. If i chooses σ2i =∞, player j will be indifferent
between all possible values of σ2j since σ

2 = σ2i + σ2j . If i chooses σ
2
i < ∞,

player j will either have

EUj

¡
σ2j <∞

¢
= uj (w2) +∆uj ·G (−∆e∗)− c

¡
e∗j
¢

or EUj

¡
σ2j =∞

¢
= uj (w2) +

∆uj
2
− c (0)

with ∆e∗ = e∗i − e∗j > 0 and
¡
e∗i , e

∗
j

¢
being described by (5) and (6). Since

G (−∆e∗) < 1/2, we have EUj

¡
σ2j =∞

¢
> EUj

¡
σ2j <∞

¢
.

The intuition for the result of Proposition 2 is the following: The under-

dog, i.e. the player with the lower utility spread, has always an incentive to

completely erase competition at the second stage by choosing infinitely large

risk. Note that risk taking has two effects. First, it influences a player’s

effort choice and, hence, his effort costs (effort effect). Second, it determines
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the distribution G(·) and therefore a player’s likelihood of winning (likeli-
hood effect). For the underdog, both effects work into the same direction:

By choosing infinite risk, effort incentives and effort costs are minimized. In

addition, the underdog would exert less effort than the other player in case of

an interior solution at the second stage and, therefore, would have a winning

probability strictly smaller than one half. Infinitely high risk counterbalances

the players’ winning probabilities so that each one wins with probability one

half.

Example 1: Mean-variance preferences

To analyze how the players’ degree of risk aversion may influence their risk

taking, let the utility function ui(Ii) in (2) be further specified. We assume

that both players have mean-variance preferences and hence a quadratic util-

ity function5

uk (Ik) = Ik − rkI
2
k (k = i, j) (17)

with rk > 0 indicating player k’s degree of risk aversion and rk < 1/ (2Ik) , ∀Ik,
which guarantees a non-decreasing utility function. By using (17), the ex-

pected utilities of the two players at the second stage for given variances σ2i

and σ2j can be written as

EUi (ei) = E [Ii]− riE
£
I2i
¤− c (ei)

= w2 − riw
2
2 +

£
∆w − ri

¡
w21 − w22

¢¤
G (∆e)− c (ei)

EUj (ej) = w2 − rjw
2
2 +

£
∆w − rj

¡
w21 − w22

¢¤
G (−∆e)− c (ej)

5See, e.g., Müller and Machina (1987).

14



with ∆e = ei − ej and ∆w = w1 − w2. The first-order conditions for an

interior solution at stage 2 are6

£
∆w − ri

¡
w21 − w22

¢¤
g (∆e) = c0 (ei) (18)£

∆w − rj
¡
w21 − w22

¢¤
g (∆e) = c0 (ej) . (19)

By redefining ∆uk := [∆w − rk (w
2
1 − w22)] and uk (w2) := w2 − rkw

2
2 in the

previous results, particularly in Propositions 1 and 2, we immediately get

the following corollary:

Corollary 2 If the two players have mean-variance preferences according to

(17), the player with the higher degree of risk aversion rk, k ∈ {i, j}, will
choose maximum risk σ2k =∞ as weakly dominant strategy at stage 1.

At first sight, it sounds counterintuitive that the more risk averse player

unambiguously prefers to maximize risk. However, note that chosen risk is

not identical with the players’ income risks. Inspection of (18) and (19) gives

the intuition for the finding of Corollary 2: The more risk averse player has

the lower marginal return of winning, [∆w − rk (w
2
1 − w22)] g (∆e) (k ∈ {i, j}),

and therefore lower incentives at the second stage.7 Thus, he is the underdog

who chooses maximum risk in order to minimize effort costs (effort effect)

and to maximize his likelihood of winning (likelihood effect). However, note

that the result of Corollary 2 need not hold for all possible utility functions
6Recall that g (∆e) = g (−∆e) due to symmetry. Note that the terms in brackets are

strictly positive because of the technical assumption rk < 1/ (2Ik),∀Ik, above.
7Note that player i’s expected risk costs E

£
riI

2
i

¤
= ri

¡
w22 +

¡
w21 − w22

¢
G (∆e)

¢
monotonically increase in i’s effort level. Analogous considerations hold for player j.
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as the player with the lower utility spread ∆uk, k ∈ {i, j}, is not necessarily
the more risk averse individual.

