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Abstract 
 

The standard contest model in which participants compete in a single dimension is well 

understood and documented. Multi-dimension extensions are possible but are liable to 

increase the complexity of the contest structure, mitigating one of its main advantages: 

simplicity.   In this paper we propose an extension in which competition ensues in several 

dimensions and a competitor that wins a certain number of these is awarded a prize. The 

amount of information needed to run the contest is hence limited to the number of 

dimensions  won by each player.  We look at the design of this contest from the point of 

view of maximizing effort in the contest (per dimension and totally), and show that there 

will be a tendency to run small contests with few dimensions. The standard Tullock 

model and its results are encompassed by our framework. 

 

Keywords: contest design, multi-tasking, effort incentives 

 

JEL Classification: D72
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1. Introduction 

In many areas, including lobbying, internal labor markets, promotional competition, 

political campaigns, sports, litigation, international conflict and war and in many areas of 

biology, situations are characterized by one or several prizes that are allocated among a 

set of players as a function of the players’ costly efforts. Such games have been called 

conflicts, tournaments, all-pay auctions, or wars, and the common underlying structure 

has been studied intensively.1 Some more recent contributions focus on the problem of 

how such games should be designed if the designer pursues certain objectives. The role 

of the different types of contest success functions and reward functions (Kräkel 2003), 

the size of the prize, multiple prizes and their optimal structure (Clark and Riis 1998, 

Moldovanu and Sela 2001, 2005), resource constraints (Che and Gale 1997), spending 

limits (Che and Gale 1998), the contestants’ choice of points of aspiration and the 

incentive to moderate their conflicting demands (Epstein and Nitzan 2004), timing (Baik 

and Shogren 1992, Leininger 1993), the role of fee-shifting rules in litigation contests 

(Farmer and Pecorino 1999, Baye, Kovenock and de Vries 2005), the role of tournaments 

with multiple, more complex structures (Amegashie 1999 and Gradstein and Konrad 

1999) have been analysed. Related to this, researchers in industrial organization and in 

political economy have considered questions of sequential contests in which the same 

contestants interact repeatedly. In the industrial organization context, early influential 

work is by Harris and Vickers (1985, 1987) and Budd, Harris and Vickers (1993) who 

considered two structures of repeated contests, the race, and the tug-of-war. In the first 

type, the number of single-stage contests is finite and the prize is awarded to the 

contestant who first wins a certain threshold of single-stage contests. In the tug-of-war, 
                                                 
1 In the context of lobbying, some selective surveys are Nitzan (1994) and Lockard and Tullock (2001).  
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the number of single-stage contests is possibly infinite, and the tug-of-war ends if one 

contestant has gained a sufficiently large advantage. Konrad and Kovenock (2005) 

consider the tug-of-war in the context of all-pay auctions and offer complete solutions to 

the problem. Klumpp and Polborn (2006) consider the primaries in the U.S. presidential 

elections. They focus on the sequential nature of this process, and compare it with 

simultaneous contests in several states. The sequential nature causes considerable 

dynamics in terms of spending levels in the sequence of elections.  

 

In a standard contest, participants are invited to try to win a prize of fixed value by 

making an irretrievable effort or outlay, with the winner being determined by a contest 

success function.  The advantages and disadvantages of tournaments compared to a 

standard principal-agent contract are well understood in the context in which agents 

spend effort along one dimension only, and are surveyed by Kräkel (2004) who 

introduces limited liability as a further dimension along which standard contracts and 

tournaments should be compared. Generally, non-verifiability of output and the 

contractual problems for the principal that this may generate, systematic noise, or limits 

to the comparability of outputs on an ordinal scale are known to be main reasons that may 

make tournaments, or relative reward schemes more generally, superior to other, standard 

incentive mechanisms. Their wide use (see Lazear 1996 and Kräkel 2004 for discussions 

of examples) in firms, sports and other contexts suggests that the conditions for their 

superiority are often met.  
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Our paper considers a particular aspect of contest design: in many situations the number 

of prizes that can be awarded is much smaller than the number of dimensions along 

which contestants compete with each other. The prize(s) must be awarded as a function 

