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Abstract

We define a generalized state-space model with interactive unawareness and probabilistic
beliefs. Such models are desirable for many potential applications of asymmetric unaware-
ness. We develop Bayesian games with unawareness, define equilibrium, and prove existence.
We show how equilibria are extended naturally from lower to higher awareness levels and
restricted from higher to lower awareness levels. We use our unawareness belief structure
to show that the common prior assumption is too weak to rule out speculative trade in all
states. Yet, we prove a generalized “No-trade” theorem according to which there can not
be common certainty of strict preference to trade. Moreover, we show a generalization of
the “No-agreeing-to-disagree” theorem.
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1 Introduction

Unawareness is probably the most common and most important kind of ignorance. Business
people invest most of their time not in updating prior beliefs, and crossing out states of the
world that they previously assumed to be possible. Rather, their efforts are mostly aimed at
exploring unmapped terrain, trying to figure out business opportunities that they could not even
have spelled out before. More broadly, every book we read, every new acquaintance we make,
expands our horizon and our language, by fusing it with the horizons of those we encounter,
turning the world more intelligible and more meaningful to us than it was before (Gadamer,
1960).

With this in mind, we should not be surprised that the standard state spaces aimed at
modeling knowledge or certainty are not adequate for capturing unawareness (Dekel, Lipman
and Rustichini, 2001). Indeed, more elaborate models are needed (Fagin and Halpern, 1988,
Modica and Rustichini, 1994, 1999, Halpern, 2001). In all of these models, the horizon of
propositions the individual has in her disposition to talk about the world is always a genuine
part of the description of the state of affairs.

Things become even more intricate when several players are involved. Different players may
not only have different languages. On top of this, each player may also form a belief on the
extent to which other players are aware of the issues that she herself has in mind. And the
complexity continues further, because the player may be uncertain as to the sub-language that
each other player attributes to her or to others; and so on.

Heifetz, Meier and Schipper (2006a) showed how an unawareness structure consisting of
a lattice of spaces is adequate for modeling mutual unawareness. Every space in the lattice
captures one particular horizon of meanings or propositions. Higher spaces capture wider
horizons, in which states correspond to situations described by a richer vocabulary. The join
of several spaces – the lowest space at least as high as every one of them – corresponds to the
fusion of the horizons of meanings expressible in these spaces.

In a companion work (Heifetz, Meier and Schipper, 2006b), we showed the precise sense
in which such unawareness structures are adequate and general enough for modeling mutual
unawareness. We put forward an axiom system, which extends to the multi-player case a variant
of the axiom system of Modica and Rustichini (1999). We then showed how the collections of all
maximally-consistent sets of formulas in our system form a canonical unawareness structure.1 In
a parallel work, Halpern and Rêgo (2005) devised another sound and complete axiomatization
for our class of unawareness structures.

In this paper we extend unawareness structures so as to encompass probabilistic beliefs
(Section 2) rather than only knowledge or ignorance. The definition of types (Definition 1),
and the way beliefs relate across different spaces of the lattice, is a non-trivial modification of
the coherence conditions for knowledge operators in unawareness structures, as formulated in
Heifetz, Meier and Schipper (2006a).

With unawareness type spaces in hand, we can define Bayesian games. Here again, the
definition of a strategy is not obvious. Consider a type τ with a narrow horizon, and two other

1Each space in the lattice of this canonical unawareness structure consists of the maximally consistent sets of
formulas in a sub-language generated by a subset of the atomic propositions.
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types τ ′, τ ′′ with a wider horizon, that agree with the quantitative beliefs of τ regarding the
aspects of reality of which τ is aware; the beliefs of τ ′ and τ ′′ differ only concerning dimensions
of reality that τ does not conceive. Should the action taken by τ necessarily be some average
of the actions taken by τ ′ and τ ′′? We believe that conceptually, the answer to this question is
negative. When the player conceives of more parameters (e.g. motives for saving) as relevant
to her decision, her optimal action (e.g. “invest in bonds” or “invest in stocks”) need not be
related to her optimal decision (e.g. “go shopping”) when that parameter is not part of the
vocabulary with which she conceives the world.2

The next step is to define Bayesian equilibrium. With finitely or countably many states,
existence follows from standard arguments.3 Unawareness, however, introduces a new aspect to
the construction of equilibrium, namely “the tyranny of the unaware”: A type who concieves of
only few dimensions of reality does not have in mind types of other players with a wider horizon,
so the optimal action of this type does not depend on the actions of these wider-horizon types.
Those types, however, who assign a positive probability to this narrow-minded type, must take
its action into account when optimizing.

In Section 4 we define the notion of a common prior. Conceptually, a prior of a player is
a convex combination of (the beliefs of) her types (see e.g. Samet, 1998). If the priors of the
different players coincide, we have a common prior. A prior of a player induces a prior on each
particular space in the lattice, and if the prior is common to the players, the induced prior on
each particular space is common as well.

What are the implications of the existence of a common prior? First, we extend an example
from Heifetz, Meier and Schipper (2006a) and show that speculative trade is compatible with
the existence of a common prior. This need not be surprising if one views unawareness as a
particular kind of delusion, since we know that with deluded beliefs, speculative trade is possible
even with a common prior (Geanakoplos, 1989). Nevertheless, we show that under a mild
non-degeneracy condition, a common prior is not compatible with common certainty of strict
preference to carry out speculative trade. That is, even though types with limited awareness are,
in a particular sense, deluded, a common prior precludes the possibility of common certainty of
the event that based on private information players are willing to engage in a zero-sum bet with
strictly positive subjective gains to everybody. This is so because unaware types are “deluded”
only concerning aspects of the world outside their vocabulary, while a common prior captures
a prior agreement on the likelihood of whatever the players do have a common vocabulary. An
implication of this generalized no-trade theorem is that arbitrary small transaction fees rule
out speculative trade under unawareness. We complement this result be generalizing Aumann’s
(1976) “No-Agreeing-to-disagree” result to unawareness belief structures.

There is a growing literature on unawareness both in economics and computer science. The
independent parallel work of Sadzik (2006) is closest to ours. Building on our earlier work,
Heifetz, Meier and Schipper (2006a), he presents a framework of unawareness with probabilis-
tic beliefs in which the common prior on the upmost space is a primitive. In contrast, we take
types as primitives and define a prior on the entire unawareness belief structure as a convex

2This is a crucial point in which our definition of a strategy diverges from the one in the parallel work of
Sadzik (2006). This paper confines attention to a setting with a common prior, that we discuss as a special case.

3Recall that in standard type spaces (with no unawareness), a Bayesian equilibrium need not exist even in
“non-pathological” spaces with a continuum of states (Simon 2003).
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combination of the type’s beliefs. Sadzik (2006) also considers Bayesian games with unaware-
ness, but his definition of Bayesian strategy and consequently the notion of equilibrium differs
from ours. As argued above, we do not confine actions of a type with a narrow horizon to be
some average of actions of the corresponding types with a wider horizon, a restriction made in
Sadzik (2006). As a result, in our notion of Bayesian equilibrium every type maximizes and is
certain that every other type that she is aware of maximizes as well, while in the equilibrium of
actions proposed in Sadzik (2006) a type may believe that another player is irrational. Sadzik
(2006) does not allow for unawareness of players, while we do (see the appendix).

A purely syntactic framework with unawareness is presented by Feinberg (2004, 2005). He
applies it to games with unawareness of actions but complete information. In the appendix,
we discuss an interesting example due to Feinberg (2005) and demonstrate that higher order
awareness of unawareness in Feinberg (2005) corresponds to higher order belief of unawareness
in our model. In a framework similar to Feinberg (2004, 2005), Čopič and Galeotti (2006)
study two-player games with either unawareness of actions or unawareness of types (with a
prior as a primitive). Yet, they postulate that in equilibrium beliefs over actions and payoffs
must correspond to the true joint distribution over own payoffs and the opponent’s actions.

Both Halpern and Rêgo (2006) and Li (2006b) present models of extensive form games with
unawareness and analyze solution concepts for them.4 Modica (2000) studies the updating of
probabilities and argues that new information may change posteriors more if it implies also
a higher level of awareness. A dynamic framework for a single decision maker with unaware-
ness is introduced by Grant and Quiggin (2006). Ewerhart (2001) studies the possibility of
agreement under a notion of unawareness different from the aforementioned literature. Lastly,
Ahn and Ergin (2006) consider explicitly more or less fine descriptions of acts and characterize
axiomatically a partition-dependent subjective expected utility representation. Since the set
of all partitions of a state-space forms a complete lattice, their approach suggests a decision
theoretic foundation of subjective probabilities on our lattice structure.

In the following section we present our interactive unawareness belief structure. In Section
3 Bayesian games with unawareness are developed. In Section 4 we define a common prior
and investigate agreement and speculation under unawareness. Some further properties of our
unawareness belief structure are relegated to the appendix, which also contains a generalization
of Bayesian games in order to include unawareness of actions and players. Proofs are relegated
to the appendix as well. In a separate appendix, Meier and Schipper (2007), we extend the
“No-trade” theorem to infinite unawareness structures.

2 Model

2.1 State-Spaces

Let S = {Sα}α∈A be a complete lattice of disjoint state-spaces, with the partial order � on S.
If Sα and Sβ are such that Sα � Sβ we say that “Sα is more expressive than Sβ – states of Sα

4Li (2006b) is based on her earlier work, Li (2006a).
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describe situations with a richer vocabulary than states of Sβ ”.5 Denote by Ω =
⋃

α∈A
Sα the

union of these spaces. Each S ∈ S is a measurable space, with a σ-field FS .

Spaces in the lattice can be more or less “rich” in terms of facts that may or may not obtain
in them. The partial order relates to the “richness” of spaces. The upmost space of the lattice
can be interpreted as the “objective” state-space. Its states encompass full descriptions from
the point of view of the modeler.

2.2 Projections

For every S and S′ such that S′ � S, there is a measurable surjective projection rS′
S : S′ → S,

where rS
S is the identity. (“rS′

S (ω) is the restriction of the description ω to the more limited
vocabulary of S.”) Note that the cardinality of S is smaller than or equal to the cardinality of
S′. We require the projections to commute: If S′′ � S′ � S then rS′′

S = rS′
S ◦ rS′′

S′ . If ω ∈ S′,
denote ωS = rS′

S (ω). If D ⊆ S′, denote DS = {ωS : ω ∈ D}.
Projections “translate” states in “more expressive” spaces to states in “less expressive”

spaces by “erasing” facts that can not be expressed in a lower space.

2.3 Events

Denote g(S) = {S′ : S′ � S}. For D ⊆ S, denote D↑ =
⋃

S′∈g(S)

(
rS′
S

)−1
(D). (“All the

extensions of descriptions in D to at least as expressive vocabularies.”)

An event is a pair (E,S), where E = D↑ with D ⊆ S, where S ∈ S. D is called the base
and S the base-space of (E,S), denoted by S(E). If E 6= ∅, then S is uniquely determined by
E and, abusing notation, we write E for (E,S). Otherwise, we write ∅S for (∅, S). Note that
not every subset of Ω is an event.

Some fact may obtain in a subset of a space. Then this fact should be also “expressible” in
“more expressive” spaces. Therefore the event contains not only the particular subset but also
its inverse images in “more expressive” spaces.

Let Σ be the set of measurable events of Ω, i.e., D↑ such that D ∈ FS , for some state space
S ∈ S.

2.4 Negation

If (D↑, S) is an event where D ⊆ S, the negation ¬(D↑, S) of (D↑, S) is defined by ¬(D↑, S) :=
((S\D)↑, S). Note, that by this definition, the negation of a (measurable) event is a (measurable)
event. Abusing notation, we write ¬D↑ := (S \D)↑. Note that by our notational convention,
we have ¬S↑ = ∅S and ¬∅S = S↑, for each space S ∈ S. The event ∅S should be interpreted as
a “logical contradiction phrased with the expressive power available in S.” ¬D↑ is typically a
proper subset of the complement Ω \D

↑
. That is, (S \D)↑ $ Ω \D

↑
.

Intuitively, there may be states in which the description of an event D↑ is both expressible

5Here and in what follows, phrases within quotation marks hint at intended interpretations, but we emphasize
that these interpretations are not part of the definition of the set-theoretic structure.
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and valid – these are the states in D↑; there may be states in which this description is expressible
but invalid – these are the states in ¬D↑; and there may be states in which neither this
description nor its negation are expressible – these are the states in

Ω \
(
D↑ ∪ ¬D↑

)
= Ω \ S

(
D↑

)↑
.

Thus our structure is not a standard state-space model in the sense of Dekel, Lipman, and
Rustichini (1998).

2.5 Conjunction and Disjunction

If
{(

D↑
λ, Sλ

)}
λ∈L

is an at most countable collection of events (with Dλ ⊆ Sλ, for λ ∈ L),

their conjunction
∧

λ∈L

(
D↑

λ, Sλ

)
is defined by

∧
λ∈L

(
D↑

λ, Sλ

)
:=

((⋂
λ∈L D↑

λ

)
, supλ∈L Sλ

)
.

Note, that since S is a complete lattice, supλ∈L Sλ exists. If S = supλ∈L Sλ, then we have(⋂
λ∈L D↑

λ

)
=

(⋂
λ∈L

((
rS
Sλ

)−1
(Dλ)

))↑
. Again, abusing notation, we write

∧
λ∈L D↑

λ :=⋂
λ∈L D↑

λ (we will therefore use the conjunction symbol ∧ and the intersection symbol ∩ inter-
changeably).

We define the relation ⊆ between events (E,S) and (F, S′) , by (E,S) ⊆ (F, S′) if and only
if E ⊆ F as sets and S′ � S. If E 6= ∅, we have that (E,S) ⊆ (F, S′) if and only if E ⊆ F
as sets. Note however that for E = ∅S we have (E,S) ⊆ (F, S′) if and only if S′ � S. Hence
we can write E ⊆ F instead of (E,S) ⊆ (F, S′) as long as we keep in mind that in the case
of E = ∅S we have ∅S ⊆ F if and only if S � S(F ). It follows from these definitions that for
events E and F , E ⊆ F is equivalent to ¬F ⊆ ¬E only when E and F have the same base, i.e.,
S(E) = S(F ).

The disjunction of
{

D↑
λ

}
λ∈L

is defined by the de Morgan law
∨

λ∈L D↑
λ = ¬

(∧
λ∈L ¬

(
D↑

λ

))
.

Typically
∨

λ∈L D↑
λ $

⋃
λ∈L D↑

λ, and if all Dλ are nonempty we have that
∨

λ∈L D↑
λ =

⋃
λ∈L D↑

λ

holds if and only if all the D↑
λ have the same base-space. Note, that by these definitions, the

conjunction and disjunction of (at most countably many measurable) events is a (measurable)
event.

Apart from the measurability conditions, the event-structure outlined so far is analogous
to Heifetz, Meier and Schipper (2006a, 2006b). An example is shown in Figure 1. It depicts a
lattice with four spaces and projections. The event that p obtains is indicated by the dotted
areas, whereas the grey areas illustrate the event that not p obtains.

2.6 Probability Measures

Here and in what follows, we mean by events always measurable events in Σ unless otherwise
stated.

Let ∆ (S) be the set of probability measures on (S,FS). We consider this set itself as a
measurable space endowed with the σ-field F∆(S) generated by the sets {µ ∈ ∆ (S) : µ (D) ≥ p},
where D ∈ FS and p ∈ [0, 1].