Example 2: Normally distributed noise and finite risk

Let εj − εi ∼ N
¡
0, σ2i + σ2j

¢
. To show that the underdog’s preference for

maximum risk crucially depends on the possibility of choosing infinitely high

risk, in this example we assume that risk choice is limited to σ2max/2 for

each player so that total maximum risk σ2 = σ2i + σ2j = σ2max still leads

to an interior solution at the effort stage.8 Hence, at stage 1, the players

have to choose σ2i and σ
2
j from the interval

h
σ2min
2
, σ

2
max

2

i
. To allow for explicit

equilibrium solutions, let effort costs be exponential c (ek) = exp {c · ek} −
1 with c > 0 (k = i, j).9 W.l.o.g., let player i be the favorite and j the

underdog, i.e. ∆ui > ∆uj. Simple computations (see Appendix) show that,

in stage 1, we have

∂EUi

∂σ2i
=

∆ui
2cσ3

Ã
1− (∆e∗)2

σ2
− c ·∆e∗

!
φ

µ
∆e∗

σ

¶
(20)

∂EUj

∂σ2j
=

∆uj
2cσ3

Ã
1− (∆e∗)2

σ2
+ c ·∆e∗

!
φ

µ
∆e∗

σ

¶
(21)

with φ (·) denoting the density of the standardized normal distribution and
∆e∗ = 1

c
ln
³
∆ui
∆uj

´
= const. Comparing (20) and (21) immediately shows that

both derivatives cannot be zero at the same time. In both equations, the ex-

pression in parentheses is monotonically increasing in σ2. Hence, if stationary
8The calculations in the appendix show that equilibrium efforts will only be positive

for risk being not too large.
9Exponential cost functions are also used elsewhere in the literature. See, for example,

Tadelis (2002), Kräkel and Sliwka (2004).
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points exist for σ2i , σ
2
j ∈

h
σ2min
2
, σ

2
max

2

i
, they will correspond to (local) minima

so that we have strict corner solutions in the given setting. Interestingly,

depending on the parameter values there may be an equilibrium in which

both players prefer minimum risk: If, for example, c ·∆e∗ > 1⇔ ln ∆ui
∆uj

> 1,

the favorite’s objective function EUi (σ
2
i ) is monotonically decreasing so that

i chooses σ2min/2 as a dominant strategy. Note that (21) has a unique root

σ̂2j =
∆e∗2
1+c∆e∗ − σ2i . If σ̂

2
j > σ2max/2 for σ

2
i = σ2min/2, then underdog j will also

choose minimum risk σ2j = σ2min/2.
10

To sum up, the discussion has shown that the finding of Hvide (2002) for

homogeneous players that contestants prefer maximum risk does not in gen-

eral apply to the case of heterogeneous players. The last example has shown

that, on the contrary, both favorite and underdog may choose minimum risk

in equilibrium. However, the most important topic — the interrelation of the

effort effect and the likelihood effect — should be highlighted in more details

in the next subsection.

4.2 The Discrete Case

In this subsection, two assumptions will be modified which do not seem to be

very realistic. First, we skip the assumption that players can choose infinite

risk. Second, now we assume that each player can only choose between two

10A necessary condition for this outcome is that ∆e∗2
1+c∆e∗ − σ2min

2 >
σ2min
2 ⇔ ∆e∗2

1+c∆e∗ >

σ2min =
∆ui exp{− 1

2}
c2
√
2π

⇔
³
ln
³
∆ui
∆uj

´´2
− ∆uk exp{− 1

2}√
2π

³
1 + ln

³
∆ui
∆uj

´´
> 0 which can be

satisfied.
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discrete risk levels — low risk and high risk. Both modifications are in line with

the examples of Section 1 (e.g. new product introduction, stock-car racing).

Moreover, part of the analysis of Hvide (2002) and the whole analysis of

Kräkel and Sliwka (2004) deal with the discrete case and finite risk. Hence,

it will be interesting to compare the case of heterogeneous players considered

in this paper with the findings of the previous papers.

Both papers, Hvide (2002) and Kräkel and Sliwka (2004), focus on the

case of symmetric equilibria at the effort stage 2. In Hvide (2002), players

are assumed to be homogeneous which directly implies symmetry. In Kräkel

and Sliwka (2004), players are heterogeneous in ability which yields a lead for

the favorite; however, there are always symmetric equilibria at stage 2 since

effort and ability are additively combined within each player’s production

function. Because of the symmetric equilibria at the effort stage, the effort

effect and the likelihood effect are completely separate in both papers. This

means that varying risk may influence both the equilibrium efforts and the

winning probability, but the effort shifts have not any impact on the winning

probability since in the symmetric equilibrium effort changes completely off-

set each other so that ∆e∗ is zero. This specific characteristic simplifies the

analysis a lot. In particular, equilibrium efforts can be explicitly calculated.11

11Note that in Example 2 above with normally distributed noise and exponential costs

we also have explicit equilibrium efforts. However, this case is also very special since due

to the cost function the difference of the equilibrium efforts, ∆e∗, is constant; i.e. it does

neither depend on risk σ2 nor on the players’ effort levels. Hence, in this special case the

interrelation between effort and likelihood effect also disappears.