of the outcomes of a larger number of contests or tournaments, one for each of several 

tasks of similar importance, such that the contest designer or principal knows in how 

many tasks each player performed better than his competitor. When opening up the 

contest for several effort dimensions, Franckx et al. (2004) note that one risks losing one 

of the main advantages of this type of incentive mechanism, namely its simplicity.  If the 

principal has access to data from several dimensions, then it is not obvious how this 

should be combined to determine the contest winner. Franckx et al. (2004) sum up the 

efforts in each dimension and then add a series of shocks to the output signal in the spirit 

of Lazear and Rosen (1981). Our analysis is close in spirit, and in simplicity, to the 

standard Tullock (rent-seeking) contest (Tullock, 1980). The principal has information 

only on the number of dimensions won by each contestant, but not the size of the winning 

margin. Hence effort aggregation is not an option. 

 

This contest literature concentrates on problems in which the agents perform a single task, 

or, where performance is measured along one dimension. In many organizational 

problems, agents have to decide about their overall effort, and how to allocate this effort 

between different tasks. Often, the competitors will be rewarded according to some 

aggregate measure of overall performance, and not rewarded for performance in each 

task. The water regulating authority in the UK, OFWAT, has used price cap regulation to 

drive efficient water and sewerage provision, and have adopted eight improvement 
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criteria for drinking water quality. Those water authorities that are significantly better 

than the industry average have been allowed a price limit increase of 0.5% (OFWAT, 

1999). Hence the prize can be thought of as being awarded to the winner of the majority 

of these criteria, and this is a case captured by our model. The importance of multi-

tasking, and the problems this causes in the context of principal-agent theory was first 

formally studied by Holmstrom and Milgrom (1991). Principals may want agents to 

spend effort along several dimensions and to pursue several goals, whereas the 

correlation between input or output along these different dimensions need not be equal, 

and they need not be equally well observable or contractible.   

 

The problem of multi-tasking may also come together with one or several of the 

contractual problems that make a contest or tournament the appropriate incentive tool. 

The agents may compete along several dimensions, providing several types of effort that 

generate several types of output, and the contest designer may need to decide about the 

structure of prizes as a function of relative performance along this set of outputs. If each 

type of effort leads to one different type of output, compared to the problem of the choice 

of the structure of prizes when contestants compete along one dimension, a tournament 

designer can essentially choose the number of tournament dimensions along which an 

agent needs to win in order to win a prize. This is the framework analysed in this paper. 

 

In the analysis we focus on symmetric pure strategy equilibria with the particular 

property that the same effort is spread out along all dimensions of the contest.2 If the 

                                                 
2 This is analogous to the procedure adopted by Klumpp and Polborn (2006) that they call Symmetric 
Uniform Campaign Equilibrium. 
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principal values the sum of agents’ effort along each dimension equally and 

independently, but has decreasing marginal benefits from the agents’ sum of efforts in 

each dimension, holding everything else equal, the principal would like agents to attribute 

equal effort to each dimension. We focus on the type of equilibria which this principal, 

loosely speaking, likes most. 

  

In a contest with multiple dimensions, the principal may simply want to award one prize 

in each dimension, instead of one big prize. However, in some contexts, such as 

tournaments for promotion in internal labor markets, the prizes are indivisible and 

absolutely limited in number. Multi-tasking, compared to single-tasking, is then costly for 

the principal in the tournament context as well. We consider optimal contest design in 

such a framework, where the principal can optimize only along two design variables. 

Suppose that participants compete in n symmetric, mutually independent dimensions of 

output and effort, with a winner in each dimension being determined as in Tullock’s 

(1980) lottery contest. In the contest that we present in this paper, participants compete in 

a number of dimensions, and the winner must beat the opponent in at least some pre-

specified number. The problem is tractable for the case of identical players and equally 

important dimensions, for which we derive the symmetric pure strategy Nash equilibrium.  

We present existence conditions for this equilibrium, and look at how the specification of 

the rule affects incentives to exert effort.  We look at the optimal contest design from the 

point of view of maximizing effort (per dimension or totally).  The standard Tullock 

contest is encompassed in our framework, and provides a natural point of comparison. 