6



Figure 1: Event Structure

 

• pq  • p¬q  •¬pq  •¬p¬q 

• p  • ¬p • q  • ¬q 

•∅ 

S{q}S{p} 

S{∅}

S{pq}

2.7 Marginals

For a probability measure µ ∈ ∆ (S′), the marginal µ|S of µ on S � S′ is defined by

µ|S (D) := µ

((
rS′
S

)−1
(D)

)
, D ∈ FS .

Let Sµ be the space on which µ is a probability measure. Whenever Sµ � S(E) then we
abuse notation slightly and write

µ (E) = µ (E ∩ Sµ) .

If S(E) � Sµ, then we say that µ(E) is undefined.

2.8 Types

I is the nonempty set of individuals. For every individual, each state gives rise to a probabilistic
belief over states in some space.

Definition 1 For each individual i ∈ I there is a type mapping ti : Ω →
⋃

α∈A ∆ (Sα), which
is measurable in the sense that for every S ∈ S and Q ∈ F∆(S) we have t−1

i (Q) ∩ S ∈ FS, for
all S ∈ S.

We require the type mapping ti to satisfy the following properties:

(0) Confinement: If ω ∈ S′ then ti(ω) ∈ 4 (S) for some S � S′.
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(1) If S′′ � S′ � S, ω ∈ S′′, and ti(ω) ∈ 4(S) then ti(ωS′) = ti(ω).

(2) If S′′ � S′ � S, ω ∈ S′′, and ti(ω) ∈ 4(S′) then ti(ωS) = ti(ω)|S.

(3) If S′′ � S′ � S, ω ∈ S′′, and ti(ωS′) ∈ 4(S) then Sti(ω) � S.

ti(ω) represents individual i’s belief at state ω. Properties (0) to (3) guarantee the coherence
of belief and awareness down the lattice structure. Confinement means that at any given state
ω ∈ Ω an individual’s belief is concentrated on states that “are all described with the same
vocabulary - the vocabulary available to the individual at ω. This vocabulary may be less
expressive than the vocabulary used to describe statements in the state ω.”

Properties (1) to (3) compare the types of an individual in a state ω and its projection to ωS .
Property (1) and (2) means that at the projected state ωS the individual believes everything
she believes at ω given that she is aware of it at ωS . Property (3) means that at ω an individual
can not be unaware of an event that she is aware of at the projected state ωS .

Define6

Beni (ω) :=
{

ω′ ∈ Ω : ti(ω′)|Sti(ω)
= ti(ω)

}
.

This is the set of states at which individual i’s type or the marginal thereof coincides with
her type at ω. Such sets are events in our structure:

Remark 1 For any ω ∈ Ω, Beni(ω) is an Sti(ω)-based event.

Note that Beni(ω) may not be measurable.

Assumption 1 If Beni(ω) ⊆ E, for an event E, then ti(ω)(E) = 1.

This assumption implies introspection (Property (v)) in Proposition 7. Note, that if Beni(ω)
is measurable, then Assumption 1 implies ti(ω)(Beni(ω)) = 1.

Definition 2 We denote by Ω :=
〈
S,

(
rSα
Sβ

)
Sβ�Sα

, (ti)i∈I

〉
an interactive unawareness belief

structure.

2.9 Awareness and Unawareness

The definition of awareness is analogous to the definition in unawareness knowledge structures
(see Remark 6 in Heifetz, Meier and Schipper, 2006b).

Definition 3 For i ∈ I and an event E, define the awareness operator

Ai (E) := {ω ∈ Ω : ti (ω) ∈ ∆ (S) , S � S (E)}

if there is a state ω such that ti(ω) ∈ ∆(S) with S � S(E), and by

Ai(E) := ∅S(E)

otherwise.

6The name “Ben” is chosen analogously to the “ken” in knowledge structures.
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An individual is aware of an event if and only if his type is concentrated on a space in which
the event is “expressible.”

Proposition 1 If E is an event then Ai(E) is an S (E)-based event.

This proposition shows that the set of states in which an individual is aware of an event is
indeed an event in our structure. Moreover, the operator is convenient to work with since the
event Ai(E) has the same base-space as the event E.

Unawareness is naturally defined as the negation of awareness:

Definition 4 For i ∈ I and an event E, the unawareness operator is now defined by

Ui(E) = ¬Ai(E).

Note that the definition of our negation and Proposition 1 imply that if E is an event, then
Ui(E) is an S (E)-based event.

Note further that Definition 3 and 4 apply also to events that are not necessarily measurable.

An example of unawareness is presented in Example 1, Figure 2. For instance, at state ω2,
Nikolai (intermitted ellipses) is unaware of the event S since his type is concentrated on S′,
where S′ � S. Yet, he is aware of the event S′↑.

2.10 Belief

The p-belief-operator is defined as usual (see for instance Monderer and Samet, 1989):

Definition 5 For i ∈ I, p ∈ [0, 1] and an event E, the p-belief operator is defined, as usual, by

Bp
i (E) := {ω ∈ Ω : ti(ω)(E) ≥ p},

if there is a state ω such that ti(ω)(E) ≥ p, and by

Bp
i (E) := ∅S(E)

otherwise.

Proposition 2 If E is an event then Bp
i (E) is an S (E)-based event.

This proposition shows that the set of states in which an individual believes an event with
probability at least p is an event in our structure that has the same base-space as the event E.

The p-belief operator has the standard properties stated in Proposition 7 in the appendix.

Dekel, Lipman and Rustichini (1998) showed that in a standard state-space unawareness
must be trivial, even if the belief operator satisfies only very weak properties. In contrast, we
show in Proposition 8 (see appendix) that the strong notion of p-belief (in particular also
probability one belief) allows for all properties of unawareness that have been proposed in the
literature.

9



In Proposition 10 in the appendix, we state some multi-person properties of awareness
and belief. For instance, we show that if an individual is aware of an event E, then she can also
conceive of that others are aware of the event E. Moreover, we show that common awareness
and mutual awareness coincide. That is, if everybody is aware of an event, then everybody can
conceive of that everybody is aware of the event, everybody is aware of that, etc.

3 Bayesian Games with Unawareness

In this section, we generalize strategic games with incomplete information a là Harsanyi (1967/68)
and Mertens and Zamir (1985, Section 5) to include also unawareness. For simplicity, we con-
sider first Bayesian games with unawareness in which every player is aware of all of her and
other’s actions, and all the players. In the appendix we generalize our theory to allow also for
unawareness of actions and players. For notational convenience, we restrict ourselves in this
section to a finite set of players, finite sets of actions, finite state-spaces, and assume that for
each S ∈ S, FS = 2S .

Definition 6 A Bayesian game with unawareness of events consists of an unawareness belief

structure Ω =
〈
S,

(
rSα
Sβ

)
Sβ�Sα

, (ti)i∈I

〉
that is augmented by a tuple

〈
(Mi)i∈I , (ui)i∈I

〉
defined

as follows: For each player i ∈ I, there is

(i) a finite nonempty set of actions Mi, and

(ii) a utility function ui :
(∏

i∈I Mi

)
× Ω −→ R.

The interpretation is as follows: At the beginning of a game, a state ω ∈ Ω is realized.
Player i does not observe the state but receives a signal ti(ω) that provides her with some
information about the state or projections thereof to lower spaces. I.e., if ω obtains, player i is
of type ti(ω). This signal is a belief about the likelihood of events on a certain space. A player’s
utility depends on her action, the actions chosen by other players as well as the state. Since
players may be uncertain about the state ω, we assume below that the player’s preference is
represented by the expected value of the utility function on action-profiles of players and states,
where the expectation is taken with respect to the player i’s type ti(ω) and the types’ mixed
strategies. This game allows for unawareness of possibly payoff relevant events.

Let ∆(Mi) be the set of mixed strategies for player i ∈ I, that is, the set of probability
distributions on the finite set Mi.

Definition 7 A strategy of player i in a Bayesian game with unawareness of events is a func-
tion σi : Ω −→ ∆(Mi) such that for all ω ∈ Ω,

(i) σi(ω) ∈ ∆(Mi),

(ii) ti(ω) = ti(ω′) implies σi(ω) = σi(ω′).

A strategy specifies for each player and state a probability distribution over her set of her
actions. In standard Bayesian games without unawareness, one interpretation of a strategy
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assumes an ex-ante point of view of the player before she knows her type. This interpretation
is misleading in a game with unawareness, since if a player is aware of all her types ex-ante
she should be also aware of all types interim, i.e., after learning her type (and her awareness).
Hence, in the case of unawareness, the ex-ante notion of strategy is a useful construct for the
game theorist rather than for a player.

In Bayesian games with unawareness we subscribe to a second interpretation of Bayesian
strategy from an interim point of view: Given a player i and type ti(ω), she has an “awareness
level” Sti(ω) ∈ S. That is, she can consider strategies of her opponents in l(Sti(ω)), where
l(S) := {S′ ∈ S : S′ � S} is the complete sublattice of S with S being the upmost space. This
interpretation is sound precisely because of Propositions 4 and 5 below: To best-respond to the
strategies of the other player-types, a type of a player needs only to reason about the strategies
of player-types that she is aware of. Only strategies of these player-types enter in her utility
maximization problem.

Denote σSti(ω)
:=

(
(σj(ω′))j∈I

)
ω′∈Sti(ω)

. A component σj(ω′) of the strategy profile σSti(ω)

is the strategy of the player-type (j, tj(ω′)). σSti(ω)
is the profile of all player-types’ strategies.

The expected utility of player-type (i, ti(ω)) from the strategy profile σSti(ω)
is given by

U(i,ti(ω))(σSti(ω)
) :=

∫
ω′∈Sti(ω)

∑
m∈
Q

j∈I Mj

∏
j∈I

σj(ω′) (mj) · ui

(
(mj)j∈I , ω′

)
dti(ω)(ω′). (1)

σj(ω′)(mj) is the probability with which the player-type (j, tj(ω′)) plays the action mj ∈ Mj .∏
j∈I σj(ω′) (mj) is the joint probability with which the action profile m = (mj)j∈I is played by

the players. This action profile gives the utility ui ((mj)j∈I , ω
′) to player i in state ω′. The term∑

m∈
Q

j∈I Mj

∏
j∈I σj(ω′) (mj) · ui

(
(mj)j∈I , ω′

)
is player i’s expected utility from the strategy

profile (σj(ω′))j∈I at the state ω′. However, at a state ω, the player, in general, does not know
the state, but only his type ti(ω), and so he evaluates his utility with the expectation with
respect to the probability measure ti(ω).

Definition 8 (Equilibrium) An equilibrium of a Bayesian game with unawareness of events〈
S,

(
rSα
Sβ

)
Sβ�Sα

, (ti)i∈I , (Mi), (ui)
〉

is a Nash equilibrium of the strategic game defined by:

(i) {(i, ti(ω)) : ω ∈ Ω and i ∈ I} is the set of players,

and for each player (i, ti(ω)),

(ii) the set of mixed strategies is ∆(Mi), and

(iii) the utility function is given by equation (1).

An equilibrium of a Bayesian game with unawareness is a Nash equilibrium of a strategic
game in which types of players are the “players”. The actions available to the type of player i at
state ω are the actions of player i. The utility function of the type of player i at ω is the expected
utility function, given player i’s awareness and belief over states at ω. In an equilibrium of a
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Bayesian game with unawareness of events, the type of every player chooses an optimal mixture
of actions, given her awareness, belief and the choices of the types of the other players she is
aware of. This is analogous to equilibrium in Bayesian games without unawareness.

Proposition 3 (Existence) Let
〈
S,

(
rSα
Sβ

)
Sβ�Sα

, (ti)i∈I , (Mi), (ui)
〉

be a Bayesian game with

unawareness of events. If I, Ω, and (Mi)i∈I are finite, then there exists an equilibrium.

Proof. By Nash’s (1950) theorem. �

Note that contrary to an ordinary Bayesian game, the game is not “common knowledge”

among the players. Let
〈
S,

(
rSα
Sβ

)
Sβ�Sα

, (ti)i∈I , (Mi), (ui)
〉

be a Bayesian game with unaware-

ness of events. At ω ∈ Ω, the game conceived by player i is
〈

l(Sti(ω)),
(
rSα
Sβ

)
Sβ�Sα

, (ti)i∈I , (Mi), (ui)
〉

,

where the lattice of spaces is replaced with the sublattice l(Sti(ω)) with Sti(ω) as the upmost

space,
(
rSα
Sβ

)
are restricted to Sα, Sβ ∈ l(Sti(ω)), and accordingly, the domains of the ti and ui

are restricted to
⋃

S∈l(Sti(ω))
S. Type ti(ω) of player i can conceive of all events expressible in

the spaces of the sublattice l(Sti(ω)). For S ∈ S, we call
〈

l(S),
(
rSα
Sβ

)
Sβ�Sα

, (ti)i∈I , (Mi), (ui)
〉

the S-partial Bayesian game with unawareness of events.

The following proposition shows that we can naturally extend equilibria from “lower aware-
ness levels to higher awareness levels” by taking the equilibrium strategies at the “lower aware-
ness levels” fixed and looking for a fixed point at “higher awareness levels”.

Proposition 4 (“Upwards Induction”) Given a Bayesian game with unawareness of events〈
S,

(
rSα
Sβ

)
Sβ�Sα

, (ti)i∈I , (Mi), (ui)
〉

, define for S′, S′′ ∈ S with S′ � S′′ the S′-partial (resp.

S′′-partial) Bayesian game with unawareness of events. If I, Ω, and (Mi)i∈I are finite, then
for every equilibrium of the S′-partial Bayesian game, there is an equilibrium of the S′′-partial
Bayesian game in which equilibrium strategies of player-types in {(i, ti(ω)) : ω ∈

⋃
S∈l(S′) S and i ∈

I} are identical with the equilibrium strategies in the S′-partial Bayesian game.

This proposition suggests a procedure for constructing equilibria in Bayesian games with
unawareness. We start with an equilibrium in the Ŝ-partial Bayesian game with unawareness,
where Ŝ denotes the greatest lower bound space (the meet) of the lattice, and extend it step-
by-step to higher spaces by finding a fixed-point taking the strategies of player-types in the
respective lower spaces as given.

For some strategic situations, Proposition 4 suggests that players which are unaware may
have commitment power compared to players with a “higher awareness level”. This is so because
types with “lower awareness levels” do not react to types of which they are unaware. Types
with “higher awareness” must take strategies of types with “lower awareness” as given. In some
strategic situations, the value of awareness may be negative.

Proposition 4 may also be interpreted as what happens if players learn, i.e. become aware
of some event. We can consider a player at a certain state ω, and compare her strategy with
the strategy of the same player but at a state in ω’s inverse image in a higher space.

12



Proposition 5 Let
〈
S,

(
rSα
Sβ

)
Sβ�Sα

, (ti)i∈I , (Mi), (ui)
〉

be a Bayesian game with unawareness

of events. Define for S′, S′′ ∈ S with S′ � S′′ the S′-partial (resp. S′′-partial) Bayesian game
with unawareness of events. Then for every equilibrium of the S′′-partial Bayesian game there
is an equilibrium of the S′-partial Bayesian game in which the equilibrium strategies of player-
types in {(i, ti(ω)) : ω ∈

⋃
S∈l(S′) S and i ∈ I} are identical with the equilibrium strategies of

the S′′-partial Bayesian game.

This proposition says that we can naturally restrict an equilibrium from higher awareness
levels to lower awareness. This is so, because if player-types play an equilibrium in a game
that allows for “higher awareness levels”, then those player-types still play optimally at “lower
awareness levels given that they exist there”.

