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Abstract
Perfectly discriminating contests (or all pay auction) are widely

used as a model of situations where individuals devote resources to win

some prize. In reality such contests are often preceded by investments

of the contestants into their ability to �ght in the contest. This paper

studies a two stage game where in the �rst stage, players can invest

to lower their bid cost in a perfectly discriminating contest, which

is played in the second stage. Di¤erent assumptions on the timing

of investment are studied. With simultaneous investments, equilib-

ria in which players play a pure strategy in the investment stage are

asymmetric, exhibit incomplete rent dissipation, and expected e¤ort

is reduced relative to the game without investment. There also are

symmetric mixed strategy equilibria with complete rent dissipation.

With sequential investment, the �rst mover always invests enough to

deter the second mover from investing, and enjoys a �rst mover advan-

tage. I also look at unobservable investments and endogenous timing

of investments.
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1 Introduction

Several recent papers have studied investment incentives ahead of di¤erent

market institutions, such as standard �rst- and second-price auctions.1 How-

ever, some market institutions are best described as contests where indi-

viduals devote nonrecoverable resources in order to win a prize, and little

is known about investment incentives ahead of contests. Research tourna-

ments are a case in point.2 For example, Lichtenberg (1988) points out the

importance of �design and technical competitions� for public procurement,

and argues that these competitions are best understood as contests. O¢ -

cially, these contests begin when a federal agency issues a formal Request

for Proposals. But even before the o¢ cial start of a contest, potential con-

tractors are very well aware of the areas of interest of the relevant federal

agencies, and monitor the agencies�interests closely (Danhof 1968). Firms

react on new developments by acquiring skills through selective hiring, or

even purchasing another �rm that already has the necessary experience. In

fact, Danhof (1968, p. 237) argues that these pre-contest investments are

essential: "The �rm that �rst becomes aware of an agency�s interest in an

area through the receipt of a Request for Proposal will normally �nd itself

severely if not impossibly handicapped should it wish to submit a proposal."

Investments ahead of contests also play an increasingly important role in

markets with intense promotional competition and advertising. The inter-

action in these markets clearly are contests, since the market shares depend

on nonrecoverable advertising expenditures (see, for example, Schmalensee

1976). According to The Economist, it is getting increasingly harder to reach

consumers, as they are using �technologies that are getting better at enabling

them to avoid ads, such as "pop-up" blockers in web browsers and personal

video recorders that let viewers easily assemble their own TV schedules and

skip commercial breaks�(The Economist, 2004a). Thus, �target practice�-

1In particular Tan (1992), Piccione and Tan (1996), Bag (1997), Arozamena and Can-
tillon (2004), Krähmer and Strausz (2006). See also Erbenová and Vagstad (1999) on
investment incentives when a government cannot commit to future policies.

2Windham (1999) and Maurer and Scotchmer (2004) list many examples of research
tournaments. Important papers on research tournaments include Lichtenberg (1988), Tay-
lor (1995), Fullerton and McAfee (1999), Che and Gale (2003).
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market research in order to �nd out how to reach a large audience of people

with similar interests, ahead of actually starting an advertising campaign

- is increasingly important (The Economist, 2005; see also The Economist,

2004b). Such market research activities can be viewed as investments that

enhance the ability of �rms to compete in a contest for market shares.

The objective of this paper is to model investments ahead of contests

in detail. It studies a contest between symmetric players. In a �rst stage,

contestants invest in their abilities. In the second stage, they compete in

a perfectly discriminating contest, where the abilities or bid costs of the

contestants depend on their investments in the �rst stage. The paper also

studies the case where the investments increase the value of winning the

contest, which turns out to be quite similar to the case of bid-cost reducing

investment.

Perfectly discriminating contests or all pay auctions have been used to

model several situations where individuals devote resources in order to win

a prize: R&D races and research tournaments (Dasgupta 1986), election

campaigns (Che and Gale 1998), rent-seeking and lobbying (Hillman and

Riley 1989, Ellingsen 1991, Baye et al. 1993), con�icts in hierarchies (Konrad

2004), rivalry between exporting �rms in international trade (Konrad 2000b),

and even sport tournaments (Groh et al. 2003) and wars (Bester and Konrad

2005). The strategic interaction is modelled as a one shot game, where the

players simultaneously choose their e¤orts or "bids", the player who chooses

the highest bid wins a prize, and all players have to pay their bids. This paper

argues that, in all these applications, the contestants can make an investment

which enhances their ability to �ght in the upcoming contest. Ahead of wars,

or sport contests, it is obvious that players put a lot of e¤ort into preparing

for the contest. Before trying to in�uence some politicians on some speci�c

issue, lobbyists often build up a relationship with the politicians. Having

a better relationship helps to "dine and wine" and have an in�uence on

politicians. In election races, candidates build up support prior to engaging in

the actual election campaigns. As argued above, in R&D races and research

tournaments, �rms build up sta¤ and research capabilities prior to entering

the contest.
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One main question of the analysis is how the possibility of investments

a¤ects expected e¤orts. Surprisingly, expected e¤orts are not always higher

than in a benchmark case where the investments are exogenously �xed at

zero. A second main question concerns rent-dissipation - that is, the ex-

pected total costs of the contestants (investment and bid cost) in relation to

the rent that is at stake or prize to be won. In a completely discriminat-

ing contest between identical players, rent dissipation is complete. Several

reasons for lower rent dissipation have been noted in the literature, includ-

ing exogenous di¤erences between players (Baye et al. 1996), imperfectly

discriminating contests (see Nitzan (1994) for a survey), risk aversion (Hill-

man and Katz 1984), and population uncertainty (Myerson and Wärneryd

2006). This paper shows that investments in bid costs reduction can give

an additional reason to expect incomplete rent-dissipation - even in a per-

fectly discriminating contest, with complete information, between ex ante

symmetrical contestants, who are risk neutral.