The principal may specify a rule in which the winner must beat the opponent in a least k 
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of these dimensions and may choose k to maximize his objective function. If 2k>n then 

this rule establishes that the winner must beat the opponent in the majority of the 

dimensions to win, with the size of the required majority increasing as k gets closer to n.  

In these cases there can be at most one winner, but there may be no winner at all.  If the 

principal chooses k with  n≥2k then a majority is not needed to win, and situations can 

arise in which one or both of the participants win a prize.  

 

The multi-tasking contest is a structure that is relevant in many contexts, where the 

choice of k or n may be a design problem in some context, like in sports tournaments, or 

in deliberately designed research tournaments, but may also be exogenously given in 

other contexts in which the decision is based on a whole set of relative performance 

measures, which have been discussed in the theory of contests more generally.3 Examples 

of applications of the model are 

 i) committee decision making with n members: effort will then be interpreted as the 

amount of resources devoted to persuading each committee member. If k>0.5n then some 

type of majority is needed to reach a decision; if k=0.5(n+1) then a simple majority is 

sufficient, but decisions of a more fundamental nature – such as changes in constitution – 

may need a larger majority.4 This is also related to the literature on political competition 

(e.g. Congleton 1984, Snyder, 1989, Amegashie, 2002). 

ii) Beauty contest. In a competitive tendering situation, contestants are compared 

according to a number of criteria, and a winner is specified as the firm that beats the 

                                                 
3 Examples are litigation (Farmer and Pecorino 1999, Baye, Kovenock and deVries 2005), campaigning 
(Skaperdas and Grofman 1995), lobbying (Tullock 1980, 1988), or bribing games (Clark and Riis 2000).   
 
4 Hence our framework is a considerable extension of some of the analysis in Congleton (1984). 



 8

opponent in a pre-specified majority of these. As a labour market example, one could 

consider annual wage negotiations for employees in the Norwegian state. One possibility 

of achieving a wage increase is in a beauty contest with others at the same institution 

according to a list of difficult to measure criteria, such as environment-building, research 

results, and teaching quality.  The prize is scarce (and not completely divisible in practice) 

since only a small proportion of the applicants are awarded a salary increase. 

iii) A model of sales. Consider two sales representatives with a list of n potential clients; 

the firm may use our contest structure to motivate effort by specifying a bonus to the 

seller with some pre-specified majority of sales. 

 

Section 2 presents the model and solves for the symmetric pure strategy Nash equilibrium.  

The set of designs that satisfy the identified equilibrium is then investigated in Section 3 

from the point of view of effort maximization. A brief conclusion follows in section 4. 

 

2. The model 

There are two risk neutral players who compete for a prize that they value at V by making 

irretrievable efforts at constant unit marginal cost.  The effort of player i = 1, 2 is spread 

over n dimensions, and a player must win at least k of these dimensions in order to win 

the prize.  Thus there are feasible contest designs in which both players may win the prize 

(n ≥2k), or in which there is a single winner or no winner.  The effort of player 1 (2) in 

dimension j is given by xj (yj), j = 1, 2, …n, and the probability that player 1 wins 

dimension j takes a common form: 
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if at least one effort is positive, and 2/1)1( =−= jj pp  if both players choose zero effort 

along this dimension. From (1) it is clear that the competitions to secure each dimension 

are independent of each other.  Players decide upon their efforts simultaneously at the 

start of the game, and the outcome of each dimension is then determined by (1) and 

payoffs are then awarded accordingly. 

 

A key assumption of the analysis here is that a contestant can win at most one prize.  The 

information available to the contest designer is very coarse; he observes only the identity 

of the contestant(s) that has (have) passed the criterion for the award of a prize.  No finer 

grid of information is needed to implement the contest that we consider in this paper. 

Franckx et al (2004) state that a multi-task setting loses one of the advantages of 

contests/tournaments over other mechanisms, namely the limited informational 

requirement. Indeed, in their model the principal receives a signal in each of the 

competitive dimensions.  In our model we retain the feature from single dimension 

contests, namely that the principal receives only information on the identity of the winner 

(rather than information specifying the winning margin in each dimension). 