We conclude this section with a simple example that touches a prime theme of unawareness:
novelties, inventions and innovations.

Example 1 (The Mathematician’s Dilemma) Two brilliant mathematicians, Emmy and
Nicolai, consider to compete on solving a problem in mathematics. Solving the problem now
rather than later is costly because there are also other unsolved problems they could try to
solve. We assume that the costs of solving it now rather than later are 100K dollars for either
player. Moreover, we assume that a solution to this problem is prized at 180K dollars. This is
to be shared if both solve it at the same time. If only one solves it now, and the other later,
then the latter gets nothing and the former 180K.

When solving the problem, any of the two mathematicians could be quite unexpectedly
aware of a brilliant idea that would not only solve their problem but also prove the Riemann
Hypothesis. This chance-discovery is not foreseen by anybody in the profession. Luckily the
Clay Mathematics Institute of Cambridge, M.A., offers a reward of 1 million dollars for the
proof of the Riemann Hypothesis. We assume that this prize is shared if both provide a proof
at the same time. If one is first, then he gets the entire prize.

To model their awareness and beliefs, we consider two state-spaces S and S′. We assume
that S is richer than S′ in the sense that whenever a player believes some state in S, then (s)he
is aware of the brilliant idea. A player’s belief at each state is given by a probability distribution
on one of those spaces. To be precise, consider the information structure in Figure 2. There are
three states, ω1 and ω2 in S and ω3 in S′. The solid (resp. dashed) lines/ovals belong to Emmy
(resp. Nicolai). For instance, the solid line starting in ω1 indicates that at state ω1 Emmy
believes with probability one that ω2 obtained. Since ω2 ∈ S, she is aware of the brilliant idea.
Yet, at ω2, Nicolai believes with probability one that ω3 ∈ S′ obtained, which means that at
ω2, Nicolai is unaware of the brilliant idea. It also means that at ω2, and hence at ω1, Emmy
believes that Nicolai is unaware of the brilliant idea. Note however, that at ω1 Nicolai is aware
of the brilliant idea, he believes that Emmy is aware of it, and he believes that Emmy believes
that he (Nicolai) is unaware of it.

At each state, both mathematicians have two actions: work on it now or later. In Figure 2,
we also depict the payoff matrix whose entries correspond to the story above.

The payoff matrices together with the information structure constitute a Bayesian game
with unawareness. What could be a solution? An equilibrium should specify for each state an
optimal strategy profile given the beliefs and awareness of the players at that state. We start
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Figure 2: Information Structure and Payoffs in the Mathematician’s Dilemma
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now 990, -10 1080, 0 Emmy 
later 1000, 80 1090, 90 

Nicolai ω3 now later 
now -10, -10 80, 0 Emmy 
later 0, 80 90, 90 

by considering optimal strategies at ω3 ∈ S′, the space where both players are unaware of the
brilliant idea. In the symmetric game at ω3, (later) is the dominant action for both players.

Next consider the state ω2 ∈ S. At this state, Emmy is aware of the brilliant idea because
she believes ω2 ∈ S with probability one. In contrast, Nicolai is unaware of it because at ω2

he believes in ω3 ∈ S′ with probability one. Note that at ω2 Emmy believes that Nicolai is
unaware of it. Both player’s dominant action is (later).

Finally, consider the state ω1 ∈ S. At this state both Emmy and Nicolai are aware of the
brilliant idea since their “information sets” lie in S. But since Emmy’s “information set” at
ω1 is {ω2} and at ω2 Nicolai’s “information set ” is {ω3} ⊂ S′, Emmy believes that Nicolai is
unaware of it. Moreover, Nicolai believes that Emmy is aware of it, and he believes that Emmy
believes that he (Nicolai) is unaware of it. So for Emmy the dominant action at ω1 is later but
for Nicolai it is now. That is, even though Emmy is aware of the brilliant idea and could solve
the Riemann Hypothesis, she won’t receive the desired award.

Note that the result of the example continues to hold if beliefs are slightly perturbed. E.g.,
at ω1 and ω2 Emmy could assign probability 1

1000 to ω1 and 999
1000 to ω2. �

4 Common Prior, Agreement, and Speculation

In this section, we define a common prior and show by example that the common prior as-
sumption is too weak to rule out speculative trade under unawareness. With unawareness, we
can have common certainty of willingness to trade but strict preference to trade. Yet, we are
able to prove a “No-Trade” theorem according to which there can not be common certainty of
strict preference to trade under unawareness. Moreover, we prove a “No-Agreeing-to-Disagree”
theorem.

4.1 Common Belief

We define mutual and common belief as usual (e.g. Monderer and Samet, 1989):
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From now on, we assume that the set of individuals I is at most countable.

Definition 9 The mutual p-belief operator on events is defined by

Bp(E) =
⋂
i∈I

Bp
i (E).

The common certainty operator on events is defined by

CB1 (E) =
∞⋂

n=1

(
B1

)n (E).

That is, the mutual p-belief of an event E is the event in which everybody p-believes the
event E. Common certainty of E is the event that everybody is certain of the event E, and
everybody is certain that everybody is certain of the event E, everybody is certain of that, ... ad
infinitum. Common certainty is the generalization of common knowledge to the probabilistic
notion of certainty. Note that Proposition 2 and the definition of the conjunction of events
imply that Bp(E) and CB1 (E) are S(E)-based events, for any measurable event E.

We say that an event E is common certainty at ω ∈ Ω if ω ∈ CB1 (E).

4.2 Priors and Common Priors

In a standard type space S, a prior PS
i of player i is a convex combination of the beliefs of i’s

types in S (Samet, 1998). That is, for every event E ∈ FS ,

PS
i (E) =

∫
S

ti (·) (E) dPS
i (·) . (2)

In particular, if S is finite or countable, this equality holds if and only if

PS
i (E) =

∑
s∈S

ti (s) (E) PS
i ({s}) . (3)

In words, to find the probability PS
i (E) that the prior PS

i assigns to an event E, one should
check the beliefs ti (s) (E) ascribed by player i to the event E in each state s ∈ S, and then
average these beliefs according to the weights PS

i ({s}) assigned by the prior PS
i to the different

states s ∈ S.

PS is a common prior on S if PS is a prior for every player i ∈ I.

Here we generalize these definitions to unawareness structures, as follows.

Definition 10 (Prior) A prior for player i is a system of probability measures Pi =
(
PS

i

)
S∈S ∈∏

S∈S ∆(S) such that

1. The system is projective: If S′ � S then the marginal of PS
i on S′ is PS′

i . (That is, if
E ∈ Σ is an event whose base-space S (E) is lower or equal to S′, then PS

i (E) = PS′
i (E).)

2. Each probability measure PS
i is a convex combination of i’s beliefs in S: For every event

E ∈ Σ such that S(E) � S,
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Figure 3: Illustration of a Common Prior
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PS
i (E ∩ S ∩Ai (E)) =

∫
S∩Ai(E)

ti (·) (E) dPS
i (·) . (2u)

P =
(
PS

)
S∈S ∈

∏
S∈S ∆(S) is a common prior if P is a prior for every player i ∈ I.

In particular, if S is finite or countable, equality (2u) holds if and only if

PS
i (E ∩ S ∩Ai (E)) =

∑
s∈S∩Ai(E)

ti (s) (E) PS
i ({s}) . (3u)

What is the reason for the difference between (2) and (2u) (or similarly between (3)
and (3u))? With unawareness, ti (s) (E) is well defined only for states s ∈ S in which player i is
aware of E, i.e., the states s ∈ S ∩Ai (E). Hence there is the difference in the definition of the
domain of integration (or summation) on the right-hand side. Consequently, E (or equivalently
E ∩ S) on the left-hand side of (2) and (3) is replaced by E ∩ S ∩Ai (E) in (2u) and (3u).

Figure 3 illustrates a common prior in an unawareness belief structure. Odd (resp. even)
states in the upper space project to the odd (resp. even) state in the lower space. There are
two individuals, one indicated by the solid lines and ellipses and another by intermitted lines
and ellipses. Note that the ratio of probabilities over odd and even states in each “information
cell” coincides with the ratio in the “information cell” in the lower space.
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Figure 4: Information Structure in the Speculative Trade Example
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4.3 Speculation

In this section, we investigate whether the common prior assumption implies the absence of
speculative trade (e.g. Milgrom and Stokey, 1982). The following example shows that specula-
tion is possible under unawareness even if we assume that there is a common prior.

Example 2 (Speculative Trade under Unawareness) Consider the probabilistic version
of the speculative trade example of Heifetz, Meier and Schipper (2006a). There is an owner, o,
of a firm and a potential buyer, b, whose awareness differ. The owner is aware that there may
be a costly lawsuit [l] involving the firm, but he is unaware of a potential novelty [n] enhancing
the value of the firm. In contrast, the buyer is aware that there might be the innovation, but
he is unaware of the lawsuit. Both are aware that the firm may face high sales [s] or not in
future.

The information structure is depicted in Figure 4. The solid lines and ellipses belong
the buyer, whereas the intermitted lines and ellipses belong to the seller. At state (nls) the
buyer’s type has full support on space S{ns} whereas the seller’s type has full support on space
S{ls}. Hence the buyer is uncertain whether the innovation obtains or not, and the seller is
uncertain whether the lawsuit obtains. However, the buyer is certain that the seller is unaware
of the innovation because the seller’s type at states in S{ns} has full support on the space S{s}.
Similarly, the seller is certain that the buyer is unaware of the lawsuit.
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Figure 5: Speculative Trade with Delusion
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Suppose that the status quo value of the firm with high sales is 100 dollars, but only 80
dollars with low sales. If the potential innovation obtains, this would add 20 dollars to the value
of the firm, whereas the potential lawsuit would cost the firm 20 dollars. The player’s beliefs
are stated in Figure 4 as well. According to these beliefs at state (nls), the buyer’s expected
value of the firm is 100, whereas the seller’s expected value of the firm is 80 dollars. However,
the buyer (resp. seller) is certain that the seller’s (resp. buyer’s) expected value is 90 dollars.

We assume that both players are rational in the sense of maximizing their respective payoff
given their belief and awareness. The buyer (resp. seller) prefers to buy (resp. sell) at price x
if her expected value of the firm is at least (resp. at most) x. The buyer (resp. seller) strictly
prefers to buy (resp. sell) at price x if her expected value of the firm is strictly above (resp.
strictly below) x.

Note that the beliefs stated below the states in each space are consistent with a common
prior. However, at state (nls) and at the price 90 dollars, there is common certainty of prefer-
ence to trade, but each player strictly prefers to trade. This is impossible in standard state-space
structures with a common prior. �

Despite this counter example to the “No-trade” theorems, we can prove below a generalized
“No-trade” theorem according to which, if there is a common prior, then there can not be
common certainty of strict preference to trade. That is, even with unawareness not “everything
goes”. We find this surprising, because unawareness can be interpreted as a special form of
delusion: At a given state, a player may be certain of states in a very different lower state-space.
The following example demonstrates that speculative trade is possible in delusional standard
state-space structures with a common prior.

Example 3 (Speculative Trade with Delusion) Consider the information structure in
Figure 5. The common prior and the information structure allows the dashed player to have a
posterior of tdashed(ω1)({ω1}) = tdashed(ω2)({ω1}) = 1 and the solid player tsolid(ω1)({ω2}) =
tsolid(ω2)({ω2}) = 1. So they may happily disagree on the expected value of a random variable
defined on this standard state-space. �

Definition 11 A common prior P =
(
PS

)
S∈S ∈

∏
S∈S ∆(S) is non-degenerate if and only

if for all i ∈ I and ω ∈ Ω: If ti (ω) ∈ 4 (S′), for some S′, then [ti(ω)] ∩ S′ ∈ FS′ and
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PS
(
([ti (ω)] ∩ S′)↑ ∩ S

)
> 0 for all S � S′.

For every type, a non-degenerate common prior puts positive weight on the set of “station-
ary” states where the player has this type. This condition implies that for each player there
can be at most countably many types in each space.

Definition 12 Let x1 and x2 be real numbers and v a random variable on Ω. Define the sets
E≤x1

1 :=
{

ω ∈ Ω :
∫
St1(ω)

v (·) d (t1 (ω)) (·) ≤ x1

}
and

E≥x2
2 :=

{
ω ∈ Ω :

∫
St2(ω)

v (·) d (t2 (ω)) (·) ≥ x2

}
. We say that at ω, conditional on his infor-

mation, player 1 (resp. player 2) believes that the expectation of v is weakly below x1 (resp.
weakly above x2) if and only if ω ∈ E≤x1

1 (resp. ω ∈ E≥x2
1 ).

Note that the sets E≤x1
1 or E≥x2

2 may not be events in our unawareness belief structure,
because v (ω) 6= v (ωS) is allowed, for ω ∈ S′ � S. Yet, we can define p-belief, mutual p-belief
and common certainty for measurable7 subsets of Ω, and show that the properties stated in
Proposition 7 and 9 obtain as well (see Meier and Schipper, 2007).8

Theorem 1 Let Ω be a finite unawareness belief structure and P =
(
PS

)
S∈S ∈

∏
S∈S ∆(S) be

a non-degenerate common prior. Then there is no state ω̃ ∈ Ω such that there are a random
variable v : Ω −→ R and x1, x2 ∈ R, x1 < x2, with the following property: at ω̃ it is common
certainty that conditional on her information, player 1 believes that the expectation of v is
weakly below x1 and, conditional on his information, player 2 believes that the expectation of v
is weakly above x2.

The theorem says that if there is a non-degenerate common prior, then there can not be
common certainty of strict preference to trade. Together with our example of speculative
trade under unawareness we conclude that a common prior does not rule out speculation under
unawareness but it can never be common certainty that both players expect to strictly gain
from speculation. The theorem implies immediately as a corollary that given a non-degenerate
common prior, arbitrary small transaction fees rule out speculative trade under unawareness.

So, with respect to speculative trade, heterogeneous unawareness with a common prior is
“intermediate” between common awareness with heterogeneous priors on the one hand, and
common awareness with a common prior on the other hand. With heterogeneous priors even
in standard state-spaces, common certainty of strict preference to trade is possible.

In a separate appendix to this paper, Meier and Schipper (2007), we extend the above “No-
trade” theorem to infinite unawareness belief structures. To this end we introduce a topological
unawareness belief structure and consider as a technical device a “flattened” structure with the
union of all spaces in the lattice as the state-space. All properties of p-belief in Proposition 7
and 9 are extended to measurable subsets of Ω.

7A subset E of the union of the state spaces is defined to be measurable if and only if the intersection E ∩ S
is measurable in S, for every state space S.

8Contrary to our definition of the negation of an event, in point (ii) of Proposition 7, ¬E is here understood
to be the relative complement of E with respect to the union of state spaces.
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4.4 Agreement

For an event E and p ∈ [0, 1] define the set [ti(E) = p] := {ω ∈ Ω : ti(ω)(E) = p}, if
{ω ∈ Ω : ti(ω)(E) = p} is nonempty, and otherwise set [ti(E) = p] := ∅S(E).

Lemma 1 [ti(E) = p] is a S(E)-based event.