Whether the investments are observable by the other contestants is im-

portant. If they are not, then, although the decisions are taken at di¤erent

points in real time, we have a simultaneous move game. For each bid in the

contest, there is one associated level of investment that minimizes the total

cost of that bid (investment cost plus bid cost). Thus, the game collapses

to a game in only one decision variable. As in the standard all pay auction,

rent dissipation is complete. Surprisingly, expected bids can be smaller than

in a world where no investment is possible.

If the investments are observable, there is an additional strategic e¤ect:

having low bid cost discourages the rival and makes him �ght less hard in the

ensuing contest. I study three di¤erent scenarios for the timing of the invest-

ment decisions. First, simultaneous timing. Here we have a two stage game,

where in stage one contestants simultaneously decide upon their investment,

and in stage two, after observing the investments of their rivals, they com-

pete in the contest. This model seems appropriate when the contestants are

ex ante symmetric. There is a symmetric equilibrium with complete rent

dissipation. Under some conditions, there are also asymmetric equilibria

where only one of the contestants invests, and rent dissipation is incomplete.
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Second, sequential timing of the investments. This version of the model is

appropriate when there is one incumbent who decides �rst about his invest-

ment level. I show that he will always choose to invest an amount su¢ ciently

high to deter the followers from investing. Third, endogenous timing of the

investment decisions. If the training decisions are long term decisions, and

players do not necessarily start investing at the same point in time, a game

with an endogenous order of moves might be most appropriate. Here I show

that there exists an equilibrium where ex ante symmetric players will invest

di¤erent amounts. This introduces an endogenous asymmetry into the con-

test stage, which lowers expected e¤ort and rent dissipation. However, a

symmetric equilibrium with complete rent dissipation exists as well.

In all three versions, I �nd that the possibility of lowering one�s bid cost

by investing leads to an endogenous asymmetry between the contestants

even when they are symmetric ex ante. If they use pure strategies in the

investment stage, the equilibrium is always asymmetric. On the other hand,

any symmetric equilibrium involves mixing in the investment stage and leads

to an asymmetric situation in the contest stage with positive probability.

The paper is related to Konrad, Peters and Wärneryd (2004) and Kräkel

(2002, 2004) on strategic delegation in contests. The common topic is that

interactions ahead of a contest tends to introduce an endogenous asymmetry

even when the game is symmetric ex ante. Thus, Konrad, Peters and Wärn-

eryd (2004) �nd that delegation contracts are asymmetric. Kräkel (2004) is

perhaps most closely related to the present paper, since it studies investment

activities that enhance the abilities of the contestants, embedded in a model

of strategic delegation. However, Kräkel (2004) assumes an imperfectly dis-

criminating contest in the tradition of Tullock (1980), whereas I look at a

perfectly discriminating contest, and the results di¤er: in Kräkel (2004), if

players are symmetric in the investment stage, their investments are also

symmetric; in the case of a perfectly discriminating contest, the investment

decisions introduce an endogenous asymmetry.3

3A second, albeit minor, di¤erence is that in my paper, the investment reduces the bid
cost, whereas in Kräkel (2004) it enhances the impact of a bid. Formally, the model of
Kräkel (2004) is more closely related to contests with two activities as studied in Hefeker
and Epstein (2003) and Arbatskaya and Mialon (2005).
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Dixit (1987), Baik and Shogren (1992) and Leininger (1993) compare dif-

ferent timing structures in contest games. Dixit (1987) considers contests

with an exogenously given sequential timing of moves. He shows that, when

the underdog (the player who is less likely to win in a simultaneous move con-

test) moves �rst, he undercommits e¤ort relative to his e¤ort in the Cournot-

Nash equilibrium of a contest with simultaneous moves. On the other hand,

if the favorite moves �rst, he overcommits. When the underdog moves �rst,

total expenditures are lower than with simultaneous moves; they are higher

if the favorite moves �rst. Baik and Shogren (1992) and Leininger (1993)

extend Dixit�s analysis by adding an announcement stage, where the players

simultaneously announce whether they want to move early or late. The an-

nouncements become common knowledge, and then the players play either a

simultaneous move contest or one of the two possible sequential move con-

tests. The main result in these papers is that the underdog will move �rst,

and the favorite second. This endogenous timing of moves leads to lower

total expenditures than simultaneous play.4 The main di¤erence between

this literature and the present paper is that, in these papers, the timing of

the decision about contest e¤ort is discussed. In my paper, contest e¤orts

are always simultaneous, and di¤erent assumptions on the timing of the in-

vestment decisions are discussed. However, there is a common underlying

structure: a contest that is ahead induces a hold-up problem for expendi-

tures in an earlier stage, and thereby potentially reduces total expenditures.

Such a hold-up problem has �rst been observed by Ellingsen (1991), who

studies consumer opposition against the winner of a contest for a monopoly

position. Similarly, Konrad (2004) studies contests between groups where

the winning group engages in an internal contest later on, which also induces

4Yildirim (2005) considers a di¤erent way to model endogenous timing of moves in
contests. In his model, players simultaneously choose e¤ort in a �rst stage, and have the
opportunity to add to their previous e¤orts in a second stage, after observing the �rst-
stage e¤ort of the rivals. The probability of winning depends on the sum of e¤ort over
the two stages. Yildirim �nds that there are multiple subgame perfect equilibria, both
the Cournot-Nash simultaneous move contest outcome and the sequential outcome where
the favorite moves �rst can emerge. However, the sequential outcome where the underdog
moves �rst is not an equilibrium.

6



a hold-up problem.