  

In the model we focus on a symmetric equilibrium in pure strategies. Let this symmetric 

pure strategy equilibrium be denoted by x* = y* = χ  = ),...,,( 21 nχχχ . Then, as is 

shown in Appendix A, nχχχ === ...21   must hold. This makes room for a 

simplification of the expected payoff function that can be used to characterize the 
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equilibrium.5 We set up the dependence of the payoff for player 1 given that player 2 has 

a symmetric effort in all of the dimensions, and that player 1 has the same outlay in all 

dimensions but the first.  We then differentiate this expression with respect to x1 and 

solve the first order condition for x1 to find the equilibrium. 

 

Given an expenditure x1 for player 1 in the first dimension, and a symmetric outlay χ for 

player 2 in all dimensions, and player 1 in all but the first, the probability that player 1 

wins none of the competitions is: 
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Proceeding in this way, one can write the total probability of winning exactly j ≥ 2 

dimensions as: 

                                                 
5 The general form of the expected payoff function would involve a specification of all of the combinations 
of winning at least k of n trials, and the corresponding probabilities. 
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jPP be the probability that player 1 wins less than k of the 

dimensions.  Then the dependence of 1’s payoff on his effort in dimension 1 is captured 

by: 

(5) χχχπ )1()),(1(),( 1111 −−−−= nxVxPx  

Maximization of this expression by choice of x1 yields the following result: 

 

Proposition 1 

For contest design (n, k) a symmetric pure strategy Nash equilibrium is characterized as 

follows. Each player’s effort in each dimension is 
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and the equilibrium payoff is π(n, k)=P(n, k)V-nχ(n, k). 

A necessary condition for this equilibrium to exist is  
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Proof 

Differentiating (5) with respect to x1 and cancelling terms yields: 
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Setting (8) equal to zero and evaluating at a symmetric situation (x1=χ) yields the effort 

indicated in the Proposition.  Differentiating (8) with respect to x1 and evaluating at the 

symmetric situation reveals that this effort maximizes 1’s expected profit (5).  The 

expressions for the equilibrium probability of winning and the expected payoff follow 

directly. The existence condition in (7) secures a non-negative profit in equilibrium. 

QED 

 

The existence condition in (7) guarantees that the players achieve a non-negative profit in 

this equilibrium. Examination of this condition reveals that is sets limits for the 

relationship between the number of dimensions that must be won and the total number of 

dimensions in the competition. Intuitively, the probability of winning a prize in 

equilibrium must be large enough when weighed up against the total cost of effort; this 
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means that n must be sufficiently large in relation to k.  There does not seem to be a 

single relationship between n and k that satisfies (7), but Table 1 presents results of 

simulations of the existence condition for 20≥n≥1.  Figure 1 presents numerical results 

for larger values of n.  For a given n, k*(n) represents the maximum number of 

dimensions that must be won that is consistent with existence of the symmetric 

equilibrium.  In Figure 1, contest designs on and below the line are commensurate with 

the equilibrium in Proposition 1. In the further analysis we shall refer to E as the set of 

contest designs that satisfy the criterion in (7). Appendix B gives a summary of the 

designs that satisfy the existence condition in (7) for n≤20. 

 

Table 1 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k*(n) 1 2 2 2 3 3 3 4 4 5 5 5 6 6 7 7 7 8 8 9 

 

Figure 1 

 About here 

 

From Proposition 1 it can be noted that the contest design (1, 1) is the usual Tullock case, 

yielding an effort per player of χ(1, 1) = V/4.  This contest design naturally satisfies the 

existence condition in (7).  We now turn to the issue of how the pair Ekn ∈),(  affects the 

amount of effort expended in the contest. 
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3. The optimal design 

3.1 Fixed k 

Suppose that the contest designer has specified a rule for how many dimensions a player 

must succeed in to win a prize.  Given this k, we can calculate how the number of 

dimensions affects outlay per dimension, and the total outlay; furthermore we can 

calculate the k that maximizes these magnitudes within E. Holding k fixed and increasing 

the number of dimensions from n to n+1 has the following effect on effort per dimension, 

and the total effort: 

(9) 
)1()!1()!(2

)22()!1(),(),1( 2 +−−−
−−−=−+ + knkkn

nknVknkn nχχ  

 

(10) 
)1()!1()!(2

)12()!1(),(),1()1( 2 +−−−
−−−=−++ + knkkn

nknnVknnknn nχχ . 