Proof. [ti(E) = p] = Bp
i (E) ∩B1−p

i (¬E). Hence the proof follows from Proposition 2. �

The following proposition is a generalization of the standard “No-Agreeing-to-Disagree”
theorem (Aumann, 1976):

Proposition 6 Let Ω be an unawareness belief structure, G be an event and pi ∈ [0, 1], for
i ∈ I. Suppose there exists a common prior P =

(
PS

)
S∈S ∈

∏
S∈S ∆(S) such that for some

space S � S(G) we have PS(CB1(
⋂

i∈I [ti(G) = pi])) > 0. Then pi = pj, for all i, j ∈ I.9

The proposition says the following: Suppose individuals have a common prior that is weakly
non-degenerate in the sense that it assigns strict positive probability to the event that posteriors
of G are common certainty. Then common certainty of posteriors for the event G implies that
those posteriors must agree across all individuals. So individuals with a common prior can not
agree-to-disagree on the posteriors of events which they are all aware of.

Note, that a non-degenerate common prior (Definition 11) implies the condition PS(CB1(
⋂

i∈I [ti(G) =
pi])) > 0 in Proposition 6 if CB1(

⋂
i∈I [ti(G) = pi]) is nonempty and S � S(G).

Appendices

A Properties of Belief and Awareness

Proposition 7 Let E and F be events, {El}l=1,2,... be an at most countable collection of events, and
p, q ∈ [0, 1]. The following properties of belief obtain:

(o) Bp
i (E) ⊆ Bq

i (E), for q ≤ p,

(i) Necessitation: B1
i (Ω) = Ω,

(ii) Additivity: Bp
i (E) ⊆ ¬Bq

i (¬E), for p + q > 1,

(iiia) Bp
i (

⋂∞
l=1 El) ⊆

⋂∞
l=1 Bp

i (El),

(iiib) for any decreasing sequence of events {El}∞l=1, Bp
i (

⋂∞
l=1 El) =

⋂∞
l=1 Bp

i (El),

(iiic) B1
i (

⋂∞
l=1 El) =

⋂∞
l=1 B1

i (El),

(iv) Monotonicity: E ⊆ F implies Bp
i (E) ⊆ Bp

i (F ),

(v) Introspection: Bp
i (E) ⊆ B1

i Bp
i (E).

9In the appendix, we prove a more general version in which we require only a “local” common prior on a
space S � S(G) satisfying the condition stated in the proposition.

20



In our unawareness belief structure, Necessitation means that an individual always is certain of the
universal event Ω, i.e. she is certain of “tautologies with the lowest expressive power.” (ii) means that if
an individual believes an event E with at least probability p, then she can not believe the negation of E
with any probability strictly greater than 1− p. Property (iii a - c) are variations of conjunction, i.e., if
an individual believes a conjunction of events with probability at least p, then she p-believes each of the
events. The interpretation of monotonicity is: If an event E implies an event F , then p-believing the
event E implies that the individual also p-believes the event F . Property (v) concerns the introspection
of belief: If an individual believes the event E with at least probability p then she is certain that she
believes the event E with at least probability p.

Proposition 8 Let E be an event and p, q ∈ [0, 1]. The following properties of awareness and belief
obtain:

1. Plausibility: Ui(E) ⊆ ¬Bp
i (E) ∩ ¬Bp

i ¬Bp
i (E),

2. Strong Plausibility: Ui(E) ⊆
⋂∞

n=1 (¬Bp
i )n (E),

3. BpU Introspection: Bp
i Ui(E) = ∅S(E) for p ∈ (0, 1]

B0
i Ui(E) = Ai(E)

,

4. AU Introspection: Ui(E) = UiUi(E),

5. Weak Necessitation: Ai(E) = B1
i

(
S(E)↑

)
,

6.
Bp

i (E) ⊆ Ai(E)
B0

i (E) = Ai(E) ,

7. Bp
i (E) ⊆ AiB

q
i (E),

8. Symmetry: Ai(E) = Ai(¬E),

9. A Conjunction:
⋂

λ∈L Ai (Eλ) = Ai

(⋂
λ∈L Eλ

)
,

10. ABp Self Reflection: AiB
p
i (E) = Ai(E),

11. AA Self Reflection: AiAi(E) = Ai(E),

12. Bp
i Ai(E) = Ai(E).

These properties are analogous to the properties in unawareness knowledge structures (Heifetz, Meier
and Schipper, 2006a, 2006b). In the context of knowledge, Properties 1 to 5 have been suggested by
Dekel, Lipman and Rustichini (1998), and 8 to 11 by Fagin and Halpern (1988), Modica and Rustichini
(1999) and Halpern (2001).

Note that properties 3, 4, 5, 8, 9, 11, and 12 hold also for non-measurable events, because even if E
is not measurable, by 5. Ai(E) is measurable.

Property 6 implies that probability zero belief is distinct from unawareness. In fact, an individual
is aware of an event if and only if she assigns at least probability zero to this event.

Although we model awareness of events, Property 8 suggests that we model a notion of awareness
of issues or questions. Let an issue or question (E.g., is the stock market crashing?) be such that it can
be answered with in the affirmative (The stock market is crashing.) or the negative (The stock market
is not crashing.). By symmetry (Property 8), an individual is aware of an event if and only if she is
aware of the its negation. Thus we model the awareness of questions and issues rather than just single
events. In fact, by weak necessitation, Property 5, an individual is aware of an event E if and only if
she is aware of any event that can be “expressed” in a space with the same “expressive power” as the
base-space of E.
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Definition 13 An event E is evident if for each i ∈ I, E ⊆ B1
i (E).

Proposition 9 For every event F ∈ Σ:

(i) CB1(F ) is evident, that is CB1(F ) ⊆ B1
i (CB1(F )) for all i ∈ I.

(ii) There exists an evident event E such that ω ∈ E and E ⊆ B1
i (F ) for all i ∈ I, if and only if

ω ∈ CB1(F ).

The proof is analogous to Proposition 3 in Monderer and Samet (1989) for a standard state-space
and thus omitted.

Analogously to mutual belief and common belief, we define mutual awareness and common awareness:

Definition 14 The mutual awareness operator on events is defined by

A(E) =
⋂
i∈I

Ai(E),

and the common awareness operator on events is defined by

CA(E) =
∞⋂

n=1

(A)n (E).

Mutual awareness of an event E is the event that everybody is aware of E. Common awareness of
an event E is the event that everybody is aware of E, everybody is aware that everybody is aware of E,
everybody is aware of that ... ad infinitum.

Proposition 10 Let E be an event and p, q ∈ [0, 1]. The following multi-person properties obtain:

1. Ai(E) = AiAj(E),

2. Ai(E) = AiB
p
j (E),

3. Bp
i (E) ⊆ AiB

q
j (E),

4. Bp
i (E) ⊆ AiAj(E),

5. CA(E) = A(E),

6. CB1(E) ⊆ CA(E),

7.
Bp(E) ⊆ A(E),
B0(E) = A(E),

8.
Bp(E) ⊆ CA(E),
B0(E) = CA(E),

9. A(E) = B1(S(E)↑),

10. CA(E) = B1(S(E)↑),

11. CB1(S(E)↑) ⊆ A(E),

12. CB1(S(E)↑) ⊆ CA(E).

Note that properties 1, 5, 9, 10, 11 and 12 also hold for non-measurable events.
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B Generalized Bayesian Games with Unawareness

B.1 Allowing for Unawareness of Actions

Bayesian games with unawareness of events in Definition 6 do not allow us to model properly unawareness
of actions. In standard Bayesian game theory, ignorance of actions is modelled by the assumption that
players will never use such actions, because payoffs are extremely low (i.e. highly negative) (see the
discussion in Harsanyi, 1967, p. 168). We do not follow this convention here. Even in standard Bayesian
games this convention is questionable, because it applies only to rational players. If there is lack of
common belief of rationality then a player’s type being ignorant of an action is indeed different from her
obtaining a very low payoff from playing this action (see Hu and Stuart, 2001, for a discussion). In this
subsection we introduce unawareness of actions and discuss the notion of strategy in Bayesian games
with unawareness.

Definition 15 A Bayesian game with unawareness of events and actions consists of a unawareness belief

structure
〈
S,

(
rSα

Sβ

)
Sβ�Sα

, (ti)i∈I

〉
that is augmented by a tuple

〈
(Mi)i∈I , (Mi)i∈I , (ui)i∈I

〉
defined as

follows: For each player i ∈ I, there is

(i) a finite nonempty set of actions Mi and a correspondence Mi : Ω −→ 2Mi \ {∅} such that for any
M ′

i ⊆ Mi, [M ′
i ] := {ω ∈ Ω : M ′

i ⊆ Mi(ω)} is an event (in the sense of the unawareness belief
structure), and ω′, ω′′ ∈ [ti(ω)] ∩ Sti(ω) implies Mi(ω′) = Mi(ω′′), for all ω ∈ Ω,

(ii) a utility function ui :
⋃

ω∈Ω

(∏
i∈I Mi(ω)

)
× {ω} −→ R.

This definition allows for unawareness of events as well as actions. Which actions a player i has
available at what state is described explicitly by the correspondence Mi. Any set of available actions
is associated with an event in our unawareness belief structure. We require that, for each type of each
player, the sets of available actions are identical across states in the space on which this type is defined
and at which the player’s type coincides with this type. Note, that if ω /∈ Sti(ω), then it is allowed that
Mi(ω′) is a proper subset of Mi(ω), for ω′ ∈ [ti(ω)] ∩ Sti(ω). This allows in addition to unawareness
of other players’ actions also for unawareness of own actions. Note, that we exclude that at a state, a
player considers it possible that she has an action available, which, in fact, is not available to her in this
state. This is to avoid the following conceptional problem: What should happen if a player is to take an
action that is not available to her?

B.2 Allowing for Unawareness of Players

So far, we did not allow for unawareness of players. In standard Bayesian game theory, ignorance of
players is modelled by dummy players, i.e., players that obtain a very low payoff for all actions except
one (dummy) action. This is distinct from being unable to conceive of a player at all. In this subsection
we allow for unawareness of players. This requires that we generalize our interactive unawareness belief
structure such that a player may exists only at some states but not at others.

Definition 16 A Bayesian game with unawareness is a tuple

Γ(Ω) :=
〈
S,

(
rSα

Sβ

)
Sβ�Sα

, E , (ti)i∈I , (Mi)i∈I , (Mi)i∈I , (ui)i∈I

〉
defined as follows:

(0) S = {Sα}α∈A is as before a complete lattice of spaces with surjective projections (rSα

Sβ
), for Sβ � Sα

(see section 2).
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(i) E : I −→ Σ is the “existence” correspondence that assigns to each player i ∈ I an event in which
she exists.

For each player i ∈ I:

(ii) ti : E(i) −→
⋃

S∈Si
∆ (S) is a type mapping that satisfies Properties (0) to (3) (see section 2) such

that for every ω ∈ E(i), ti(ω)(E(i)) = 1. Si := {S ∈ S : E(i) ∩ S 6= ∅} is the complete sublattice of
spaces with states in which player i exists.

(iii) Mi is a finite nonempty set of actions and Mi : E(i) −→ 2Mi \ {∅} is a correspondence such that
for any M ′

i ⊆ Mi, [M ′
i ] := {ω ∈ E(i) : M ′

i ⊆Mi(ω)} is an event (in the sense of the unawareness
belief structure), and ω′, ω′′ ∈ Sti(ω) ∩ [ti(ω)] implies Mi(ω′) = Mi(ω′′), for all ω ∈ E(i),

(vi) ui :
⋃

ω∈E(i)

(∏
i∈I(ω)Mi(ω)

)
× {ω} −→ R is a utility function, where I(ω) := {i ∈ I : ω ∈ E(i)}.

This game allows for unawareness of events, actions and players. For every player i ∈ I, the
“existence” correspondence E assigns to i the event in which she exists. Consequently we restrict player
i’s type mapping to states at which she exists. Moreover, player i’s type is concentrated only on states
in which she exists. A player can not assign strict positive probability to states at which she does not
exist. The domain of the correspondence Mi, that assigns to states a non-empty set of actions for player
i, is also restricted to the set of states in which player i exists. We do not allow a player to have some
actions in states in which she does not exist. The dimension of the domain of a utility function may vary
from state to state, since players may exists in some states but not in others, and each players utility at
a state depends on the actions of all the players that exist in that state.

Note that if E(i) = Ω for all i ∈ I, then we obtain a unawareness belief structure and a Bayesian
game with unawareness of events and actions as defined before.

Note further that if ω ∈ E(i), then [ti(ω)] := {ω′ ∈ Ω : ti(ω′) = ti(ω)} ⊆ E(i).

B.3 Equilibrium

By allowing also for unawareness of actions and players, we need to adapt slightly the definition of a
strategy:

Definition 17 A strategy of player i is a function σi : E(i) −→ ∆(Mi) such that for all ω ∈ E(i),

(i) σi(ω) ∈ ∆(Mi(ωSti(ω))), and

(ii) ti(ω′) = ti(ω) implies σi(ω′) = σi(ω).

Denote σSti(ω) :=
(
(σj(ω′))j∈I(ω′)

)
ω′∈Sti(ω)

. The expected utility of player-type (i, ti(ω)) from the

strategy profile σSti(ω) is given by

U(i,ti(ω))(σSti(ω)) :=
∫

ω′∈Sti(ω)

∑
m∈
Q

j∈I(ω′)Mj(ω′
S

tj(ω′)
)

∏
j∈I(ω′)

σj(ω′) (mj) · ui

(
(mj)j∈I(ω′) , ω′

)
dti(ω)(ω′).

(4)

Definition 18 (Equilibrium) An equilibrium of a Bayesian game with unawareness Γ(Ω) is a Nash
equilibrium of the strategic game defined by:

(i) {(i, ti(ω)) : ω ∈ Ω and i ∈ I(ω)} is the set of players,
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and for each player (i, ti(ω)),

(ii) the set of mixed strategies is ∆(Mi(ωSti(ω))), and

(iii) the utility function is given by equation (4 ).

Proposition 3 generalizes to Bayesian games with unawareness. If I, Ω, and (Mi)i∈I are finite, then,
by Nash’s Theorem, there exists an equilibrium.

Definition 19 Given a Bayesian game with unawareness

Γ(Ω) =
〈
S,

(
rSα

Sβ

)
Sβ�Sα

, E , (ti)i∈I , (Mi)i∈I , (Mi)i∈I , (ui)i∈I

〉
we can define an S′-partial Bayesian

game with unawareness

Γ(Ω′) =
〈

l(S′),
(
rSα

Sβ

)
Sβ�Sα

, E ′, (ti)i∈I , (Mi)i∈I , (Mi)i∈I , (ui)i∈I

〉
in which

(
rSα

Sβ

)
are restricted to

Sα, Sβ ∈ l(S′), E ′(i) = E(i) ∩ Ω′, where Ω′ =
⋃

S∈l(S′) S, and for any i ∈ I the domain of Mi is
restricted to E ′(i).

Propositions 4 and 5 generalize to Bayesian games with unawareness. In fact, the proofs in the
appendix are stated for this more general setting.

Example 4 (Feinberg, 2005) The following interesting game due to Feinberg (2005) is an example
of unawareness of actions. It allows us also to compare our unawareness belief structures with the work
by Feinberg (2005). Consider the strategic 3x3 game

Burkhard
b1 b2 b3

a1 (0, 2) (3, 3) (0, 2)
Amanda a2 (2, 2) (2, 1) (2, 1)

a3 (1, 0) (4, 0) (0, 1)

This game has a unique dominance solvable Nash equilibrium, (a2, b1). Consider now a game with
unawareness: The set of players remains unchanged, Amanda, A, and Burkhard, B. There are two
state-spaces, S and S′ with S � S′. In particular, S = {ω1, ω2} and S′ = {ω3}. The information
structure is given by the type mappings

tA(ω1)({w2}) = tA(ω2)({w2}) = tA(ω3)({ω3}) = 1,

tB(ω1)({ω1}) = tB(ω2)({ω3}) = tB(ω3)({ω3}) = 1.