Finally, the paper is related to Sahuguet and Persico (2006) who study

campaign spending in a model of redistributive politics which has a close

connection with all-pay auctions.

Section 2 sets out the basic model. Section 3 studies the case of unob-

servable investments, and Section 4 the case of observable investments. As

a robustness check, Section 5 looks at extensions to more than two players

and a di¤erent investment technology. Section 6 concludes.

2 The model

There are two players 1; 2 (see Section 5 for an extension to n > 2 players).

In the investment stage of the game, players choose their investments ei:

Investments are measured in monetary units. After the investment stage

there is a contest stage. Here players choose their �bids�or e¤orts x1 and

x2: Player i�s bid costs are c (ei)xi; where c : R! R is a twice di¤erentiable

function, c0 (e) < 0 and c00 (e) > 0 for all e � 0: That is, the higher the

investment, the lower the bid cost in the contest stage, and the investment has

diminishing marginal returns. To check robustness, in Section 5 I comment

on the case c00 � 0:
Player i wins a prize V in stage two if he submits the highest bid, that is,

if xi > xj: On the other hand, if xj > xi, player i loses and gets nothing. Ties

are broken randomly. Thus, the probability that i wins the contest equals

pi =

8><>:
1; if xi > xj;

0; if xi < xj;
1
2
; if xi = xj:

Contestants are risk neutral and thus the objective function of contestant i

is

ui = piV � c (ei)xi � ei: (1)

Closely related is a situation where players can invest in order to increase the

value of winning. That is, V = V (ei) with V 0 (e) > 0 and V 00 (e) � 0 and
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ui = piV (ei)� xi� ei: Here there is a clear sense in which one investment is
socially optimal - it is given by V 0 (eopt) = 1: Sometimes I will refer to this

version of the model to talk about the optimal amount of investment.

3 Unobservable investments

If the investment is not observable, then, from a game theoretic point of

view, the investments and the contest are simultaneous. Here, contestants

in�uence only their own bid cost through their investment decision, but not

the behavior of the rival. Contestant i chooses (ei; xi) in order to maximize

(1).

Since c00 (e) > 0; for any given bid x there is a unique optimal investment

level e� (x) which minimizes the total cost of that bid:

e� (x) = argmin
e
(c (e)x+ e) : (2)

Any combination (x; e) where e 6= e� (x) is strictly dominated by (x; e� (x)) :
Thus, the two dimensional problem actually collapses to one dimension. Let

k (x) denote the minimized total cost of a bid x; i.e.

k (x) = c (e� (x))x+ e� (x) : (3)

Then the problem of contestant i is to maximize piV � k (xi) : Proposition 1
describes the equilibrium.

Proposition 1 When investments are not observable, then there is a unique
equilibrium which is in mixed strategies. Contestants mix over pairs (ei; xi)

along the path ei = e� (xi) ; where e� (�) is given in (2). Bids are continuously
distributed according to the probability density function

f (x) =
c (e� (x))

V

with support [0; �x] ; where �x is de�ned by k (�x) = V . Rent dissipation is

complete. Expected bids in the contest stage can be higher or lower than
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without investment.

Proof. See Appendix A.1.

4 Observable investments

When investments are observable, there is an additional strategic e¤ect: hav-

ing low bid cost makes the rival �ght less hard in the contest. I consider three

di¤erent timings of the investment decisions: simultaneous investments, se-

quential investments, and �nally endogenous timing of investments. In the

latter two versions of the model, the investment stage consists of two periods

of time, t = 1,2: With sequential timing, one exogenously speci�ed player

(say 1) invests in t = 1; and in t = 2; the other player 2 observes the invest-

ment of the �rst mover and chooses his own investment. With endogenous

timing, in t = 1 a player can either invest or wait. In t = 2, players observe

all actions taken in t = 1, and then those players who waited in t = 1 can

invest.5

4.1 The contest stage

To solve the model by backward induction, consider the contest in stage two.

It is an all pay auction with identical valuations of the price but di¤erent

bidding costs. This game is identical with the usual all pay auction with

complete information (see Baye et al. 1996, p. 292). To see this, note that

we can divide the payo¤of player i by c (ei) and add ei=c (ei). Since ei is given

in stage two of the game, this is just an a¢ ne transformation and doesn�t

change behavior. Denoting the transformed utility function by ~ui we have

~ui :=
ui
c (ei)

+
ei
c (ei)

=

8>><>>:
V
c(ei)

� xi; if xi > xj;

�xi; if xi < xj;
1

2c(ei)
V � xi; if xi = xj :

5In the IO literature, this endogenous timing structure has been studied by Hamilton
and Slutsky (1990), see their �game of action commitment�.
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This is the payo¤ in a standard all pay auction with complete information

where the valuation of player i equals V=c (ei) :

It is well known that there is a unique equilibrium which is in mixed

strategies.6 In the equilibrium, player i has an expected payo¤ (in units of

the transformed utility function) of

E (~ui) = max

�
V

c (ei)
� V

c (ej)
; 0

�
:

Note that V
c(ei)

> V
c(ej)

i¤ ei > ej: Transforming backwards we get

E (ui) = c (ei)E (~ui)� ei =
(
V � c(ei)

c(ej)
V � ei; if ei > ej;

�ei; if ei � ej:
(4)

4.2 The investment stage

Consider now the investment decision in stage one. The investment stage

resembles a perfectly discriminating contest in one respect: if i invests less

than j does, i �s payo¤ is minus the cost of his investment. However, if

ei > ej; the "prize"
�
V � c(ei)

c(ej)
V
�
that i gets depends both on ei and ej: This

is di¤erent in a standard all-pay auction where the prize does not depend on

the bids. It is also di¤erent from the all-pay auctions with variable rewards

studied by Kaplan et al. (2002, 2003) where the value of winning depend�s

on one�s own bid, but not on the rival�s bid.