From (9) it is clear that the change in effort per dimension is positive until n=2k-2 upon 

which the addition of another dimension (to 2k-1) does not change the effort, but further 

additions reduce the effort in each dimension. Equation (10) indicates that total effort 

increases in n until n=2k-1 upon which the addition of another dimension (to 2k) has no 

effect on the total effort; adding more dimensions than this reduces the total effort. 

 

We must, however, check whether these maxima actually exist, i.e. if the efforts are 

consistent with the equilibrium so that the considered designs are in set E. Define n*(k) as 

the minimum number of dimensions that must be present for the equilibrium to exist as 
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defined by (7).6  For k=1, equilibrium exists for n≥1 so that n=2k-1 indeed maximizes 

effort per dimension, and n=2k-1 and n=2k maximizes their sum.  For k=2 we have 

n*(2)=2 so that the designs that maximize efforts are feasible.  For k=3 it is the case that 

n*(3)=2k-1 so that this is the design that maximizes effort per dimension; the maximal 

efforts for k=3 are consistent with equilibrium.  For k≥4, the existence condition in (7) is 

not fulfilled at the n that maximizes efforts; hence n must be increased to the lowest level 

that is consistent with equilibrium (since efforts are decreasing in n in this region).  The 

required n is thus n*(k). 

 

These results are summed up in Proposition 2, and in the table in Appendix B. 

 

Proposition 2 

Consider designs in set E and fix the number of dimensions that must be won to secure a 

prize at k. If k=1 then the effort per dimension is maximal for n=1, and the total effort is 

maximal for n=1 and n=2. If k = 2, the effort per dimension is maximized for n=2 and 

n=3, and the total effort per player is maximized for n=3 and n=4. For k=3, then the 

effort per dimension is maximized for n=5, and the total effort per player is maximized 

for n=5 and n=6. These are all unconstrained maxima. For k≥4, only the constrained 

maximum is attainable; total effort and the effort per dimension is maximized for n=n*(k). 

 

Given the designs in set E, if only a single dimension must be won, then efforts per 

dimension and total effort are maximized for the standard Tullock contest design with 

                                                 
6 This information can be read from Table 1 by looking at the first occurrence of a number in the second 
row and finding the value for n directly above this in the table: n*(1)=1, n*(2)=2, n*(3)=5, n*(4)=8 etc. 
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competition in a single dimension.  Adding further dimensions increases the chances of 

winning for a given effort and this makes the competitors reduce their effort and cost in 

each dimension.  Adding a second dimension reduces output in each but does not affect 

the total.  Hence the Tullock contest yields an equivalent total effort to the design (2, 1); 

the former only permits one winner, while the latter permits up to two.  If a prize is 

awarded to a contestant that wins at least two dimensions, then the designs (2, 2) and (3, 

2) yield the maximal effort per dimension and the designs (3, 2) and (4, 2) maximize the 

total effort.  For k=2 then one can conclude that the design (3, 2) is optimal in the sense 

that it maximizes both definitions of effort and secures that only a single prize is awarded.  

When k=3 the corresponding optimal design is (5, 3) for the same reason. 

 

For larger values of k, the existence condition constrains the maximum, so that the lowest 

n that is consistent with equilibrium maximizes efforts.  Numerical simulations have 

shown that for k≥4, n*(k) can be written in the form n*(k)=2k+i where i≥0 and i 

increases periodically as k increases.7  This means that in order to maximize effort in the 

contest requires contest designs that potentially permit two winners.  As the number of 

successes needed to win gets larger, the probability of winning for a given effort gets 

reduced; to balance this, the number of dimensions in the contest must be increased.  To 

ensure existence it must be potentially possible for both players to win a prize. 