Actions are specified by

MA(ω1) = MA(ω2) = {a1, a2, a3},MA(ω3) = {a1, a2},

MB(ω1) = MB(ω2) = MB(ω3) = {b1, b2, b3}.

The information structure is the same as in the Mathematician’s Dilemma (with Emmy being now
Amanda and Nicolai being now Burkhard) in Figure 2. At states ω1 and ω2, payoffs are given by the
above payoff matrix. At state ω3, payoffs are given by the sub-matrix spanned by rows a1 and a2 and
columns b1, b2, and b3 in the above matrix, i.e.,

Burkhard
b1 b2 b3

Amanda a1 (0, 2) (3, 3) (0, 2)
a2 (2, 2) (2, 1) (2, 1)
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We claim that

(σA(ω), σB(ω)) =

 (a3, b3) if ω = ω1

(a3, b2) if ω = ω2

(a1, b2) if ω = ω3

is an equilibrium. To see this, note that the game at ω3 has two pure equilibria, (a2, b1) and (a1, b2)
in the S′-partial game, where the latter is payoff dominant. At ω3, both players are unaware of action
a3 in ω3. The unique dominance solvable Nash equilibrium (a2, b1) of the original game (without un-
awareness of actions) remains an equilibrium because none of the players is unaware of an equilibrium
action and equilibrium actions remain best responses if some other actions are deleted. Moreover, after
deleting action a3 (the action both players are unaware of at state ω3 in S′), the game has another Nash
equilibrium (a1, b2). At ω1, both players are aware of all actions but Amanda believes that Burkhard is
unaware of action a3. Hence Amanda believes that Burkhard thinks that (a1, b2) is a Nash equilibrium.
Amanda’s best response to Burkhard playing b2 is a3. Moreover, since at ω1 Burkhard is aware of all
actions and he believes that Amanda believes that Burkhard is unaware of action a3, his best response
to Amanda playing a3 is b3. Note that in this equilibrium at ω1, both receive a low payoff (compared to
the Nash equilibria discussed previously).

Feinberg (2005) obtains (a3, b3) as an equilibrium if both players are aware of all actions, Amanda is
‘unaware’ that Burkhard is aware of all of her actions, and Burkhard is ‘aware’ that Amanda is ‘aware’
of Burkhard being unaware of a3.10 That is, in Feinberg (2005) a player can be aware of an event but
unaware that somebody else is aware of it. This is in contrast to our unawareness belief structure, where
according to Proposition 10, 1., a player is aware of an event if and only if she is aware that somebody
else could be aware of it. That is, if a player can reason about some issue then she can also reason
that somebody else can reason about that issue. We obtain (a3, b3) as an equilibrium if both players
are aware of all actions, Amanda does not believe that Burkhard is aware of a3, Burkhard believes that
Amanda believes that Burkhard is unaware of a3. The example suggests, that higher order ‘awareness’
in Feinberg (2005) operates like belief in our unawareness belief structure. Note however, that Feinberg
(2005) does not define a notion of belief in his framework. �

C Proofs

C.1 Proof of Proposition 1

Ai(E) is an S(E)-based event if there exists a subset D ⊆ S(E) s.t. D↑ = Ai(E).

Assume that Ai(E) is non-empty. Define D := {ω ∈ S(E) : ti(ω) ∈ ∆(S(E))}. By definition of the
awareness operator, D = Ai(E) ∩ S(E). We show that D↑ = Ai(E).

Let ω ∈ D↑, that is ω ∈ S′ for some S′ � S(E) and ωS(E) ∈ D. This is equivalent to ti(ωS(E)) ∈
∆(S(E)). By 0. follows S′ � Sti(ω). By 3. we have Sti(ω) � S(E). Thus ω ∈ Ai(E). (Note that
Ai(E) = {ω ∈ Ω : Sti(ω) � S(E)}.)

In the reverse direction, let ω ∈ Ai(E), i.e., ti(ω) ∈ ∆(S) with S � S(E). By 0., ω ∈ S′ with S′ � S.
Consider ωS(E). By 2., ti(ωS(E)) = ti(ω)|S(E). Hence ωS(E) ∈ D. Thus ω ∈ D↑.

Finally, if Ai(E) is empty, then by definition of the awareness operator, we have Ai(E) = ∅S(E). �

C.2 Proof of Proposition 2

Bp
i (E) is an S(E)-based event if there exists a subset D ⊆ S(E) s.t. D↑ = Bp

i (E). Assume that
Bp

i (E) is non-empty. Define D := {ω ∈ S(E) : ti(ω)(E) ≥ p}. By definition of the p-belief operator,

10When writing ‘...’, we indicate that those notions differ from our notions used in this paper.
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D = Bp
i (E) ∩ S(E). We show that D↑ = Bp

i (E).

Let ω ∈ D↑, that is ω ∈ S′ for some S′ � S(E) and ωS(E) ∈ D. This is equivalent to ti(ωS(E))(E) ≥ p.
By 0. Sti(ωS(E)) = S(E). By 3. we have Sti(ω) � S(E). By 2. it follows that p ≤ ti(ωS(E))(E) =
ti(ω)|S(E)(E). Hence ti(ω)(E) ≥ p. Thus ω ∈ Bp

i (E).

In the reverse direction, let ω ∈ Bp
i (E), i.e., ti(ω)(E) ≥ p. Since ti(ω)(E) ≥ p it follows that

Sti(ω) � S(E). Let ω ∈ S′. By 0. S′ � Sti(ω). Consider ωS(E). By 2., ti(ωS(E))(E) = ti(ω)(E)|S(E) ≥ p.
Hence ωS(E) ∈ D. Thus ω ∈ D↑.

Finally, if Bp
i (E) is empty, then by definition of the p-belief operator, we have Bp

i (E) = ∅S(E). �

C.3 Proof of Remark 1

Define D := {ω′ ∈ Sti(ω) : ti(ω′) = ti(ω)}. I.e., D = Beni(ω) ∩ Sti(ω). We need to show that
D↑ = Beni(ω).

Consider first “⊆”: If ω′ ∈ D↑ then ω′Sti(ω)
∈ Beni(ω). This is equivalent to ti(ω′Sti(ω)

) = ti(ω) ∈
4(Sti(ω)). By (3) we have Sti(ω′) � Sti(ω). By (2), ti(ω′Sti(ω)

) = ti(ω′)|Sti(ω)
. It follows that ti(ω′)|Sti(ω)

=
ti(ω). Thus ω′ ∈ Beni(ω).

“⊇”: ω′ ∈ Beni(ω) if and only if ti(ω′)|Sti(ω)
= ti(ω). Hence for ω′ ∈ Beni(ω), we have Sti(ω′) �

Sti(ω). By (2) ti(ω′Sti(ω)
) = ti(ω′)|Sti(ω)

= ti(ω). Hence ω′Sti(ω)
∈ D. Thus ω′ ∈ D↑. �

C.4 Proof of Proposition 7

(0) Bp
i (E) ⊆ Bq

i (E) for p, q ∈ [0, 1] with q ≤ p is trivial.

(i) B1
i (Ω) ⊆ Ω holds trivially. In the reverse direction, note that ti(ω)(Ω) = ti(ω)(Ω ∩ Sti(ω)) =

ti(ω)(Sti(ω)) = 1 for all ω ∈ Ω. Thus Ω ⊆ B1
i (Ω).

(ii) ω ∈ Bp
i (E) if and only if ti(ω)(E) ≥ p. Since ti(ω) is an additive probability measure,

ti(ω)(¬E) ≤ 1− p. Hence ω ∈ ¬Bq
i (¬E) for q > 1− p.

(iiia) ω ∈ Bp
i (

⋂∞
l=1 El) if and only if ti(ω) (

⋂∞
l=1 El) ≥ p. Monotonicity of the probability measure

ti(ω) implies ti(ω)(El) ≥ p for all l = 1, 2, ..., which is equivalent to ω ∈
⋂∞

l=1 Bp
i (El).

(iiib) It is enough to show that any sequence of events {El}∞l=1 with El ⊇ El+1 for l = 1, 2, ... we
have Bp

i (
⋂∞

l=1 El) ⊇
⋂∞

l=1 Bp
i (El). ω ∈

⋂∞
l=1 Bp

i (El) if and only if ti(ω)(El) ≥ p for l = 1, 2, .... Since
ti(ω) is a countable additive probability measure, it is continuous from above. That is, if El ⊇ El+1 for
l = 1, 2, ..., we have liml→∞ ti(ω)(El) = ti(ω) (

⋂∞
l=1 El). Since for every l = 1, 2, ..., ti(ω)(El) ≥ p, we

have p ≤ liml→∞ ti(ω)(El) = ti(ω) (
⋂∞

l=1 El). Hence ω ∈ Bp
i (

⋂∞
l=1 El).

(iiic) It is enough to show that B1
i (

⋂∞
l=1 El) ⊇

⋂∞
l=1 B1

i (El). ω ∈
⋂∞

l=1 B1
i (El) if and only if

ti(ω)(El) = 1 for l = 1, 2, .... Since ti(ω) is a countable additive probability measure, it satisfies Bonfer-
roni’s Inequality. I.e., ti(ω) (

⋂∞
l=1 El) ≥ 1 −

∑∞
l=1 1 − ti(ω)(El). Since ti(ω)(El) = 1 for all l = 1, 2, ...,

we have 1 − ti(ω)(El) = 0 for all l = 1, 2, ..., and hence
∑∞

l=1 1 − ti(ω)(El) = 0. It follows that
ti(ω) (

⋂∞
l=1 El) = 1. We conclude that ω ∈ B1

i (
⋂∞

l=1 El).

(iv) Since ti(ω) is a probability measure (satisfying monotonicity) for any ω ∈ Ω, E ⊆ F implies
that if ti(ω)(E) ≥ p then ti(ω)(F ) ≥ p.

(v) Let ω ∈ Bp
i (E). Then ti(ω)(E) ≥ p. It follows that for all ω′ ∈ Beni(ω) we have ti(ω′)(E) ≥ p.

Hence Beni(ω) ⊆ Bp
i (E). Thus ti(ω)(Bp

i (E)) = 1, which implies that ω ∈ B1
i Bp

i (E). �
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C.5 Proof of Proposition 8

1. This is property is equivalent to Bp
i (E) ∪ Bp

i ¬Bp
i (E) ⊆ Ai(E). By Property 5. we have Bp

i (E) ⊆
Ai(E). To see that Bp

i ¬Bp
i (E) ⊆ Ai(E), note that ω ∈ Bp

i ¬Bp
i (E) if and only if ti(ω)(¬Bp

i (E)) ≥ p. This
implies that Sti(ω) � S(¬Bp

i (E)) = S(E). The last equality follows by Property 8 and Proposition 2.
Hence ω ∈ Ai(E).

2. The proof is analogous to 1. The is property is equivalent to
⋂∞

n=1 Bp
i (¬Bp

i )n−1 (E) ⊆ Ai(E).

ω ∈ Bp
i (¬Bp

i )n−1 (E) for any n = 1, 2, ... if and only it ti(ω)
(
(¬Bp

i )n−1 (E)
)
≥ p for any n = 1, 2, ....

It follows that Sti(ω) � S
(
(¬Bp

i )n−1 (E)
)

for any n = 1, 2, .... By Proposition 2, S
(
(¬Bp

i )n−1 (E)
)

=
S(E) for any n = 1, 2, .... Hence ω ∈ Ai(E).

3. First, we show Bp
i Ui(E) ⊆ Ai(E). ω ∈ Bp

i Ui(E) if and only if ti(ω)(Ui(E)) ≥ p. It implies
Sti(ω) � S(Ui(E)). By Proposition 1 S(Ui(E)) = S(E). Hence Sti(ω) � S(E) which is equivalent to
ω ∈ Ai(E).

Second, we show that Bp
i Ui(E) = ∅S(E) for p ∈ (0, 1]. Since Bp

i Ui(E) ⊆ Ai(E) we have by monotonic-
ity B1

i Bp
i Ui(E) ⊆ B1

i Ai(E). By introspection Bp
i Ui(E) ⊆ B1

i Bp
i Ui(E) ⊆ B1

i Ai(E). By additivity, we
have Bp

i Ui(E) ⊆ ¬B1
i Ai(E). Hence Bp

i Ui(E) = ∅S(E) = ¬B1
i Ai(E) ∩B1

i Ai(E).

Third, we show that B0
i Ui(E) = Ai(E). ω ∈ Ai(E) if and only if ω ∈ AiUi(E) since by AA-

self-reflection Ai(E) = AiAi(E) and by symmetry AiAi(E) = AiUi(E). Hence, if ω ∈ Ai(E) then
ti(ω)(Ui(E)) is defined. Therefore ω ∈ B0

i U8E), and hence Ai(E) ⊆ B0
i Ui(E). Together with the first

part of the proof, we conclude B0
i Ui(E) = Ai(E).

4. This is property is equivalent to AiUi(E) = Ai(E). ω ∈ AiUi(E) if and only if Sti(ω) � S(Ui(E)) =
S(Ai(E)) = S(E) by Proposition 1. Hence ω ∈ AiUi(E) if and only if ω ∈ Ai(E).

5. ω ∈ Ai(E) if and only if Sti(ω) � S(E). For any ti(ω), we have Sti(ω) � S(E) if and only if
1 = ti(ω)(S(E)↑). This is equivalent to ω ∈ B1

i (S(E)↑).

6. First, we show Bp
i (E) ⊆ Ai(E). ω ∈ Bp

i (E) if and only if ti(ω)(E) ≥ p. This implies that
Sti(ω) � S(E), which is equivalent to ω ∈ Ai(E).

Second, we show for p = 0, Ai(E) ⊆ B0
i (E). ω ∈ Ai(E) if and only if ti(ω) ∈ ∆(S) with S � S(E).

Hence ti(ω)(E) ≥ 0, which implies that ω ∈ B0
i (E).

7. ω ∈ Bp
i (E) if and only if ti(ω)(E) ≥ p. This implies that Sti(ω) � S(E). By Proposition 2 it is

equivalent to Sti(ω) � S(Bq
i (E)), which is equivalent to ω ∈ AiB

q
i (E).

8. By the definition of negation, S(E) = S(¬E). Hence for ti(ω) ∈ 4(S), S � S(E) if and only if
S � S(¬E).

9. ω ∈
⋂

λ∈L Ai(Eλ) if and only if Sti(ω) � S(Eλ) for all λ ∈ L. This is equivalent to Sti(ω) �
supλ∈L S(Eλ) = S

(⋂
λ∈L Eλ

)
, which is equivalent to ω ∈ Ai

(⋂
λ∈L Eλ

)
.

10. By Proposition 2, S(E) = S(Bp
i (E)). Hence, ω ∈ Ai(E) if and only if ω ∈ AiB

p
i (E).

11. By Proposition 1, S(E) = S(Ai(E)). Hence ω ∈ Ai(E) if and only if ω ∈ AiAi(E).

12. ω ∈ Bp
i Ai(E) if and only if ti(ω)(Ai(E)) ≥ p. This implies Sti(ω) � S(Ai(E)). By Proposition

1, S(Ai(E)) = S(E). Thus ω ∈ Ai(E). To see the converse, by weak necessitation and introspection,
Ai(E) = B1

i (S(E)↑) ⊆ B1
i B1

i (S(E)↑) = B1
i Ai(E). By Proposition 7 (o), B1

i Ai(E) ⊆ Bp
i Ai(E). �

C.6 Proof of Proposition 10

1. By Proposition 1, S(E) = S(Aj(E)). Hence ω ∈ Ai(E) if and only if ω ∈ AiAj(E).

2. By Proposition 2, S(E) = S(Bp
j (E)). Hence, ω ∈ Ai(E) if and only if ω ∈ AiB

p
j (E).