To rule out the rather uninteresting case where there is no investment at

all in equilibrium, for the rest of the paper I will assume that7

�c
0 (0)

c (0)
V > 1: (5)

6See Hillman and Riley (1989); Baye et al. (1996); and the textbook of Hirshleifer and
Riley (1992), Chapter 10.

7Line (5) is violated if the prize is not very valuable and/or the investment not very
e¤ective. It is straightforward to show that, in this case, in there exists a unique subgame
perfect equilibrium where e1 = e2 = 0.
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4.2.1 Simultaneous timing of investment

Suppose for a moment that in equilibrium the contestants do not randomize

in the investment stage (we will consider existence of this type of equilibrium

below). Then the equilibrium has to be asymmetric: only one player invests

a positive amount, whereas the other player chooses zero investment. To

see this, suppose to the contrary that there is an equilibrium in which both

players invest positive amounts e�1; e
�
2 > 0. Without loss of generality assume

e�1 � e�2 > 0: Then player 2 has an expected payo¤ of �e�2 < 0: This cannot
be an equilibrium since by playing e2 = 0 player 2 can guarantee himself a

payo¤ of zero. On the other hand, given (5) there is no equilibrium in which

no player invests.

Thus the two players, who are identical ex ante, have di¤erent bid costs

in the contest stage. Relative to the case where there is no investment, this

leads to reduced expected bids in the contest. Suppose player 2 chooses does

not invest. Given (5), the optimal response of player 1; is to invest

e� (0) := c0�1
�
�c (0)
V

�
> 0:

The expected bids in the contest stage are

E (x1) =
V

2c (0)
; E (x2) =

c (e� (0))

c (0)

V

2c (0)

(see Baye et al. 1996). Thus

E (x1 + x2) =
V

c (0)

c (0) + c (e� (0))

2c (0)
:

If the two players were forbidden to invest, their expected bids would equal

V

c (0)
>

V

c (0)

c (0) + c (e� (0))

2c (0)
:

Furthermore, expected rent dissipation is reduced. To see this, note that
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the expected bid costs for each player are

c (e�1)E (x1) = c (0)E (x2) =
c (e� (0))

c (0)

V

2
:

The expected total expenditures (investment plus bid cost) equal

e�1 + c (e
�
1)E (x1) + c (0)E (x2) = e

� (0) +
c (e� (0))

c (0)
V:

By (5) and the assumption that e�1 = e
� (0) > 0 is on the equilibrium path,

we have

V � c (e
� (0))

c (0)
V � e� (0) > 0;

and therefore rent dissipation is not complete.

Depending on the value of the prize V and the shape of the cost function c;

there may or may not be such an equilibrium where players do not randomize

in the investment stage. Proposition 2 makes this precise and sums up the

discussion.

Proposition 2 Consider the case of simultaneous timing of investment. If

max
e�e�(0)

�
V � c (e)

c (e� (0))
V � e

�
� 0; (6)

there are two asymmetric subgame perfect equilibria where players do not

randomize in the investment stage. Expected bids and rent dissipation are

lower than in a situation where the investments are exogenously �xed at zero.

On the other hand, if (6) doesn�t hold, then there are no subgame perfect

equilibria where players use pure strategies in the investment stage.

Proof. Suppose that player i = 1; 2 invests ei = e� (0) : If player j 6= i invests
ej = 0; his payo¤is zero. If j invests ej 2 (0; e� (0)], j �s bid cost in the contest
stage are higher than i �s, thus j �s overall payo¤ is �ej < 0. Moreover, if (6)
holds, j has no incentive to invest more than e� (0) : Thus, for j; investing

zero is a best reply. Now consider i : given ej = 0; investing ei = e� (0) is

by de�nition optimal. Thus, (ei; ej) = (e� (0) ; 0) is an equilibrium of the

12



�rst stage of the game; the properties of this equilibrium follow from the

discussion above. On the other hand, if (6) does not hold, then player j can

gain a strictly higher utility by investing more than e� (0) :

Proposition 2 shows that there can be equilibria in which both players

use pure strategies in the investment stage. This contrasts to a usual all pay

auction, where there are no pure strategy equilibria. In an all pay auction, if

one player bids zero, then the other player optimally bids a marginal positive

amount ". But then the �rst player has an incentive to outbid the second

by bidding (say) 2". This gives him a payo¤ of V � 2" which is positive for
small ": This kind of argument does not apply to the �rst stage of the present

model. If one player invests only marginally more than the other player, then

his expected utility gain from the contest in stage two is marginally small. In

order to get a strictly positive payo¤ from the contest, a player has to invest

strictly more than the other does. This is why e� (0) will usually be strictly

positive, and it can be the case that it doesn�t pay to invest more than your

opponent, given he invests e� (0) :

The logic underlying Proposition 2 is related to the logic of entry into

oligipolistic competition when competition is strong. For example, consider

the following two stage game. On the �rst stage, �rms choose whether to

enter a market. Each �rm that enters has to pay a setup cost. In the second

stage, the �rms that have entered compete in a Betrand game with constant

marginal cost. In equilibrium, only one �rm will enter, and thus there also

arises an endogenous asymmetry even though �rms are symmetric ex ante.8

An empirical example of endogenous asymmetry arising from investments

ahead of contests is the sharp asymmetry among teams in professional sports

leagues.9

8See, for example, Mas-Colell et al. (1995), Chapter 12E. The relationship to games
of entry is even more obvious in the case where c00 � 0 discussed in Section 4.2 below:
there the only undominated investment alternatives are zero investment and a certain
positive investment. In the all-pay auction literature, not much has been done on entry.
The analysis of minimum outlays for participation in Hillman and Samet (1987) di¤ers
because Hillman and Samet (1987) look at a one-shot simultaneous move game, where the
set of pure strategies is restricted by a minimum expenditure requirement.