 

For designs in E, maximizing effort per dimension gives rise to the emergence of  a 

specific pattern when k is fixed; when faced with a choice between a single prize and a 

                                                 
7 It does not appear that the period is constant, nor does it follow a specific pattern, however.  It is for this 
reason that we present numerical results. 
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two-prize system, it is optimal for the principal to instigate the single-prize structure if 

this is in E. If only two-prize systems are commensurate with equilibrium then the lowest 

possible n is chosen. To maximize total effort the division between the prize systems is 

not so sharp; in cases where it is feasible to implement a single- and a two-prize system, 

then the highest n that gives a single prize and the lowest value that involves two prizes 

both maximize total effort. 

 

3.2 Fixed n 

In many applications it is the number of dimensions in the competition that will be fixed 

at n; how should the contest designer set the number of successes on which to base the 

awarding of the prize?  Treating k as a continuous variable, the sign of 
k

kn
∂

∂ ),(χ  is the 

same as the sign of (n-2k+1); hence this function reaches its maximum at k=0.5(n+1).  

When n is odd then this maximum can be reached exactly if the equilibrium exists, but 

when n is even, the efforts to either side of this k are maximal since k is an integer.  This 

can also be seen directly since the sign of the change in effort (and total effort since n is 

fixed here) is given by 

(11) 11 2
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so that effort is increased by adding more dimensions if k<0.5n.  The change is zero 

between k=0.5n and k=0.5n+1, and negative thereafter. Since the number of dimensions 

n is fixed, designs in E that maximize effort per dimension will also maximize effort in 

sum. However, the unconstrained maximum can only be achieved if the design satisfies 
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(7). Referring to Appendix B, we see that for n={1,3,4,5,6,8,10} there is a single k in 

each case that achieves the unconstrained effort maximum.  From Table 1 and Appendix 

B it is apparent that the maximizing k in each of these cases is k*(n). When n=2 both k=1 

and k=k*(n)=2 give the same maximum effort level. For n={7,9} and n≥11, the condition 

in (7) constrains candidates for k that maximize effort. Since ),( knχ  can easily be 

verified to be a function that is strictly concave in k and that is symmetric around its 

maximum, k in these cases should be as large as (7) allows to achieve the constrained 

maximum. The largest possible k in each case is k*(n).  

 

Proposition 3 sums up this set of results. 

 

Proposition 3 

Suppose that n is fixed.  For designs in E, effort per dimension and aggregate effort are 

maximized for k=k*(n); for n=2 the maximum can also be achieved for k=k*(2)-1(=1). 

For n={1,3,4,5,6,8,10} the unconstrained maximum can be achieved. For other n, 

equation (7) constrains the maximum that can be attained.   

 

From table 1 we see that for n≥6, k*(n)<0.5n, and numerical simulations confirm this for 

larger n. Hence the effort maximizing choice of k in these contests is such that there must 

be the possibility that there can be two winners. For n=6, for instance, efforts are 

maximized for k*(6)=3 so that two winners occur if each wins half of the dimensions.  

As n grows, the potential for two winners must increase for the constrained maximum for 



 19

effort to be consistent with equilibrium; k*(50)=21 for example, so that there are many 

outcomes of the 50 dimensions in which both players will receive a prize.   

 

Similar to the discussion around Proposition 2, there is a divide between single-prize 

systems and those that involve potentially two prizes. For a given n, k should be 

increased until a single-prize design is achieved. If this is not feasible then the largest 

available k should be chosen to minimize the probability that two prizes actually have to 

be awarded. 

 

The figures in the table in Appendix B, together with Propositions 2 and 3 indicate that - 

for the designs in E - total effort can always be increased by increasing the size of the 

contest (i.e. simultaneous increases in n and k). This gives more total effort, but spread 

increasingly thinly across all dimensions. This leads to the following result: 

 

Proposition 4 

Let n  be the largest possible value of n. Within E, to maximize total effort in the contest, 

the principal should choose the design ))(*,( nkn . To maximize effort per dimension, the 

design (1,1) should be chosen. 