3. ω ∈ Bp
i (E) if and only if ti(ω)(E) ≥ p. This implies that Sti(ω) � S(E). By Proposition 2, this
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is equivalent to Sti(ω) � S(Bq
j (E)), which is equivalent to ω ∈ AiB

q
j (E).

4. The proof is analogous to 3.

5. We show by induction that An(E) = A(E), for all n ≥ 1. We have ω ∈ A(An(E)) if and only if
Sti(ω) � S(An(E)), for all i ∈ I, which, by the induction hypothesis, is the case if and only if Sti(ω) �
S(A(E)), for all i ∈ I. By the definition of “∩”, it is the case that S(A(E)) = supi∈IS(Ai(E)). By
Proposition 1 we have S(Ai(E)) = S(E) and hence S(A(E)) = S(E). It follows that Sti(ω) � S(A(E))
if and only if Sti(ω) � S(E). But Sti(ω) � S(E) if and only if ω ∈ Ai(E). Hence we have An(E) = A(E),
for all n ≥ 1, and therefore CA(E) = A(E).

6. ω ∈ CB1(E) implies ω ∈ B1
i (E) for all i ∈ I. This is equivalent to ti(ω)(E) = 1 for all i ∈ I,

which implies Sti(ω) � S(E) for all i ∈ I. Hence, by 5. we have ω ∈ A(E) = CA(E).

7. First, we show that Bp(E) ⊆ A(E). ω ∈ Bp(E) if and only if ti(ω)(E) ≥ p for all i ∈ I. Hence
ti(ω) ∈ ∆(S) with S � S(E), for all i ∈ I. This implies that ω ∈ Ai(E), for all i ∈ I. It follows that
ω ∈ A(E).

Second, we show that A(E) = B0(E). ω ∈ A(E) if and only if ω ∈ Ai(E) for all i ∈ I if and only if
(by 6. of Proposition 8) ω ∈ B0

i (E) for all i ∈ I if and only if ω ∈ B0(E).

8. The proof follows from 7. and 5.

9. By weak necessitation, A(E) :=
⋂

i∈I Ai(E) =
⋂

i∈I B1
i (S(E)↑) := B1(S(E)↑).

10. The proof follows from 9. and 5.

11. By definition of common certainty, CB1(S(E)↑) ⊆ B1(S(E)↑). By 9., B1(S(E)↑) = A(E).

12. The proof follows from 11. and 5. �

C.7 Proof of Proposition 4

We state the proof for Bayesian games with unawareness (allowing also for unawareness of actions and
players).

Let σ∗|Ω′ be an equilibrium in the S′-partial Bayesian game with unawareness Γ(Ω′). For S′′ � S′ we
define a strategic form game with

• I(Ω′′ \Ω′) := {(i, ti(ω)) : ω ∈ Ω′′, i ∈ I(ω)} \ {(i, ti(ω)) : ω ∈ Ω′, i ∈ I(ω)} being the set of players,

• the set of strategies of player (i, ti(ω)) ∈ I(Ω′′,Ω′) is ∆(Mi(ω)),

• the payoff function of player (i, ti(ω)) is given by equation (1) but fixing the strategy of each
(dummy) player in {(i, ti(ω′)) : ω′ ∈ Ω′, i ∈ I(ω′)} to her respective equilibrium strategy σ∗i (ω) of
the S′-partial Bayesian game with unawareness Γ(Ω′).

Since I, Ω, and (Mi)i∈I are finite, this strategic game has an equilibrium by Nash’s (1950) theorem.

Consider now the strategy profile σ∗|Ω′′ in which players in {(i, ti(ω)) : ω ∈ Ω′, i ∈ I(ω)} play their
component of the profile σ∗|Ω′ and players in I(Ω′′ \Ω′) play the equilibrium strategies of the equilibrium
in above defined strategic game.

We need to show that σ∗|Ω′′ is an equilibrium of the S′′-partial Bayesian game with unawareness
Γ(Ω′′). Suppose not, then for some player (i, ti(ω)) ∈ I(Ω′′) = {(i, ti(ω′)) : ω′ ∈ Ω′′, i ∈ I(ω′)} there
exists σi(ω) ∈ ∆(Mi(ω)) with σi(ω) 6= σ∗i (ω) such that for σSti(ω) :=

(
σi(ω), (σ∗j (ω′))ω′∈Sti(ω),j∈I(ω)\{i}

)
we have

U(i,ti(ω))(σSti(ω)) > U(i,ti(ω))(σ∗Sti(ω)
),

i.e., there exists a profitable deviation from σ∗|Ω′′ for some player-type (i, ti(ω)) with ω ∈ Ω′′ and i ∈ I(ω)
given that all other player-types in I(Ω′′) play their equilibrium strategy.
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If (i, ti(ω)) ∈ I(Ω′′ \ Ω′) then her strategy is not an equilibrium strategy in above defined strategic
game, a contradiction. If (i, ti(ω)) ∈ {(i, ti(ω)) : ω′ ∈ Ω′, i ∈ I(ω′)}, then since her payoffs are identical
in both games, her strategy is not an equilibrium strategy in the S′-partial Bayesian game with un-
awareness Γ(Ω′), a contradiction. Hence σ∗|Ω′′ must be an equilibrium of the S′′-partial Bayesian game
with unawareness Γ(Ω′′). �

C.8 Proof of Proposition 5

We state the proof for Bayesian games with unawareness (allowing also for unawareness of actions and
players).

Let σ∗|Ω′′ be an equilibrium of the S′′-partial Bayesian game with unawareness Γ(Ω′′). Moreover, let
σ∗|Ω′ be a profile of strategies that is identical with σ∗|Ω′′ for all (i, ti(ω)) ∈ I(Ω′).

Suppose to the contrary that σ∗|Ω′ is not an equilibrium of the S′-partial Bayesian game with unaware-
ness Γ(Ω′). Then for some player (i, ti(ω)) ∈ I(Ω′) there exists σi(ω) ∈ ∆(Mi(ω)) with σi(ω) 6= σ∗i (ω)
such that for σSti(ω) :=

(
σi(ω), (σ∗j (ω′))ω′∈Sti(ω),j∈I(ω)\{i}

)
we have

U(i,ti(ω))(σSti(ω)) > U(i,ti(ω))(σ∗Sti(ω)
),

i.e., there exists a profitable deviation from σ∗|Ω′ for some player-type (i, ti(ω)) with ω ∈ Ω′ and i ∈ I(ω).
This is a contradiction to σ∗i (ω) being an equilibrium strategy in the S′′-partial Bayesian game with
unawareness Γ(Ω′′), because fixing the strategies of the other players, the payoffs to this player are the
same in both games. �

C.9 Proof of Proposition 6

Before we prove the proposition, we require following auxiliary results:

Remark 2 For any ω ∈ Ω, ti(ω)(E ∩Ai(E)) = ti(ω)(E) for any event E s.t. S(E) � Sti(ω).

Proof of the Remark: Let E be an event and ti(ω) be such that S(E) � Sti(ω). Since E =
(E ∩ Ai(E)) ∪ (E ∩ Ui(E)) and Ai(E) ∩ Ui(E) = ∅S(E), we have (E ∩ Ai(E)) ∩ (E ∩ Ui(E)) = ∅S(E).
Since ti(ω) is an additive probability measure, ti(ω)(E) = ti(ω)(E ∩ Ai(E)) + ti(ω)(E ∩ Ui(E)). Since
Bp

i Ui(E) = ∅S(E) for p ∈ (0, 1] (BpU -Introspection in Proposition 8), we must have ti(ω)(E∩Ui(E)) = 0.
�

We slightly abuse terminology and call a probability measure µi ∈ ∆ (S) a prior for player i on S
if for every event E ∈ Σ with S(E) � S equation (2u) is satisfied, i.e.,

µi(E ∩ S ∩Ai(E)) =
∫

S∩Ai(E)

ti(·)(E)dµi(·). (5)

The following lemma says that if there is a prior on a state-space then the marginal on a lower space
is a prior as well.

Lemma 2 If µi ∈ ∆ (S′) is a prior for player i on S′ and S � S′, then (µi)|S (the marginal of µi on
S) is a prior for player i on S.

Proof of the Lemma. Let E be an event with S(E) � S and let µ be individual i’s probability
measure on S′ with S′ � S. Since (µ)|S is a probability measure on S, (µ)|S(Ai(E)∩E) = (µ)|S(Ai(E)∩
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E∩S) (we do not like to abuse notation for what follows). By the definition of the marginal, (µ)|S(Ai(E)∩
E ∩ S) = µ

(
(rS′

S )−1(Ai(E) ∩ E ∩ S)
)
. Since µ is a probability measure on S′ satisfying equation (5),

the fact that Ai(E) is an event, and Remark 2,

µ
(
(rS′

S )−1(Ai(E) ∩ E ∩ S)
)

=
∫

ω′∈Ai(E)∩S′
ti(ω′)

(
(rS′

S )−1(Ai(E) ∩ E ∩ S)
)

dµ(ω′).

By Property (1) of ti, ∫
ω′∈Ai(E)∩S′

ti(ω′)
(
(rS′

S )−1(Ai(E) ∩ E ∩ S)
)

dµ(ω′)

=
∫

ω′∈Ai(E)∩S′
ti(rS′

S (ω′))(Ai(E) ∩ E ∩ S)dµ(ω′).

By the definition of marginal,∫
ω′∈Ai(E)∩S′

ti(rS′

S (ω′))(Ai(E) ∩ E ∩ S)dµ(ω′)

=
∫

ω∈Ai(E)∩S

ti(ω)(Ai(E) ∩ E ∩ S)d(µ)|S(ω)

= (µ)|S(Ai(E) ∩ E ∩ S) = (µ)|S(Ai(E) ∩ E).

�

We say that µ ∈ ∆ (S) is a common prior on S if it is a prior on S for every player i ∈ I.

Remark 3 Let Ŝ be the upmost state space in the lattice S, and let (PS
i )S∈S ∈

∏
S∈S ∆(S) be a tuple

of probability measures. Then (PS
i )S∈S is a prior for player i if and only if P Ŝ

i is a prior for player i

on Ŝ and PS
i is the marginal of P Ŝ

i for every S ∈ S.

This remark together with Lemma 2 implies the following:

Remark 4 A common prior (Definition 10) induces a common prior on S, for any S ∈ S. The converse
is not necessarily true unless S is the upmost state-space of the lattice. Note that it is possible that players
have different priors, but at some space S (below the upmost space) the priors on S coincide. Hence, in
such a case they have different priors, but a common prior on S (and by Lemma 2 also a common prior
on spaces less expressive than S).

We are now ready to prove Proposition 6. In fact, we prove below a version just requiring the
existence of a common prior PS on S such that S(G) � S and PS(CB1(

⋂
i∈I [ti(G) = pi])) > 0. By

Remark 4, this is more general than the statement of Proposition 6.

Proof of Proposition 6. By Proposition 9, ω ∈ CB(F ) if and only if there exists an event E that
is evident such that ω ∈ E ⊆ B1(F ).

Since for an evident E we have E ⊆ B1
i (E) ⊆ Ai(E) for all i ∈ I. It follows that PS(E ∩ Ai(E)) =

PS(E) for S � S(E). Set F =
⋂

i∈I [ti(G) = pi] and let E = CB(F ). By Proposition 1, S(E) = S(G).
By Lemma 2 and the properties imposed on ti, we consider w.l.o.g. a common prior PS(G) on S(G).

PS(G)(E) =
∫

S(G)∩Ai(E)

ti(·)(E)dPS(G)(·)
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=
∫

E∩S(G)∩Ai(E)

ti(·)(E)dPS(G)(·) +
∫

(S(G)∩Ai(E))\E
ti(·)(E)dPS(G)(·).

∫
E∩S(G)∩Ai(E)

ti(·)(E)dPS(G)(·) =
∫

E∩S(G)∩Ai(E)

1dPS(G)(·) = PS(G)(E).

It follows that ∫
(S(G)∩Ai(E))\E

ti(·)(E)dPS(G)(·) = 0. (6)

∫
E∩Ai(E)∩S(G)

ti(·)(G)dPS(G)(·) =
∫

E∩Ai(E)∩S(G)

pidPS(G)(·) = piP
S(G)(E)

∫
E∩Ai(E)∩S(G)

ti(·)(G)dPS(G)(·) =
∫

E∩Ai(E)∩S(G)

ti(·)(G ∩ E)dPS(G)(·)

=
∫

S(G)∩Ai(E)

ti(·)(G ∩ E)dPS(G)(·)−
∫

(S(G)∩Ai(E))\E
ti(·)(G ∩ E)dPS(G)(·)

Since by the monotonicity of probability measures∫
(S(G)∩Ai(E))\E

ti(·)(G ∩ E)dPS(G)(·) ≤
∫

(S(G)∩Ai(E))\E
ti(·)(E)dPS(G)(·),

we must have by equation (6) and non-negativity of probability measures∫
(S(G)∩Ai(E))\E

ti(·)(G ∩ E)dPS(G)(·) = 0.

Note that PS(G)(G ∩ E) =
∫

S(G)∩Ai(E)
ti(·)(G ∩ E)dPS(G)(·).

Note further that PS(G)(E) = PS(G)(E ∩ Ai(E)) for all i ∈ N since E = CB1(F ) ⊆ Ai(E) for all
i ∈ N . Similarly, PS(G)(G ∩ E) = PS(G)(G ∩ E ∩Ai(E)) for all i ∈ N .

Thus
piP

S(G)(E) = PS(G)(G ∩ E). (7)

Note that by assumption PS(G)(E) > 0.

Since equation (7) holds for all i ∈ I, we must have pi = pj , for all i, j ∈ I. �

C.10 Proof of Theorem 1

Before we prove the theorem, we state following observations:

Remark 5 If P =
(
PS

)
S∈S ∈

∏
S∈S ∆(S) is a non-degenerate (common) prior, then also PS ∈ ∆(S)

is non-degenerate (common) prior on S for every S ∈ S.

Remark 6 If µi ∈ ∆(S) is a non-degenerate prior for player i on S and S′ � S, then the marginal of
µi on S′,

(
µS

i

)
|S′ is a non-degenerate prior for player i on S′.

Lemma 3 Let PS be a non-degenerate common prior on some finite state-space S and let i ∈ I and

ω ∈ Σ such that ti (ω) ∈ 4 (S). Then we have for all ω′ ∈ [ti (ω)] ∩ S that ti (ω) ({ω′}) =
P S({ω′})

P S([ti(ω)]∩S)
.
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Proof of the Lemma. Because ti (ω) = ti (ω′), we have Ai

(
S↑

)
= Ai

(
{ω′}↑

)
⊇ [ti (ω)]↑ ⊇

{ω′}↑. By the definition of a prior on S, PS ({ω′}) = PS
(
{ω′}↑ ∩Ai

(
{ω′}↑

))
=

∫
Ai({ω′}↑)∩S

ti (·)
(
{ω′}↑

)
dPS (·).