18



Moreover, a player’s expected utilities for different risk levels can be easily

compared with each other. In this subsection, we would like to point out that

with heterogeneous players and asymmetric equilibria at the effort stage, the

effort effect and the likelihood effect will be strictly interrelated in general.

This linkage can substantially change the risk behavior of players compared

to the symmetric case.

Now, at stage 1 players i and j choose σ2i , σ
2
j ∈ {σ2L, σ2H}, respectively,

with σ2 = σ2i +σ2j ensuring an interior solution at the effort stage 2 described

by the first-order conditions (5) and (6). Here, σ2L denotes low risk, whereas

σ2H > σ2L stands for high risk. At stage 2, the players exert efforts ei (σ
2) and

ej (σ
2) for a given risk σ2. We have to differentiate between three scenarios.

First, there may be a high-risk situation in which both players choose σ2H so

that in equilibrium player i’s winning probability (player j’s probability of

losing) is given by G (∆e∗ (2σ2H) ; 2σ
2
H) with∆e∗ (2σ2H) = e∗i (2σ

2
H)−e∗j (2σ2H).

Hence, choosing risk influences the shape of the cumulative distribution func-

tion, which exactly describes the likelihood effect in the symmetric cases of

Hvide (2002) and Kräkel and Sliwka (2004). However, risk also influences

each player’s effort choice which normally results in an equilibrium effort

difference that varies in σ2 as indicated by ∆e∗ (σ2). Note that this is par-

ticularly true for the huge class of polynomial cost functions c (ek) =
γ

δ+1
eδ+1k

(k = i, j) with γ > 0 and δ ≥ 1 which leads to

∆e∗
¡
σ2
¢
=

Ã
1−

µ
∆uj
∆ui

¶1
δ

!
e∗i
¡
σ2
¢

(22)
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since c0 (e∗i ) /∆ui = c0
¡
e∗j
¢
/∆uj according to (5) and (6). As second scenario,

there may be a low-risk situation in which both players choose σ2L so that in

equilibrium player i’s winning probability (player j’s probability of losing)

can be written as G (∆e∗ (2σ2L) ; 2σ
2
L). Finally, there may be an intermediate

situation with G (∆e∗ (σ2L + σ2H) ;σ
2
L + σ2H) in which one player chooses a low

risk and the other one a high risk.

Of course, depending on the shape of the cumulative distribution function,

the density and the cost function as well as the parameter values, different

kinds of equilibria may be possible. However, the remainder of this subsection

will concentrate on sufficient conditions for a low-risk equilibrium
¡
σ2i , σ

2
j

¢
=

(σ2L, σ
2
L) at the first stage. Such selective proceeding seems to be appropriate

for at least three reasons: (1) The results of the preceding subsection indicate

that at least one player tend to prefer maximum risk (Proposition 2). Indeed,

in the case of continuous and unlimited risk, at stage 2 players i and j

always end up with dropping out of the competition by exerting zero effort

since at least one player has chosen maximum risk as a weakly dominant

strategy at stage 1. (2) Taking the main finding for homogeneous players

of Hvide (2002) as a benchmark ("The unique equilibrium induces excessive

risk taking and a low level of effort", p. 877), it is interesting to show that

for heterogeneous players the opposite risk taking can be an equilibrium

outcome. Moreover, on pp. 886-887 Hvide (2002) considers a (numerical)

example with heterogeneous players and two discrete risk levels. There he

demonstrates that under small heterogeneity both players choose a high risk,
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whereas under large heterogeneity the favorite chooses a low risk and the

underdog a high risk. However, Hvide does not discuss the possibility of

a low risk equilibrium (σ2L, σ
2
L). (3) Finally, a detailed characterization of

a low-risk equilibrium also indicates how other types of equilibria can be

derived in analogy.

Let, w.l.o.g., ∆ui > ∆uj so that player i is the favorite and j the un-

derdog. From the discussion above we know that in this case e∗i (σ
2) >

e∗j (σ
2) ,∀σ2; hence∆e∗ (σ2) > 0 andG (∆e∗ (σ2) ;σ2) > 1

2
> G (−∆e∗ (σ2) ;σ2).