9I thank an anonymous referee for pointing this out. See Szymanski (2003) for a survey
of the literature on sporting contests.
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However, Proposition 2 also shows that equilibria where players play pure

strategies in the investment stage do not always exist. Further, if they exist,

they are asymmetric, and each player would prefer to be the only one who in-

vests. So there might be a coordination failure. This suggests that we should

take a look at mixed strategy equilibria. The next proposition describes a

symmetric mixed strategy equilibrium.

Proposition 3 In the game with simultaneous investment there is a sym-
metric equilibrium in mixed strategies. In this equilibrium player i does not

invest with probability

r = � c (0)

V c0 (0)
;

and with probability 1� r player i mixes according to the probability density
function

f (ei) =
c00 (ei)

(c0 (ei))
2

c (ei)�
1 + c(0)

V c0(0)

�
V

over [0; �e], where �e is the unique solution to

� c (�e)
c0 (�e)

+ �e = V: (7)

Rent dissipation is complete.

Proof. See Appendix A.2.
Both players put the probability mass r � 0 on zero investment. This

mass is zero only if lime!0
c(e)
c0(e) = 0: The remaining probability mass is dis-

tributed over [0; �e] : The support of the mixed strategy is connected due to

the assumption that c00 (e) > 0; we will see below that the support is not

connected if c00 (e) < 0.10

Expected bids in the contest stage can be greater or smaller than V=c (0) :

First of all, if c (0) =1; then without investment the expected bids are zero.
If furthermore lime!0

c(e)
c0(e) = 0; in the mixed strategy equilibrium both players

10The di¤erence between this result and the corresponding Remark 1 in Kaplan et al.
(2003) is due to the fact (already noted above) that, in the present paper, the payo¤ from
investing more than one�s competitor does depend on the investment of the competitor.
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invest with probability one, and hence expected bids are positive. Therefore,

expected bids can be greater than V=c (0) : On the other hand, one can also

construct examples where expected bids are lower (see Example 1 below).

If the investment increases the value of winning instead of lowering bid

cost, then we have the socially optimal investment in the asymmetric equi-

libria discussed in Proposition 2, but ine¢ cient investment with probability

one in the symmetric equilibria in Proposition 3.

4.2.2 Sequential timing of investment

In this section I consider the game with sequential investment. In this version

of the model, player 1 invests �rst. Player 2 then observes e1 and chooses e2:

Afterwards the �rst mover observes e2; and the contest starts.

If inequality (6) holds, then the optimal investment of 1 is e� (0). Player 2

will react with e� (e� (0)) = 0: This equilibrium, which is the unique subgame

perfect equilibrium, shares all the features of the asymmetric equilibria dis-

cussed in Proposition 2: rent dissipation is incomplete, and expected e¤orts

are lower than without any investment.

But even if inequality (6) does not hold, there still is a subgame perfect

equilibrium in which only the �rst mover invests. This is due to the fact that

player 1 can choose an investment elim such that the best response of player

2 is not to invest at all.

To see that there is such an investment, note that

max
e

�
V � c (e)

c (e1)
V � e s.t. e � e1

�
decreases in e1. Furthermore, the maximum is positive if e1 = 0; and eventu-

ally gets negative as e1 !1: This implies that there is an unique elim such
that

max
e

�
V � c (e)

c (e1)
V � e s.t. e � e1

�8><>:
>

=

<

9>=>; 0 i¤ e1
8><>:
<

=

>

9>=>; elim:
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By choosing e1 = elim; player 1 makes player 2 indi¤erent between investing

zero and investing ê (elim) ; where

ê (elim) = argmax
e

�
V � c (e)

c (elim)
V � e s.t. e � elim

�
:

In both cases, player 20s expected utility is zero.

If player 1 invests e1 = elim and player 2 invests zero, then the expected

utility of player 1 is strictly positive. To see this, note that, since V � c(e)
c(0)
V �e

is a concave function of e with a global maximum at e = e� (0) < elim; it is

falling in e over the entire interval [elim; ê (elim)] : Hence

E (u1 (elim; 0)) = V �
c (elim)

c (0)
V � elim � V �

c (ê (elim))

c (0)
V � ê (elim) : (8)

But

V � c (ê (elim))
c (0)

V � ê (elim) > V �
c (ê (elim))

c (elim)
V � ê (elim) = 0; (9)

where the inequality follows from c (0) > c (elim) and the equality from the

de�nition of elim: Combining (8) and (9) we have E (u1 (elim; 0)) > 0:

Proposition 4 In the game with sequential timing of investment, there is a
unique subgame perfect equilibrium. If inequality (6) holds, the �rst mover

invests e� (0) ; otherwise he invests elim. In any case, the second mover does

not invest.

Proof. The second mover chooses e� (e1) in every subgame perfect equilib-
rium. If player 1 follows the strategy described above, clearly e� (e1) = 0:

If inequality (6) holds, e� (0) is obviously the best investment of decision

player 1.

Now consider the case where (6) doesn�t hold. If player 1 invests less than

elim; player 2 will invest more than player 1; and player 10s expected payo¤

will be �e1 � 0: On the other hand, if e1 � elim; player 2 will not invest.

Since elim > e� (0) and V � c(e)
c(0)
V � e is a concave function of e with a global
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maximum at e = e� (0) < elim; player 1 has no incentive to invest more than

elim:

Thus, with sequential timing of investments the possibility to invest al-

ways lowers expected e¤ort and rent dissipation.