Note that if ω′′ ∈ S \ [ti (ω)] ∩ S, then we do have ti (ω′′)
(
{ω′}↑

)
= 0. Hence, since ti (ω) =

ti (ω′′), for ω′′ ∈ [ti (ω)], we have
∫

Ai({ω′}↑)∩S

ti (·)
(
{ω′}↑

)
dPS (·) =

∫
[ti(ω)]∩S

ti (·) ({ω′}) dPS (·) =

ti (ω) ({ω′}) PS ([ti (ω)] ∩ S). Because PS is non-degenerate, it follows that ti (ω) ({ω′}) =
P S({ω′})

P S([ti(ω)]∩S)
.

�

Proof of the Theorem. Note that E>α
1 and E≤α

2 may not be events in our unawareness belief
structure. In Meier and Schipper (2007) we extend the definition of the belief operator as well as
Proposition 7 and 9 to measurable subsets of Ω.

Suppose that CB
(
E>α

1 ∩ E≤α
2

)
is non-empty. Then fix a �-minimal state-space S such that W :=

CB
(
E>α

1 ∩ E≤α
2

)
∩ S 6= ∅. Such a space S exists by the finiteness of Σ.

By Remark 5, since P is non-degenerate common prior, PS is a non-degenerate common prior on S.

Since W = CB
(
E>α

1 ∩ E≤α
2

)
∩ S ⊆ S ∩B1

i

(
CB

(
E>α

1 ∩ E≤α
2

))
, the minimality of S implies that

for each ω ∈ CB
(
E>α

1 ∩ E≤α
2

)
∩ S we do have Sti(ω) = S and ti (ω) (W ) = 1.

By the definition, ti (ω) ([ti (ω)] ∩ S) = 1, for each ω ∈ CB
(
E>α

1 ∩ E≤α
2

)
∩ S. Since ti(ω)(W ) = 1,

we have ti (ω) (([ti (ω)] ∩ S) \W ) = 0.

By Lemma 3, this implies that PS ({ω′}) = 0, for ω′ ∈ ([ti (ω)] ∩ S)\W such that ω ∈ CB
(
E>α

1 ∩ E≤α
2

)
∩

S. It follows that PS (([ti (ω)] ∩ S) \W ) = 0 and hence, PS (([ti (ω)] ∩ S) ∩W ) = PS (([ti (ω)] ∩ S) ∩W )+
PS (([ti (ω)] ∩ S) \W ) = PS (([ti (ω)] ∩ S)) > 0. So, we do have PS (W ) > 0.

The fact that PS ({ω′}) = 0, for ω′ ∈ ([ti (ω)] ∩ S) \ W such that ω ∈ CB
(
E>α

1 ∩ E≤α
2

)
∩

S = W implies the following: For any random variable x, we have
∑

ω′∈[ti(ω)]∩S x (ω′)PS ({ω′}) =∑
ω′∈W∩[ti(ω)]∩S x (ω′) PS ({ω′}), if [ti (ω)] ∩W 6= ∅. And also

∑
ω∈W x(ω)PS ({ω}) =∑

[ti(ω)]∩W 6=∅
∑

ω∈[ti(ω)]∩S x(ω)PS ({ω}). This is so, because there is a ω ∈ [ti (ω)] ∩W and for this ω,

we do have ω ∈ CB
(
E>α

1 ∩ E≤α
2

)
∩S and [ti (ω)] = [ti (ω)] and this implies PS (([ti (ω)] ∩ S) \W ) = 0.

For i = 1, 2 we have∑
ω∈W

PS ({ω})
∑

ω′∈[ti(ω)]∩S

v (ω′) ti (ω) ({ω′})

=
∑

ω∈W

PS ({ω})
∑

ω′∈[ti(ω)]∩S

v (ω′)
PS ({ω′})

PS ([ti (ω)] ∩ S)

=
∑

[ti(ω)]∩W 6=∅

∑
ω∈[ti(ω)]∩S

PS ({ω})
∑

ω′∈[ti(ω)]∩S

v (ω′)
PS ({ω′})

PS ([ti (ω)] ∩ S)

=
∑

[ti(ω)]∩W 6=∅

∑
ω∈[ti(ω)]∩S

PS ({ω})
∑

ω′∈[ti(ω)]∩S

v (ω′)
PS ({ω′})

PS ([ti (ω)] ∩ S)

=
∑

[ti(ω)]∩W 6=∅

PS ([ti (ω)] ∩ S)
∑

ω′∈[ti(ω)]∩S

v (ω′)
PS ({ω′})

PS ([ti (ω)] ∩ S)
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=
∑

[ti(ω)]∩W 6=∅

∑
ω′∈[ti(ω)]∩S

v (ω′) PS ({ω′})

=
∑

ω′∈W

v (ω′) PS ({ω′}) .

But by the assumptions, we have
∑

ω∈W PS ({ω})
∑

ω′∈[t1(ω)]∩S v (ω′) t1 (ω) ({ω′}) > αPS (W ) and∑
ω∈W PS ({ω})

∑
ω′∈[t2(ω)]∩S v (ω′) t2 (ω) ({ω′}) ≤ αPS (W ), a contradiction, since PS (W ) > 0. �
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Appendix to Unawareness, Beliefs and Games:

Speculative Trade under Unawareness - The

Infinite Case∗

Martin Meier† Burkhard C. Schipper‡

March 1, 2007

We generalize the “No-trade” theorem for finite unawareness belief structures in Heifetz,
Meier and Schipper (2007) to the infinite case. We also discuss a technical device called the
“flattened type-space” associated with an unawareness belief structure, in which the state-space
is the union of spaces in the lattice.

1 Topological Unawareness Belief Structures

We consider an unawareness belief structure as defined in Heifetz, Meier and Schipper (2007).
In addition we impose the following conditions:

1. The set of individuals I is at most countable.

2. Each state-space S ∈ S is a non-empty compact Hausdorff space.

3. (S,�) is well-founded, that is, every non-empty subset X ⊆ S contains a �-minimal
element. (That is, there is a S′ ∈ X such that for all S ∈ X : if S � S′, then S = S′.)

4. For all S, S′ ∈ S with S′ � S, we have that rS
S′ is continuous and surjective.

5. For each S ∈ S, ∆(S) is the space of regular Borel probability measures on S, which is
endowed with the topology of weak convergence.1

∗Martin acknowledges financial support from the Spanish Ministerio de Educación y Ciencia via a Ramon
y Cajal Fellowship and Research Grant SEJ2004-07861, as well as from Barcelona Economics (XREA), while
Burkhard received financial support from the NSF SES-0647811, DFG SFB/TR 15, Minerva Stiftung, and IGA-
UCD.

†Instituto de Análisis Económico - CSIC, Barcelona. Email: martin.meier@uab.es

‡Department of Economics, University of California, Davis. Email: bcschipper@ucdavis.edu

1This topology is generated by the sub-basis of sets of the form

{µ ∈ ∆(S) : µ(O) > r}

where O ⊆ S is open and r ∈ R (see e.g. Billingsley (1968), appendix III). When S is Normal (and in particular



6. For each player i ∈ I, ti : Ω −→
⋃

S∈S ∆(S) is continuous, where

a. Ω is endowed with the disjoint-union topology: O ⊆ Ω is open if and only if O ∩ S
is open in S for all S ∈ S.

b.
⋃

S∈S ∆(S) is endowed with the disjoint-union topology: O∆ ⊆
⋃

S∈S ∆(S) is open
if and only if O∆ ∩∆(S) is open in ∆(S) for all S ∈ S.

We call an unawareness belief structure satisfying above conditions a topological unawareness
belief structure.

Note that although each S and each ∆(S) are compact, if S is infinite, Ω and
⋃

S∈S ∆(S)
are not compact.

2 A Generalized “No-Trade” Theorem

Definition 1 (Prior) A prior for player i is a system of probability measures Pi =
(
PS

i

)
S∈S ∈∏

S∈S ∆(S) such that

1. The system is projective: If S′ � S then the marginal of PS
i on S′ is PS′

i . (That is, if
E ∈ Σ is an event whose base-space S (E) is lower or equal to S′, then PS

i (E) = PS′
i (E).)

2. Each probability measure PS
i is a convex combination of i’s beliefs in S: For every event

E ∈ Σ such that S(E) � S,

PS
i (E ∩ S ∩Ai (E)) =

∫
S∩Ai(E)

ti (·) (E) dPS
i (·) . (1)

We call any probability measure µi ∈ ∆(S) satisfying equation (1) in place of PS
i a prior of

player i on S.

Definition 2 (Common Prior) P =
(
PS

)
S∈S ∈

∏
S∈S ∆(S) (resp. PS ∈ ∆ (S)) is a com-

mon prior (resp. a common prior on S) if P (resp. PS) is a prior for every player i ∈ I.

Definition 3 A common prior P =
(
PS

)
S∈S ∈

∏
S∈S ∆(S) (resp. a common prior PS on S)

is non-degenerate if and only if for all i ∈ I and ω ∈ Ω: If ti (ω) ∈ 4 (S′), for some S′, then
PS

(
([ti (ω)] ∩ S′)↑ ∩ S

)
> 0 for all S � S′.

Note that by Lemma 3 below, [ti(ω)] ∩ S′ ∈ FS′ .

compact and/or metric), this topology coincides with the weak∗ topology - the weakest topology for which the
mapping

µ −→
Z

S

fdµ

is continuous for every continuous real-valued function f on S.
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Recall Remark 3 in Heifetz, Meier and Schipper (2007) according to which if Ŝ is the upmost
state-space in the lattice S, and (PS

i )S∈S ∈
∏

S∈S ∆(S) is a tuple of probability measures, then
(PS

i )S∈S is a prior for player i if and only if P Ŝ
i is a prior for player i on Ŝ and PS

i is the
marginal of P Ŝ

i for every S ∈ S.

Definition 4 Let x1 and x2 be real numbers and v a continuous random variable on Ω. Define
the sets E≤x1

1 :=
{

ω ∈ Ω :
∫
St1(ω)

v (·) d (t1 (ω)) (·) ≤ x1

}
and

E≥x2
2 :=

{
ω ∈ Ω :

∫
St2(ω)

v (·) d (t2 (ω)) (·) ≥ x2

}
. We say that at ω, conditional on his infor-

mation, player 1 (resp. player 2) believes that the expectation of v is weakly below x1 (resp.
weakly above x2) if and only if ω ∈ E≤x1

1 (resp. ω ∈ E≥x2
1 ).

Theorem 1 Let Ω be a topological unawareness belief structure and P a non-degenerate com-
mon prior. Then there is no state ω̃ ∈ Ω such that there are a continuous random variable
v : Ω −→ R and x1, x2 ∈ R, x1 < x2, with the following property: at ω̃ it is common certainty
that conditional on her information, player 1 believes that the expectation of v is weakly below
x1 and, conditional on his information, player 2 believes that the expectation of v is weakly
above x2.

This general “No-trade” theorem implies our “No-trade” theorem for finite unawareness
belief structures (Heifetz, Meier and Schipper, 2007).

Before we prove Theorem 1, we introduce some technical devices.

3 The Flattened Structure

Definition 5 G ⊆ Ω is a measet if and only if for all S ∈ S, G ∩ S ∈ FS.

Remark 1 The collection of measets forms a sigma-algebra on Ω.

Remark 2 Let S be at most countable and G be a measet, p ∈ [0, 1] and i ∈ I. Then {ω ∈ Ω :
ti(ω)(G) ≥ p} is a measet.

Let Ω be an unawareness belief structure. We the define the flattened type-space associated
with the unawareness belief structure Ω by

F (Ω) := 〈Ω,F , (tFi )i∈I〉,

where

• Ω is the union of all state-spaces in Ω,

• F is the collection of all measets in Ω, and

• tFi : Ω −→ ∆(Ω,F) is defined as follows: tFi (ω)(E) := ti(ω)(E ∩ Sti(ω)), if E ∩ Sti(ω) 6= ∅,
and zero otherwise.
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A standard type-space on S for the player set I is a tuple

Y :=
〈
Y,FY , (ti)i∈I

〉
,

where

• Y is a nonempty set,

• FY is a sigma-field on Y ,

• for i ∈ I : ti is a FY − F∆(Y ) -measurable function from Y to ∆ (Y,FY ), the space of
countable additive probability measures on (Y,FY ), such that for all ω ∈ Y and E ∈ FY :
[ti (ω)] ⊆ E implies ti (ω) (E) = 1, where [ti (ω)] := {ω′ ∈ Y : ti (ω′) = ti (ω)},

Proposition 1 If Ω is a unawareness belief structure, then F (Ω) is a standard type-space.
Moreover, it has the following property: For every p > 0, measet E ∈ F and i ∈ I: {ω ∈ Ω :
ti(ω)(E) ≥ p} = {ω ∈ Ω : tFi (ω)(E) ≥ p} (and hence {ω ∈ Ω : ti(ω)(E) > p} = {ω ∈ Ω :
tFi (ω)(E) > p}.)

Proof. We only have to show:

1. tFi : Ω −→ ∆(Ω,F) is measurable, where ∆(Ω,F) is endowed with the sigma-algebra
generated by sets {µ ∈ ∆(Ω,F) : µ(E) ≥ p} for p ∈ [0, 1] and E ∈ F .

2. For all ω ∈ Ω, i ∈ I, and E ∈ F : If [tFi (ω)] = {ω′ ∈ Ω : tFi (ω′) = tFi (ω)} ⊆ E, then
tFi (ω)(E) = 1.

But both properties follow directly from the respective properties in the unawareness belief
structure Ω. �

Proposition 2 Extend the definition of the belief operator, Definition 5, in Heifetz, Meier and
Schipper (2007), to the collection of all measets F in Ω. Properties (0) to (v) of Proposition 7 in
Heifetz, Meier and Schipper (2007) extend to measets. More formally, let E and F be measets,
{El}l=1,2,... be an at most countable collection of measets, and p, q ∈ [0, 1]. The following
properties of belief obtain:

(o) Bp
i (E) ⊆ Bq

i (E), for q ≤ p,

(i) Necessitation: B1
i (Ω) = Ω,

(ii) Additivity: Bq
i (E) ⊆ Ω \Bp

i (Ω \ E), for p + q > 1,

(iiia) Bp
i (

⋂∞
l=1 El) ⊆

⋂∞
l=1 Bp

i (El),

(iiib) for any decreasing sequence of measets {El}∞l=1, Bp
i (

⋂∞
l=1 El) =

⋂∞
l=1 Bp

i (El),

(iiic) B1
i (

⋂∞
l=1 El) =

⋂∞
l=1 B1

i (El),

(iv) Monotonicity: E ⊆ F implies Bp
i (E) ⊆ Bp

i (F ),
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(v) Introspection: Bp
i (E) ⊆ B1

i Bp
i (E).

Proof. The proof is analogous to the proof of Proposition 7 in Heifetz, Meier and Schipper
(2007), making use of Proposition 1 above. �

Extend the definitions of mutual belief and common certainty (Definition 14 in Heifetz,
Meier and Schipper, 2007) to the collection of all measets F in Ω. We have the following
standard characterization of common certainty:

Definition 6 An event E is evident if for each i ∈ I, E ⊆ B1
i (E).

Proposition 3 For every measet F ∈ F ,

(i) CB1(F ) is evident, that is CB1(F ) ⊆ B1
i (CB1(F )) for all i ∈ I,

(ii) there exists an evident measet E such that ω ∈ E and E ⊆ B1
i (F ) for all i ∈ I if and only

if ω ∈ CB1(F ).

The proof is analogous to Proposition 3 in Monderer and Samet (1989) for a standard state-
space and thus omitted.