 

Proposition 4 can be used to help explain the conundrum posed by Tullock (1988) that 

theoretical models predict more rent-seeking activity than is observed in practice.  As 

analysts, we may only observe the identity of the winner of a contest, and have often 

assumed that this has resulted from competition in a single dimension.  A principal 
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wanting to maximize total effort, however, will prefer a large contest with competition in 

several dimensions; the theoretical model from the one-dimensional case will overstate 

the true amount of rent-seeking. 

 

4. Conclusion 

The standard Tullock model of a contest has seen many applications and extensions. The 

limited amount of information needed by the principal to implement such an incentive 

system has made this structure popular in applied work also. When several effort 

dimensions are considered, one immediately opens up for many possibilities regarding 

the information known by the principal, and how this translates into a winning competitor. 

In this paper we have used a framework that is as close to the original as possible, given 

the extension of multiple effort dimensions. The information assumed available to the 

principal here can be very coarse – as in the Tullock model – consisting only of a number 

of dimensions won by each competitor; in addition, and again in common with the 

Tullock framework, the prizes are fixed in size. The optimal designs that we have 

presented ultimately rest on these assumptions. If the prizes are divisible and the principal 

knows which competitor has won each dimension, then he may design an incentive 

scheme that rewards competitors accordingly. If information is available on the winning 

margin in each dimension, then this may further be built in to the incentive scheme. We 

believe that these types of contests should be investigated in future work. However, one 

should bear in mind that the complexity of the contest will likely increase its 

administration cost. Our analysis has been an attempt to open up the multi-task issue in 
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contests, while at the same time preserving the main advantage if this type of structure: 

simplicity. 
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Appendix A 

We show the following 

Lemma  If x and y with x = y are the effort vectors that characterize a symmetric 

equilibrium in pure strategies, then jjii xyyx ===  for all ji,  in {1,2,...,n}. 

For a proof, note first that a symmetric equilibrium in pure strategies cannot have zero 

effort along all dimensions if the prize has a strictly positive value, as each contestant can 

increase the probability for winning the prize from some probability strictly smaller than 

1 to 1 by an infinitely small amount of effort. 

Note further that different effort along different dimensions can also not be an 

equilibrium. We show this by way of a contradiction. Consider a candidate equilibrium  

x = y = χ with 11 yx =  < 22 xy = and 1x  > 0 (the case 01 =x  can be treated along similar 

lines) in a contest with n dimensions and a requirement to win at least 2≥k  dimensions 

in order to win a prize. Let )( ikp −  be the probability that player 1 wins ik −  of the 

contests along the dimensions 3,4,...n. The outcome in the contests along dimensions 1 

and 2 are payoff relevant for player 1 only if the outcome can increase the number of 

dimensions which the player wins from below k to k or above. Accordingly, the candidate 

equilibrium can be an equilibrium only if there is no reallocation of the effort 21 xx +  

between the two dimensions 1 and 2 by which the player can increase his overall 

probability of winning at least k contests. Hence, a necessary condition for the candidate 

to constitute an equilibrium is that 
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cannot be increased, for instance, by a small increase 21 dxdx −=  > 0. The impact of such 

a shift of effort is 
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Evaluating this term at 11 yx =  and 22 yx =  reduces it to              
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Accordingly, each of these terms is positive if 1x  < 2x . As this contradicts the optimality 

of the strategy x in the candidate equilibrium, the efforts must be distributed uniformly 

across all dimensions in a symmetric equilibrium in pure strategies. 
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Appendix B 

Contest designs that satisfy (7), i.e Ekn ∈),(  (for n≤20) 
 

 
 
Combinations of k and n that do not satisfy (7) are denoted by -. The first figure in each 
cell is effort per player per dimension, and the second is total effort per player for some 
example designs. 
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4 - - - - - - -
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5 - - - - - - - - -
2048
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6 - - - - - - - - - - - -         
7 - - - - - - - - - - - - - -    
8 - - - - - - - - - - - - - - - - -  
9 - - - - - - - - - - - - - - - - - - -  
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Figure 1: Relationship between the number of dimensions (n) and the maximum amount 

of dimensions that must be won for existence of equilibrium (k*(n)) 

 

 