If the investment increases the value of winning instead of lowering bid

cost, then we have the socially optimal investment when inequality (6) holds;

otherwise, we have overinvestment to deter the second mover from investing.

4.2.3 Endogenous timing of investment

Now I endogenize the order of moves. The investment stage consists of two

periods, t=1 and t=2. In t=1, players can either invest or wait. In t=2,

players observe all actions taken in t=1, and then those players who waited

in t=1 can invest.

Proposition 5 With endogenous timing of investment, there are always two
asymmetric subgame perfect equilibria where players choose pure strategies

in the investment stage which correspond to the equilibrium of the game with

sequential play. In these equilibria, expected e¤orts and rent dissipation are

lower than with investments exogenously �xed at zero. In addition, there ex-

ists a symmetric subgame perfect equilibrium where rent dissipation is com-

plete.

Proof. See Appendix A.3.

5 Extensions

5.1 Many players

In this section I show that the results do not depend on the assumption that

there are only two players. I focus on the game with simultaneous investment;

however, similar comments apply to the other cases as well. Suppose there

are n � 3 players. Proposition 2 can be generalized easily. The condition for
existence of subgame perfect equilibria where the players play pure strategies

17



in the investment stage is still given by line (6), where e� (0) now denotes the

optimal response of a player to zero investment by all his rivals. If condition

(6) holds, there are n asymmetric subgame perfect equilibria. In each of these

equilibria, exactly one player invests a positive amount. Expected e¤ort and

expected rent dissipation in these equilibria are reduced relative to the game

without any investment.

As the following proposition shows, in the equilibria with mixing in the

investment stage, we again have complete rent dissipation.

Proposition 6 (a) There are n� 1 di¤erent types of subgame perfect equi-
libria with mixing in the investment stage. These types di¤er in the number

m of �active�players, where a player is called active if he invests a positive

amount with a strictly positive probability, and 2 � m � n:
An active players does invest zero with probability

am :=

�
� c (0)

V c0 (0)

� 1
m�1

;

with the remaining probability, she randomizes according to the cumulative

distribution function

Fm (e) = �
am

1� am
+

1

1� am

�
1

V

�
e� c (e)

c0 (e)

�� 1
m�1

;

with support [0; �e] ; where �e is given in line (7) above.

The remaining n � m players are inactive, that is, they invest zero with

probability one.

(b) In each of these equilibria, rent dissipation is complete.

Proof. See Appendix A.4.
Proposition 6 shows that, for the discussed equilibria, the case n > 2 also

exhibits complete rent dissipation.
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5.2 Increasing returns to investment

The purpose of this section is to show that the main �ndings do not de-

pend on the assumption that c00 (e) > 0; again focussing on the game with

simultaneous investments, and returning to the case n = 2: I will assume the

following:

9emax : c0 (e) < 0 and c00 (e) � 0 8e < emax and c (e) = c (emax) > 0 8e � emax:
(10)

Assumption (10) says that there are weakly increasing returns to investment

up to a certain maximum investment emax; but that the bid cost cannot be

lowered under c (emax) :

Given (10), V � c(ei)
c(ej)

V � ei is convex in ei at all ei 2 [0; emax]. Therefore
each player will invest either zero or the maximal amount emax: Suppose that

player i chooses ei = 0: What is the optimal response of player j? If (5)

holds, clearly e� (0) = emax: But (5) is overly strong in this context, it is

su¢ cient but not necessary for e� (0) = emax. If (5) does not hold, but

V � c (emax)
c (0)

V � emax � 0; (11)

to invest emax is still an optimal response to ei = 0: This leads to the following

proposition.

Proposition 7 Consider the game with observable simultaneous investments
and assume that investment in cost reduction has weakly increasing returns

up to some maximum investment emax (i.e. (10) holds).

(a) If (11) holds, there are two asymmetric subgame perfect equilibria where

players use pure strategies in the investment stage. In each of these equilibria

one player invests the maximal amount emax and the other player invests zero.

In these equilibria, rent dissipation is incomplete and the expected e¤ort is

less than in the game without investment.

(b) Furthermore, if (11) holds with strict inequality, there is a subgame perfect
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equilibrium in which each player invests zero with probability

s =
emax

V � c(emax)
c(0)

V
2 (0; 1)

and emax with the remaining probability 1� s: In this equilibrium rent dissi-

pation is complete.

(c) If (11) does not hold there is a unique subgame perfect equilibrium with

zero investment.

Proof. (a) and (c) follow from the discussion above. Concerning (b), �rst

note that s > 0 since emax > 0; and s < 1 since by assumption (11) holds

with strict inequality. Suppose player i behaves according to the described

mixed strategy. Then the payo¤ of player j from investing emax is

emax

V � c(emax)
c(0)

V

�
V � c (emax)

c (0)
V � emax

�
+

 
1� emax

V � c(emax)
c(0)

V

!
(�emax) = 0:

So he is indi¤erent between investing emax and not investing at all. Clearly

he has no incentive to invest an amount e 2 (0; emax) :
One interesting result is that expected bids in the mixed strategy equi-

librium of the contest stage can be bigger or smaller than V=c (0) : This can

be shown with a simple linear example.