There is even a more fundamental difference between an unawareness belief structure and
its flattened structure. Namely, there are unawareness belief structures with a non-degenerate
common prior on the upmost state-space while the flattened structures do not have a non-
degenerate common prior. As an example consider again the unawareness belief structure
illustrated in Figure 3 in Heifetz, Meier and Schipper (2007). It has a non-degenerate common
prior on the upmost state-space S. Yet, the flattened structure is as follows:

State ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13 ω14

Solid 1
6

3
6

1
6

1
6 |0 0 1

3
2
3 0 0 0 0| 1

3
2
3

Dashed 1
9

3
9

1
9

1
9

1
9

2
9 |13

2
3 0 0 0 0 0 0

Clearly, there is no non-degenerate common prior in the flattened structure. A non-
degenerate common prior in the flattened structure would have to give positive probability
to every cell of every player. But then such a prior would have to give a positive probability
to state ω5 because it has a positive posterior for the dashed player, and at the same time
probability zero because it has posterior zero for the solid player.

4 Proof of Theorem 1

Let Ω be a topological unawareness belief structure and P a non-degenerate common prior. We
have to show that there is no evident measet E ∈ F such that ω̃ ∈ E and∫

Ω
v(·)d(t1(ω))(·) ≤ x1 < x2 ≤

∫
Ω

v(·)d(t2(ω))(·)
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for all ω ∈ E.

We require following lemmata:

Lemma 1 Let Ω be a topological unawareness belief structure, v : Ω −→ R be a continuous
random variable, and x ∈ R. Then

{
ω ∈ Ω :

∫
Ω v(·)d(ti(ω))(·) ≥ x

}
and{

ω ∈ Ω :
∫
Ω v(·)d(ti(ω))(·) ≤ x

}
are closed subsets of Ω.2

Proof of Lemma. Since for every S ∈ S, the topology on ∆(S) coincides with the weak∗

topology and since in particular, v : S −→ R is continuous,
{
µ ∈ ∆(S) :

∫
S v(·)dµ(·) < x

}
is

open in ∆(S). Hence
{
µ ∈

⋃
S∈S ∆(S) :

∫
S v(·)dν(·) < x

}
is open in

⋃
S∈S ∆(S).

By the continuity of ti : Ω −→
⋃

S∈S ∆(S), it follows that
{
ω ∈ Ω :

∫
Ω v(·)d(ti(ω))(·) < x

}
is

open in Ω and hence it’s relative complement with respect to Ω,
{
ω ∈ Ω :

∫
Ω v(·)d(ti(ω))(·) ≥ x

}
is closed in Ω. �

Lemma 2 Let Ω be a topological unawareness belief structure. Let E be a closed subset of Ω.
Then CB1(E) is a closed subset of Ω.

Proof of Lemma. The relative complement of E with respect of Ω, Ω\E, is open, and hence
for every S ∈ S, (Ω\E)∩S = S\(E∩S) is open in S. Therefore {µ ∈ ∆(S) : µ(S\(E∩S)) > 0}
is open. It follows that

⋃
S∈S {µ ∈ ∆(S) : µ(S \ (E ∩ S)) > 0} is open. Hence for every i ∈ I,{

ω ∈ Ω : ti(ω) ∈
⋃

S∈S {µ ∈ ∆(S) : µ(S \ (E ∩ S)) > 0}
}

is open. It follows that it’s relative
complement with respect to Ω, B1

i (E) =
{
ω ∈ Ω : ti(ω) ∈

⋃
S∈S{µ ∈ ∆(S) : µ(E ∩ S) = 1}

}
is

closed. Since an arbitrary intersection of closed sets is closed, the Lemma follows by induction.
�

Lemma 3 Let Ω be a topological unawareness belief structure. Then for every ω ∈ Ω, every
state-space S ∈ S and every player i ∈ I, the set {ω′ ∈ Ω : ti(ω′) = ti(ω)} ∩ S is closed in S.

Proof of Lemma. Since ∆(Sti(ω)) is the set of regular Borel probability measures on Sti(ω)

endowed with the topology of weak convergence, {ti(ω)} is closed in ∆(Sti(ω)), and hence {ti(ω)}
is closed in

⋃
S∈S ∆(Sti(ω)). Therefore, by continuity of ti, t−1

i ({ti(ω)}) = [ti(ω)] is closed in Ω.
Hence, [ti(ω)] ∩ S is closed in S. �

Lemma 4 Let Ω be a topological unawareness belief structure. Let PS be a non-degenerate
(common) prior on the some state-space S, and let ω ∈ S such that ti(ω) ∈ ∆(S). Then, for
every E ∈ FS, we do have ti(ω)(E) = ti(ω)(E ∩ [ti(ω)]) = P S(E∩[ti(ω)])

P S(S∩[ti(ω)])
.

Proof. We have ti(ω)(S ∩ [ti(ω)]) = 1 and hence ti(ω)(E) = ti(ω)(E ∩ S ∩ [ti(ω)]) =
ti(ω)(S ∩ [ti(ω)]). Since PS is non-degenerate, we do have PS(S ∩ [ti(ω)]) > 0.

Since S((E ∩ [ti(ω)])↑) = S and since ω′ ∈ [ti(ω)] implies ti(ω′) ∈ ∆(S), we do have
(E ∩ [ti(ω)])↑ ∩ Ai((E ∩ [ti(ω)])↑) = (E ∩ [ti(ω)])↑. We also have (S ∩ [ti(ω)])↑ ⊆ Ai(S↑) =

2Note that we abuse notation and write
R
Ω

v(·)d(ti(ω))(·) instead of
R

Sti(ω)
v(·)d(ti(ω))(·).
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Ai((E ∩ [ti(ω)])↑). Last equality follows from weak necessitation. We have - by the definition
of a common prior - the following (with our abuse of notation):

PS(E ∩ [ti(ω)]) =
∫

S∩Ai((E∩[ti(ω)])↑)
ti(·)(E ∩ [ti(ω)])dPS(·)

=
∫

S∩[ti(ω)]
ti(·)(E ∩ [ti(ω)])dPS(·)

+
∫

(S∩Ai(S↑))\(S∩[ti(ω)])
ti(·)(E ∩ [ti(ω)])dPS(·)

But if ω′ ∈ (S ∩ Ai((E ∩ [ti(ω)])↑)) \ (S ∩ [ti(ω)]), then ti(ω′)(E ∩ [ti(ω)]) = 0, and hence, we
have

PS(E ∩ [ti(ω)]) =
∫

S∩[ti(ω)]
ti(·)(E ∩ [ti(ω)])dPS(·)

= ti(ω)(E ∩ [ti(ω)])
∫

S∩[ti(ω)]
1dPS(·)

= ti(ω)(E ∩ [ti(ω)])PS(S ∩ [ti(ω)]).

Since PS(S ∩ [ti(ω)]) > 0, it follows that ti(ω)(E ∩ [ti(ω)]) = P S(E∩[ti(ω)])
P S(S∩[ti(ω)])

. �

Proof of the Theorem: Suppose by contradiction, that there are x1, x2 ∈ R with x1 < x2

and a continuous random variable v : Ω −→ R such that CB1(E≤x1
1 ∩ E≥x2

2 ) 6= ∅, where

E≤x1
1 :=

{
ω ∈ Ω :

∫
St1(ω)

v(·)d(t1(ω))(·) ≤ x1

}
, and

E≥x2
2 :=

{
ω ∈ Ω :

∫
St2(ω)

v(·)d(t2(ω))(·) ≥ x2

}
.

Let S be a �-minimal state-space with the property that S ∩ CB1(E≤x1
1 ∩ E≥x2

2 ) 6= ∅.

By Proposition 2 we have CB1(E≤x1
1 ∩ E≥x2

2 ) ⊆ B1
i (CB1(E≤x1

1 ∩ E≥x2
2 )) for i = 1, 2. This

implies that for each ω ∈ S ∩ CB1(E≤x1
1 ∩ E≥x2

2 ) and i = 1, 2, we have ti(ω)(CB1(E≤x1
1 ∩

E≥x2
2 )) = 1, which by the minimality of S implies that ti(ω) ∈ ∆(S) and ti(ω)(S∩CB1(E≤x1

1 ∩
E≥x2

2 )) = 1.

By Lemma 2, S ∩ CB1(E≤x1
1 ∩ E≥x2

2 )) is closed in S. Therefore it is easy to verify that if
flattened, F (S∩CB1(E≤x1

1 ∩E≥x2
2 )), that is S∩CB1(E≤x1

1 ∩E≥x2
2 ) with the induced structure,

is a standard topological type-space (as in Heifetz, 2006). Since each ω ∈ S∩CB1(E≤x1
1 ∩E≥x2

2 ),
we have ti(ω)(S ∩ CB1(E≤x1

1 ∩ E≥x2
2 )) = 1 for i = 1, 2.

Since PS is a non-degenerate prior on S, we have that PS(S ∩ [ti(ω)]) > 0, for each ω ∈ S.

For ω ∈ S∩CB1(E≤x1
1 ∩E≥x2

2 ) we also have ti(ω)(S∩CB1(E≤x1
1 ∩E≥x2

2 )∩ [ti(ω)]) = 1, and

by Lemma 4, we have ti(ω)(S ∩ CB1(E≤x1
1 ∩ E≥x2

2 ) ∩ [ti(ω)]) = P S(S∩CB1(E
≤x1
1 ∩E

≥x2
2 )∩[ti(ω)])

P S(S∩[ti(ω)])
.

Hence, since PS(S ∩ [ti(ω)]) > 0, it follows that PS(S ∩ CB1(E≤x1
1 ∩ E≥x2

2 ) ∩ [ti(ω)]) =
PS(S ∩ [ti(ω)]) > 0. It follows that PS(S ∩ CB1(E≤x1

1 ∩ E≥x2
2 )) > 0. Therefore it is easy to

check that P S(·)
P S(S∩CB1(E

≤x1
1 ∩E

≥x2
2 ))

is a common prior on F (S ∩ CB1(E≤x1
1 ∩ E≥x2

2 )).
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Claim: Let ω ∈ CB1(E≤x1
1 ∩E≥x2

2 )∩ S. Then
∫
S∩CB1(E

≤x1
1 ∩E

≥x2
2 )

v(·)d(t1(ω))(·) ≤ x1 and∫
S∩CB1(E

≤x1
1 ∩E

≥x2
2 )

v(·)d(t2(ω))(·) ≥ x2.

We prove the second inequality, the first is analogous to the second one. We know already
that t2(ω) ∈ ∆(S). By the definitions ω ∈ S ∩ CB1(E≤x1

1 ∩ E≥x2
2 ) implies ω ∈ S ∩ B1

2(E≥x2
2 ),

and therefore t2(ω)([t2(ω)] ∩ E≥x2
2 ∩ S) = 1. It follows that [t2(ω)] ∩ E≥x2

2 ∩ S is non-empty.
Let ω′ ∈ [t2(ω)]∩E≥x2

2 ∩ S. Then we have
∫
S v(·)d(t2(ω′))(·) ≥ x2. But we have t2(ω) = t2(ω′)

and therefore
∫
S v(·)d(t2(ω))(·) ≥ x2.

Since S is compact and v : S −→ R is continuous, there is a v̄ ∈ R such that |v(ω̃)| ≤ v̄ for
all ω̃ ∈ S.

Since t2(ω)(S ∩ CB1(E≤x1
1 ∩ E≥x2

2 )) = 1, we have∣∣∣∣∣
∫

S\(S∩CB1(E
≤x1
1 ∩E

≥x2
2 ))

v(·)d(t2(ω))(·)

∣∣∣∣∣ ≤ v̄

∫
S\(S∩CB1(E

≤x1
1 ∩E

≥x2
2 ))

1d(t2(ω))(·)

= v̄ t2(ω)(S \ (S ∩ CB1(E≤x1
1 ∩ E≥x2

2 )))
= 0.

Hence, we have ∫
S∩CB1(E

≤x1
1 ∩E

≥x2
2 )

v(·)d(t2(ω))(·) =
∫

S
v(·)d(t2(ω))(·) ≥ x2

and this finishes the proof of the claim.

It follows that we have found a standard topological type-space S ∩ CB1(E≤x1
1 ∩ E≥x2

2 )
in the sense of Heifetz (2006) with a common prior and a continuous random variable v :
S ∩ CB1(E≤x1

1 ∩ E≥x2
2 ) −→ R such that∫

S∩CB1(E
≤x1
1 ∩E

≥x2
2 )

v(·)d(t1(ω))(·) ≤ x1 < x2 ≤
∫

S∩CB1(E
≤x1
1 ∩E

≥x2
2 )

v(·)d(t2(ω))(·).

Note that if we replace v(·) by v(·)− x1+x2
2 , we get∫

S∩CB1(E
≤x1
1 ∩E

≥x2
2 )

v(·)− x1 + x2

2
d(t1(ω))(·) < 0 <

∫
S∩CB1(E

≤x1
1 ∩E

≥x2
2 )

v(·)− x1 + x2

2
d(t2(ω))(·).

But this is a contradiction to Feinberg’s (2000) Theorem (Proposition 1 in Heifetz, 2006). Hence
this completes the proof of the theorem. �

5 Equilibria in the Flattened Structure

The Flattened Game: Given a Bayesian game with unawareness of events and (possibly)
action Γ(Ω), we can associate a standard Bayesian game F (Γ(Ω)) played on a standard type-
space (with possibly allowing for varying action sets of the players across different types) in the
following manner:

If Γ(Ω) = 〈Ω, (Mi)i∈I , (Mi)i∈I , (ui)i∈I〉, where Ω = 〈S, (rSα
Sβ

)Sβ�Sα , (ti)i∈I〉 is a unaware-
ness belief structure, then set F (Γ(Ω)) := 〈F (Ω), (Mi)i∈I , (Mi)i∈I , (ui)i∈I〉, where F (Ω) is the
flattened structure associated with Ω, and (Mi)i∈I , (Mi)i∈I , and (ui)i∈I remain unchanged.

VIII



Remark 3 Since the strategy sets and the utility functions remain unchanged, we have that any
strategy profile is a Bayesian unawareness equilibrium in Γ(Ω) if and only if it is a Bayesian
equilibrium in F (Γ(Ω)).

We view flattening the game as a purely technical procedure since there is no natural
interpretation of a flattened game. For instance, in the flattened game we can have types
of players who are certain of their set of actions but consider it possible that they have a
larger set of actions even though they don’t have a larger set of actions. This leads to serious
conceptional problems if a player would choose such an action.3 Note also that equilibria
of flattened games can not be interpreted as equilibria under unawareness. Since the flattened
structure is a standard type-space, the Dekel-Lipman-Modica-Rustichini (1998) critique applies.
Hence unawareness is trivial in the flattened structure.

References

[1] Billingsley, P. (1968). Convergence of probability measures, John Wiley & Sons.

[2] Dekel, E., Lipman, B. and A. Rustichini (1998). Standard state-space models preclude
unawareness, Econometrica 66, 159-173.

[3] Feinberg, Y. (2000). Characterizing common priors in form of posteriors, Journal of Eco-
nomic Theory 91, 127-179.

[4] Heifetz, A. (2006). The positive foundation of the common prior assumption, Games and
Economic Behavior 56, 105-120.

[5] Heifetz, A., Meier, M. and B. C. Schipper (2007). Unawareness, beliefs and games, mimeo.

[6] Monderer, D. and D. Samet (1989). Approximating common knowledge with common
beliefs, Games and Economic Behavior 1, 170-190.

3A player could then “test” his own believes by trying to choose such actions.

IX


	196t.pdf
	unaw_probability40_plus_app5.pdf