Suppose that ∆ui−∆uj is sufficiently large so that increasing risk from 2σ2L

to σ2H + σ2L would result in higher efforts and therefore also higher effort

costs. If 2σ2L and σ2H + σ2L do not differ too much we can use the marginal

analysis of Section 3, in particular Corollary 1, as an approximation which

just shows this effect. We can also have a look at Figures 1 and 2 (see Ap-

pendix). Hence, concerning the effort effect neither player i nor player j has

an incentive to deviate from
¡
σ2i , σ

2
j

¢
= (σ2L, σ

2
L).

Now consider the likelihood effect. Graphically, increasing risk from 2σ2L

to σ2H+σ
2
L means that the cumulative distribution function G (·;σ2) which at

∆e∗ denotes i’s winning probability "rotates clockwise" in the point (0, 1/2)

(see Figures 1 and 2 in the Appendix). Note that in case of an asymmetric

equilibrium at the effort stage 2, increasing risk has an additional effect

on the players’ winning probabilities: By increasing e∗i (σ
2) and e∗j (σ

2) it

also influences ∆e∗ (σ2). Let ∆e∗ (σ2) rise from ∆e∗ (2σ2L) to ∆e∗ (σ2H + σ2L)

(recall that this will always happen in case of polynomial cost functions, see
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(22) with ∆ui > ∆uj).

Two different scenarios are possible: Either player i’s winning probability

increases and j’s likelihood of winning decreases (as depicted by Figure 1)

or, vice versa, i’s winning probability decreases and j’s winning probability

increases (see Figure 2). If in the first scenario the effort effect dominates

the likelihood effect for player i, or if in the second scenario the effort ef-

fect dominates the likelihood effect for player j, no one will deviate from¡
σ2i , σ

2
j

¢
= (σ2L, σ

2
L). It is important to emphasize that in the case of an un-

fair tournament with a symmetric equilibrium at stage 2, as considered by

Kräkel and Sliwka (2004), an increase (decrease) of the favorite’s (underdog’s)

winning probability by increasing risk is impossible: There, ∆e∗ (σ2) = 0 and

favorite i’s winning probability in equilibrium is given byG (∆a) with∆a > 0

being a constant which denotes the favorite’s lead.12 Hence, a "clockwise ro-

tation" of G (·;σ2) would unambiguously decrease the favorite’s likelihood of
winning and increase the underdog’s winning probability since it is always

calculated at ∆a > 0.

Altogether, sufficient conditions for a low-risk equilibrium (σ2L, σ
2
L) can

be summarized as follows:

Proposition 3 Let∆ui−∆uj be sufficiently large and∆e∗ (2σ2L) < ∆e∗(σ2H+

12This lead results from the ability difference between the two contestants in the unfair

tournament. Each player k (k = i, j) has an additive production function qk = ek+εk+ak

with ek as endogenous effort, εk as exogenous luck and ak as exogenous ability. Thus,

∆a := ai − aj stands for favorite i’s additional ability.
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σ2L) with g (∆e∗ (2σ2L) ; 2σ
2
L) < g (∆e∗ (σ2H + σ2L) ;σ

2
H + σ2L).

If either (1) G (−∆e∗ (2σ2L) ; 2σ
2
L) > G (−∆e∗ (σ2H + σ2L) ;σ

2
H + σ2L) and

∆ui
£
G
¡
∆e∗

¡
σ2H + σ2L

¢
;σ2H + σ2L

¢−G
¡
∆e∗

¡
2σ2L

¢
; 2σ2L

¢¤ ≤
c
¡
e∗i
¡
σ2H + σ2L

¢¢− c
¡
e∗i
¡
2σ2L

¢¢
, (23)

or (2) G (∆e∗ (2σ2L) ; 2σ
2
L) > G (∆e∗ (σ2H + σ2L) ;σ

2
H + σ2L) and

∆uj
£
G
¡−∆e∗

¡
σ2H + σ2L

¢
;σ2H + σ2L

¢−G
¡−∆e∗

¡
2σ2L

¢
; 2σ2L

¢¤ ≤
c
¡
e∗j
¡
σ2H + σ2L

¢¢− c
¡
e∗j
¡
2σ2L

¢¢
, (24)