Example 1 Suppose c (e) = max (k � e; kmin) :
Here emax = k � kmin and c (emax) = kmin: Inequality (11) holds i¤ V � k:

In the mixed strategy equilibrium, a player doesn�t invest with probability k
V
:

Note that this doesn�t depend on kmin. Expected bids equal

E (x1 + x2) =

�
k

V

�2
V

k
+ 2

k

V

�
1� k

V

�
V

k

k + kmin
2k

+

�
1� k

V

�2
V

kmin

Now if kmin ! 0; E (x1 + x2) ! 1. If the minimal cost get very low, the
expected bids for the case where both players happen to invest gets very high,

and so expected bids are bigger than without investment. On the other hand, if

V = 100; k = 90 and kmin = 80 we get E (x1 + x2) = 793
720
< V

k
= 100

90

�
= 800

720

�
:
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6 Conclusion

This paper studies investments that enhance the ability of contestants who

engage in a perfectly discriminating contest. It distinguishes between observ-

able and unobservable investments. If investments are not observable, the

game collapses to a game in only one decision variable. As in the standard

model of a completely discriminating contest, rent dissipation is complete.

Surprisingly, expected bids can both be smaller or bigger than in a world

where no investment is possible.

If investments are observable, they have an additional strategic e¤ect.

The paper considers three assumptions on the timing of the investment deci-

sions: simultaneous moves, sequential moves with an exogenously predeter-

mined order, and endogenous timing of moves. The paper �nds that there is a

strong tendency for the emergence of an endogenous asymmetry, even though

players are identical ex ante. With simultaneous investments, equilibria in

which players play a pure strategy in the investment stage are asymmetric,

exhibit incomplete rent dissipation, and expected e¤ort is reduced relative to

the game without investment. There also are symmetric mixed strategy equi-

libria with complete rent dissipation: in these equilibria there is a positive

probability that the players invest di¤erent amounts and hence also some

tendency for an endogenous asymmetry. With sequential investment, the

�rst mover always invests enough to deter the second mover from investing,

and enjoys a �rst mover advantage. The game with endogenous timing of

investments has multiple equilibria. There is an equilibrium where only one

player invests, and rent dissipation is incomplete. There is also a symmetric

equilibrium with mixing in the investment stage where rent dissipation is

complete.
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A Appendix

A.1 Proof of Proposition 1

Existence. Suppose that contestant i follows this strategy. Then, by bidding

x; contestant j wins with probability
R x
0
f (z) dz and thus his utility equals

E (uj) =

Z x

0

c (e� (z))

V
dzV � k (x) :

By bidding xj = 0 contestant j gets uj = 0 since he loses with probability

one and k (0) = 0: Also, by bidding �x he gets uj = V � k (�x) = 0: Now for
all x 2 (0; �x) expected utility is constant in x since

dE (uj)

dx
= c (e� (x))� k0 (x) = 0

where the second equality follows by applying the envelope theorem on (3).

Hence j is indi¤erent between all x 2 [0; �x] : Bidding more than �x is clearly
suboptimal. Thus, the strategies are an equilibrium.

Uniqueness can be shown by a slight adaptation of the proof in Baye et

al. (1996).

Expected utility of a contestant is equal to zero, thus rent dissipation is

complete. Since the equilibrium is symmetric, in equilibrium each contestant

wins with probability 1=2. Thus we must have E [k (x)] = V=2 or

E [c (e� (x))x+ e� (x)] =
V

2
:

The expected bid of a contestant equals

E (x) =

Z �x

0

x
c (e� (x))

V
dx

Combining the last two equations, we �nd that

E (x) =

Z �x

0

x
c (e� (x))

V
dx =

1

2
� 1

V
E [e� (x)] :
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Without investments, the expected bid of a contestant equals V
2c(0)

: Thus, the

expected sum of bids is higher with investment if

1

2
� 1

V
E [e� (x)] >

V

2c (0)
:

Expected bids can both be higher or lower than in a game where the invest-

ment is exogenously �xed to zero. Clearly, if c (0) is in�nite, then, without

investment, expected bids are zero. Thus the bids will be higher in the game

with investment. On the other hand, if c (0) < V; then investment lowers

expected bids.

A.2 Proof of Proposition 3

First note that
R �e
0
f (e) de = 1 and f > 0; hence f is a probability density

function. Also note that r � 0 since c0 (0) < 0; and r < 1 by (5).
Suppose player j invests according to the mixed strategy described in the

proposition. I will show that player i is indi¤erent between all ei 2 [0; �e] ; and
has no incentive to choose an ei > �e: Clearly, if player i doesn�t invest he gets

a payo¤ of zero. If player i chooses an ei 2 (0; �e] then his expected payo¤
from the contest stage depends on the investment of player j: If ej = 0; then

i gets an expected payo¤ from the contest stage of
�
1� c(ei)

c(0)

�
V . If player

j invests ej < ei, player i gets an expected payo¤ from the contest stage of�
1� c(ei)

c(ej)

�
V . Finally, if ej � ei his expected payo¤ from the contest stage

is zero. Therefore

E (ui (ei; ej)) =

= r

�
1� c (ei)

c (0)

�
V + (1� r)

Z ei

0

�
1� c (ei)

c (ej)

�
V f (ej) dej � ei =

= r

�
1� c (ei)

c (0)

�
V +

Z ei

0

c00 (ej)

(c0 (ej))
2 c (ej) dej � c (ei)

Z ei

0

c00 (ej)

(c0 (ej))
2dej � ei =

= � c (0)
c0 (0)

�
1� c (ei)

c (0)

�
+

�
� c (ej)
c0 (ej)

+ ej

�ei
0

� c (ei)
�
� 1

c0 (ej)

�ei
0

� ei =

= 0:
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This shows that player i is indi¤erent between all ei 2 [0; �e] :
If player i chooses an investment ei > �e, he gets

E (ui (ei; ej)) = � c (0)

c0 (0)V

�
1� c (ei)

c (0)

�
V

+

�
1 +

c (0)

c0 (0)V

�Z �e

0

�
1� c (ei)

c (ej)

�
V f (ej) dej � ei

= � c (�e)
c0 (�e)

+ �e+ c (ei)
1

c0 (�e)
� ei

=
c (ei)� c (�e)

c0 (�e)
+ �e� ei:

The cost function c (e) is strictly convex, hence c (ei) > c (�e) + c0 (�e) (ei � �e) :
Rearranging and using c0 < 0 leads to

c (ei)� c (�e)
c0 (�e)

+ �e� ei < 0 8ei > �e:

Hence E (ui (ei; ej)) < 0 8ei > �e: This shows that player i has no incentive

to choose an ei > �e:

Clearly the same considerations apply to the other player. Therefore the

expected utility of both players is zero, and this implies that rent dissipation

is complete.

A.3 Proof of Proposition 5

The following strategies constitute an asymmetric subgame perfect equilib-

rium.

� t=1: Player i invests max fe� (0) ; elimg and player j waits.

� t=2: If neither player invested in t = 1; then both play according to the
symmetric mixed strategy equilibrium of the game with simultaneous

investment. If one player waited and the other player invested e > 0 in

t = 1; the �rst player reacts optimally by investing e� (e) :

If player j behaves according to this strategy, player i cannot gain by

deviating. If he waits in t = 1; then they reach a subgame which is actually
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the game with simultaneous investment. Since j then plays according to the

mixed strategy equilibrium, i0s payo¤ is zero. If player i invests less then

max fe� (0) ; elimg in t=1, then in t=2 player j will invest more then ei, and
the payo¤ of i equals �ei � 0: Further, if player i invests max fe� (0) ; elimg
in t = 1; player j cannot gain by deviating. So these strategies describe an

equilibrium.

The following strategies constitute a symmetric subgame perfect equilib-

rium:

� t=1: Invest ~e := max (e� (0) ; elim) with probability

q =
V � c(~e)

c(0)
V � ~e

V � c(~e)
c(0)
V

;

and wait with probability 1� q:

� t=2: If neither player invested in t = 1; then both play according to the
symmetric mixed strategy equilibrium of the game with simultaneous

investment. If one player waited and the other player invested e > 0 in

t = 1; the �rst player reacts optimally by investing e� (e) :

Suppose j behaves according to these strategies. Then i can not gain

from deviating in t=2 only. If he invests ei = ~e in t=1, he gets

q (�~e) + (1� q)
�
V � c (~e)

c (0)
V � ~e

�
= 0:

Investing ei = 0 gives player i zero utility, too. Thus, i is indi¤erent between

ei = 0 and ei = ~e: Investing more than ~e; or investing ei 2 (0; ~e) ; is worse than
investing ~e: Thus, these strategies are an equilibrium. Moreover, expected

utility is zero and hence rent dissipation complete.

A.4 Proof of Proposition 6

a) First I show that an active player (say, i) is indi¤erent between all e 2 [0; �e],
given that all the other players behave according to the described strategies.
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Clearly, the active player gets a payo¤ of zero if he doesn�t invest. If he

invests ei 2 (0; �e] ; his expected payo¤ is

E (u�i (ei)) = a
m�1
m

�
1� c (ei)

c (0)

�
V+

+
m�1X
k=1

" 
m� 1
k

!
am�1�km (1� am)k

Z ei

0

�
1� c (ei)

c (e)

�
V kFm (e)

k�1 F 0m (e) de

#
�ei

= am�1m

�
1� c (ei)

c (0)

�
V+

+

Z ei

0

�
1� c (ei)

c (e)

�"
V

m�1X
k=1

 
m� 1
k

!
am�1�km (1� am)k kFm (e)k�1 F

0

m (e)

#
de�ei:

Now let us calculate the bracket [�] in the line above. By the de�nition
of Fm; we have

[am + (1� am)Fm (e)]m�1 =
1

V

�
e� c (e)

c0 (e)

�
:

Applying the binomic theorem, the left hand side equals

[am + (1� am)F (e)]m�1 =
m�1X
k=0

 
m� 1
k

!
am�1�km ((1� am)Fm (e))k :

Therefore

V

m�1X
k=0

 
m� 1
k

!
am�1�km ((1� am)Fm (e))k = e�

c (e)

c0 (e)
:

Di¤erentiating both sides with respect to e leads to

V
m�1X
k=0

 
m� 1
k

!
am�1�km (1� am)k kFm (e)k�1 F 0m (e) =

c00 (e) c (e)

c0 (e)2
:

The left hand side is just the bracket [�] we wanted to calculate!
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Plugging this back into player i0s utility, we get

E (ui (ei)) = a
m�1
m

�
1� c (ei)

c (0)

�
V +

Z ei

0

�
1� c (ei)

c (e)

�
c00 (e) c (e)

c0 (e)2
de� ei:

We already know from the proof of Proposition 3 that the right hand side of

this equation is zero. Therefore we have shown that E (u�i (ei)) = 0 for all

ei 2 [0; �e] : If the active player i invests ei > �e he gets a payo¤

E (ui (ei)) = a
m�1
m

�
1� c (ei)

c (0)

�
V +

Z �e

0

�
1� c (ei)

c (e)

�
c00 (e) c (e)

c0 (e)2
de� ei

which is negative by the proof of Proposition 3. So an active player has no

incentive to deviate.

Further, no inactive player (say, j) has an incentive to invest a positive

amount. This is shown by the following consideration. Suppose the �rst

active player didn�t invest. Then, conditional on the �rst active player not

investing, the expected payo¤ of player j from investing ej 2 (0; �e] is zero,
since then player j is in the same position as one of the active players is ex

ante. But, conditional on the �rst active player investing, player i0s utility

has to be negative. Therefore his unconditional expected utility, which is a

weighted sum of the two conditional expectations, is negative. And of course,

there is never an incentive to invest more than �e:

b) We know from part a) that the expected utility of all players is zero.

Therefore, rent dissipation is complete.
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