then
¡
σ2i , σ

2
j

¢
= (σ2L, σ

2
L) will be an equilibrium.

Note that in case (1) both the effort effect and the likelihood effect work

into the same direction for underdog j so that he is not interested in choosing

a high risk at all. This case should be highlighted since in the continuous case

with unlimited risk (Subsection 4.1) the underdog always chooses maximum

risk as a weakly dominant strategy. However, favorite i faces a trade-off

in case (1). On the one hand, deviating to high risk would increase his

likelihood of winning; on the other hand, deviation would also increase effort

costs. Hence, favorite i also prefers not to deviate from (σ2L, σ
2
L) if for him

the effort effect dominates the likelihood effect (see condition (23)). Case

(2) describes just the opposite scenario. Here, both the effort effect and the

likelihood effect support a low-risk choice of favorite i whereas underdog j

faces a trade-off (see condition (23)).
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5 Conclusion

In rank-order tournaments, players often can choose both risk and effort (or

investment). Previous papers on risk taking in two-stage tournaments have

focused on the case of symmetric equilibrium efforts at the second stage. The

findings of this paper point out that switching to asymmetric behavior at the

effort stage can change players’ risk taking substantially.

In general, there are two effects that are decisive for a player’s risk choice

— an effort effect (i.e. more risk strengthens or weakens effort incentives) and

a likelihood effect (i.e. more risk increases or decreases a player’s winning

probability). Whereas both players may be interested in the same risk choice

in order to decrease total efforts and hence effort costs, their interests strictly

differ concerning the likelihood effect since winning probabilities sum up to

one.

The previous literature on risk taking has considered either rank-order

tournaments with homogeneous players or so-called "unfair tournaments".

In both cases, we always have a symmetric equilibrium at the effort stage

which unambiguously separates the effort effect from the likelihood effect.

However, if the players’ utility functions at least slightly differ, only asym-

metric pure-strategy equilibria can exist at the effort stage. The analysis of

this paper shows that this asymmetry has important implications for players’

risk taking since now effort effect and likelihood effect are strictly interrelated.

In "unfair tournaments", the favorite (underdog) always prefers low (high)
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risk concerning the likelihood effect. If heterogeneous players compete within

an "uneven tournament", these preferences may be exactly reverse.
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Appendix

Computation of (20) and (21):

An interior solution at stage 2,
¡
e∗i , e

∗
j

¢
, is characterized by (5) and (6):

∆ui

σ
√
2π
· exp

(
−
¡
e∗i − e∗j

¢2
2σ2

)
= c · exp {c · e∗i } (A1)

∆uj

σ
√
2π
· exp

(
−
¡
e∗i − e∗j

¢2
2σ2

)
= c · exp©c · e∗jª (A2)

with σ =
q
σ2i + σ2j yielding e

∗
k =

1

c
· ln
µ
∆uk
c · σφ

µ
∆e∗

σ

¶¶
(k = i, j) (A3)

(φ (·) denotes the density of the standardized normal distribution) and

∆e∗ = e∗i − e∗j =
1

c
· ln
µ
∆ui
∆uj

¶
. (A4)

Concerning the first stage, from (13)—(16) we know that

∂EUi

∂σ2i
= ∆ui

µ
−g (∆e∗)

∂e∗j
∂σ2i

+
∂G (∆e∗)

∂σ2i

¶
(A5)

∂EUj

∂σ2j
= ∆uj

µ
−g (∆e∗)

∂e∗i
∂σ2j

+
∂G (−∆e∗)

∂σ2j

¶
. (A6)

In the case of normally distributed noise we obtain from (A3) and (A4)

∂e∗k
∂σ2l

= − 1

2cσ2
+
(∆e∗)2

2cσ4
(k = i, j; l = i, j) .

Moreover, we have g (∆e∗) = 1
σ
φ
¡
∆e∗
σ

¢
andG (∆e∗) = Φ

¡
∆e∗
σ

¢
with ∂G(∆e∗)

∂σ2i
=

−∆e∗
2σ3

φ
¡
∆e∗
σ

¢
(Φ (·) denotes the cdf of the standardized normal distribution).

Similarly, we obtain G (−∆e∗) = Φ
¡−∆e∗

σ

¢
with ∂G(−∆e∗)

∂σ2j
= ∆e∗

2σ3
φ
¡
∆e∗
σ

¢
(φ (x) = φ (−x), ∀x). Putting all together, (A5) and (A6) can be rewrit-
ten as (20) and (21).
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Figure 1: Underdog j prefers low risk as a result of both effort effect and likelihood 
  effect 
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Figure 2: Favorite i prefers low risk as a result of both effort effect and likelihood 
  effect 
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